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Abstract. This paper aims to define a measure which
would capture notion of compromise on a given profile
of voter preferences, about certain candidate being
appointed to the certain position by some social wel-
fare function. The goal is to define what compromise
should mean, and proposes so called "d-measure of
divergence" as a measure of divergence for some
candidate to be positioned to certain position. Two
well established social welfare functions, Borda and
plurality count d-measure of divergence results are
compared. Furthermore, d-measure of divergence
enables us to define new social welfare functions,
which would (in different ways) minimize d-measure
of divergence (from the compromise): "Simple d-
measure", greedy minimization and "Total d-measure"
social welfare functions. Characterization for the SdM
function is given, and properties of later two functions
are analyzed.

Keywords. Borda count, Plurality count, Social choice
function, Social welfare function, Compromise

1 Motivation and basic definitions
Main inspiration for this article comes from following
example. Let there is an election in which one hundred
voters should choose between three candidates: A, B
and C. Each voter places its vote by ordering those can-
didates. That ordering we will call a preference, and
denote it αi. Set of all preferences for those hundred
voters, a profile α is given in Table 1, in which fifty
one voters have preference A � B � C, while forty
nine voters have preference C � B � A.

Table 1: Basic motivation profile

51 49

A C
B B
C A

Given the profile α, which candidate should win?
Most of the classical social choice functions would say

- candidate A. Borda count would produce A � B �
C linear ordering, result of plurality count would be
A � C � B (with A winning the most first places, and
B the least). Condorcet method would duel all candi-
dates, and those duels would yield A � B � C or-
dering. All those classical methods have one thing in
common: winner should be candidate A. Nevertheless,
that is a candidate that 49% of voters see as the worst
choice. Should A then be a winner? What should be
result if we approach to a profile α looking for com-
promise? If we want from social choice function to
address notion of compromise, wouldn’t it be better if
candidate B is declared as a winner?

This leads us to the main topic of this article: find-
ing a way for determining a value which should capture
notion of compromise on a given profile, for placing a
candidate on a certain position in linear ordering. Let
us go back to the example in Table 1. If we take a
look at candidate A, in a given profile he/she is placed
first in 51 preferences, and placed third in 49 prefer-
ences. Therefore, in 51 preferences, distance between
his position and the first place is 0 (places), and in 49
preferences that distance equals 2 (places). If we sim-
ply sum all those distances (for each candidate) over
profile α, we would get a measure of distance between
profile placements of a candidate and a first place. But,
for a such measure, one can easily prove that ranking
based on it gives result equivalent to Borda count.

What we want to do is to put some weight on those
distances, so that bigger distance carries more than just
its linear contribution. Therefore, we will take look on
a distance with some power d, d being a real number
greater than 1. If we sum such weighted distances from
the first place over profile α for a candidate A, we get
following expression:

51 · 0d + 49 · 2d, d > 1

We introduce notion βd1 (A) for such expression. For
other two candidates we have:

βd1 (B) = 51 · 1d + 49 · 1d = 100

βd1 (C) = 51 · 2d + 49 · 0d = 51 · 2d



Value βd1 (Mi) for some candidate Mi we will call
a d-measure of divergence from the first position. The
idea is that smaller value of βd1 (Mi) captures notion of
the greater level of compromise on a given profile for a
candidate to be placed on a first place of linear order-
ing. Unlike distance function from works of (Seiford,
Cook, 1978), we do not form measure of distance be-
tween preferences. Rather than that, we establish mea-
sure divergence from compromise (or consensus) that
certain candidate should be positioned on certain posi-
tion. But the goal is similar: it is a in society interest to
minimize that measure. This leads us to the following
basic definitions.

1.1 Basic definitions
Definition 1.1 (d-Measure of divergence from the first
position). Let M = {M1, ...,Mm} be set of m candi-
dates, and let α ∈ L(M)n be a profile of n voters over
those candidates. We define a d-measure of divergence
from the first position for a candidate Mk, βd1 (Mk), as
a

βd1 (Mk) =

n∑
i=1

∣∣αki − 1
∣∣d (1)

where αki stands for a position of the candidate Mk in
a preference of i-th voter αi, and for some real value
d > 1.

Now we can easily extend definition to a d-measure
of divergence from a j-th position of the k-th candi-
date:

Definition 1.2 (d-Measure of divergence from the j-th
position). Let M = {M1, ...,Mm} be set of m candi-
dates, and let α ∈ L(M)n be a profile of n voters over
those candidates. We define a d-measure of divergence
from a j-th position for a candidate Mk, βdj (Mk), as a

βdj (Mk) =

n∑
i=1

∣∣αki − j∣∣d (2)

where αki stands for a position of the candidate Mk in
a preference of i-th voter, αi, and for some real value
d > 1.

Given the Definition 1.2, it is only natural to gather
βdj (Mk) values in a form of a matrix:

Definition 1.3 (d-Measure of divergence matrix). Let
M = {M1, ...,Mm} be set of m candidates, and let
α ∈ L(M)n be a profile of n voters over those candi-
dates. We define a d-measure of divergence matrix

Md =


βd1 (M1) βd2 (M1) · · · βdm(M1)

βd1 (M2) βd2 (M2) · · · βdm(M2)
...

...
. . .

...
βd1 (Mm) βd2 (Mm) · · · βdm(Mm)

 (3)

for some real value d > 1.

As we can see, in j-th column of a matrix Md we
have d-measures of divergence from j-th position for
all candidates, while in i-th row of matrixMd, we have
d-measures of divergence from all positions for a can-
didate Mi.

1.2 Compromise as a Sorties paradox
Before we go further, let us say something about the
value of parameter d. In the example given in the Table
1 we see that, if we want candidate B to have smaller
d-measure of divergence from a first position than can-
didate A (which means, if we want candidate B to be
declared a compromise winner on a given profile), it
should be

βd1 (B) < βd1 (A) ⇒ d > log2 100− log2 49

But, what is the value of d that should be used gen-
erally? Answering to that question requires finding
an answer to the following version of a Sorties para-
dox (Hyde, 2014): Let us say that n voters are voting
through strict linear ordering over the set of three can-
didates, {A,B,C}. For some k ∈ N,

⌈
n
2

⌉
≤ k ≤ n

they form profile αbasic given in Table 2.

Table 2: Basic definition profile

k n− k
A C
B B
C A

Let us accept reasoning that candidate B should be
a compromise winner on profile αbasic given in Table
2 for k =

⌈
n
2

⌉
, and that candidate A should be a com-

promise winner on profile αbasic for k = n. Sorties
paradox arises from question: what is the value of k
for which we should consider candidate B a compro-
mise winner on a given profile αbasic, while for value
k + 1 a compromise winner should be candidate A?

This question can be seen as a version of a classical
Sorties paradox given by Megarian logician Eubulides
of Miletus about a number of grains which are (not)
forming a heap. Phenomenon that lies at a heart of
the paradox is recognized as the phenomenon of vague-
ness; the concept of heap appears to lack sharp bound-
aries, just as the concept of compromise winner does in
our case. Nevertheless, we will approach to the issue
not as to a paradox, but (same as Eubulides did) as a
puzzle.

From statement that for a value of k =
⌈
n
2

⌉
we have

one candidate as a compromise winner on a given pro-
file, while for a value of k = n we have another candi-
date as a compromise winner, using the Least-number
principle, we shall conclude that there is some k0 be-
tween those two values, such that for k0 compromise
winner on a profile αbasic is a candidate B, and for



k0 + 1 compromise winner is candidate A. Value k0
should be result of an apriori social choice of a group
which is about to use this model.

There are numerous situations in which similar so-
cial choices are being made. For instance, in a num-
ber of states two-third parliament majority is needed
to make constitution changes, as opposed to simple
majority needed for other type of decisions. So, why
2/3? Why not 3/4 or 4/7? Measure of majority needed
for such constitutional changes represents similar so-
cial decision, as one presented in this paper – society
decided where to "draw the line". Similarly, social de-
cision should be made about value of k0. When value
for k0 is determined, for d we have:

log2

(
n

n− k0

)
< d < log2

(
n

n− k0 − 1

)

2 d-Measure of divergence from the
first position

If we interpret d-measure of divergence from the first
position as a measure of compromise for a social func-
tion choice winner selection, we can compare results
of the classical social choice function. For instance,
Borda count is usually considered as a social choice
function that emphasize compromise candidate as a
winner, especially when compared to the plurality win-
ner. Does this thesis holds if we use d-measure of diver-
gence from the first position as a measure for selection
of the compromise candidate for a winner?

In this section we will provide an answer to that
question. To do that, we will first consider three candi-
date scenario, followed by scenarios with more candi-
dates. Let us consider following theorem:

Theorem 2.1. Let α be a profile over the set of candi-
dates M = {A,B,C}. Let WBC stands for a unique
Borda count winner candidate and WPC for a unique
plurality winner candidate (if there are such) over some
profile α. For every d > 1 there is

βd1 (WBC) ≤ βd1 (WPC).

Equality holds iff WBC = WPC .

There is combinatorial proof of this theorem. Al-
though there are six different preferences over the set of
three candidates, number of all possible combinations
of preferences that can form a profile can be reduced.

Table 3: Condorcet triplets: profiles αC1 and αC2

1 1 1
A C B
B A C
C B A

1 1 1
C A B
B C A
A B C

Two profiles αC1 and αC2 (Table 3) we will call Con-
dorcet triples. Those profiles consist of three prefer-
ences on which neutral and anonymous social choice
function should form a tie (or a cycle) as a result. As
Saari showed (Saari, 1994), all scoring point functions
are invariant in regard of Condorcet triplet removal,
which includes both Borda and plurality count. Fur-
thermore, it is easy to prove that a d-measure of diver-
gence from the j-th position preserves ordering among
candidates when profile is reduced for the Condorcet
triple.

Lemma 2.2. Let A and B be any two candidates from
the set of candidates M. For a d-measure of divergence
from the j-th position βdi , and profiles α and α′, α′ be-
ing the profile derived from α by removal of one Con-
dorcet triple, we have

βdi (A,α) < βdi (B,α) iff βdi (A,α′) < βdi (B,α′).

Since both Borda and plurality count, as well as d-
measure of divergence from the j-th position relations
among candidates, are Condorcet triple invariant, we
can reduce a set of all possible combinations of voters
preferences to a set of preferences without Condorcet
triples. This means that largest profile we should an-
alyze consists of (some number of) two preferences
from αC1 and two from αC2 . Still, it is a large work, and
here we will demonstrate it on one of such reductions.

Lemma 2.3. Let α1 be a profile over the set of candi-
dates M = {A,B,C}, without any Condorcet triples.
Furthermore, let α1 be a profile of a form

k l m

ξ(A) ξ(C) ξ(A)
ξ(B) ξ(A) ξ(C)
ξ(C) ξ(B) ξ(B)

ξ being some permutation over the set M. Then, for
every profile α obtained as a union of α1 and some
number of copies of Condorcet triples αC1 and αC2 it
follows

βd1 (WBC) < βd1 (WPC),

for some WBC ,WPC ∈ M , winners by Borda and
plurality count respectively over the profile α, where
WBC 6= WPC if such WPC exists.

Proof: Without loss of generality, we can drop per-
mutation function ξ. On a given profile, plurality win-
ner can be candidate A or C. If A is plurality winner, it
follows k+m > l. For A to be Borda winner it should
have greater Borda score than C, so 2k + l + 2m >
2l + m, ie. 2k + m > l which holds beacuse of plu-
rality winning condition. Therefore, if A is plurality
winner, then it is also Borda winner, which proves the
Lemma.

On the other hand, if C is plurylity winner, then we
have:

k +m < l. (4)



For A to be Borda winner (compared to C), we have

2k + l + 2m > 2l +m ⇒ 2k +m > l. (5)

Conditions (4) and (5) sums to m + k < l < m +
2k. For a profile α1 and d > 1 for which d-measure
of divergence form the first place for a candidate C is
smaller than the one for the candidate A, must hold:

βd1 (C) < βd1 (A) ⇔ m+ k · 2d < l.

But from the condition (5) follows: m + k · 2d >
m + 2k > l, which leads to the conclusion that C can
not have smaller d-measure of divergence from the first
place than candidate A, which proves the Lemma.

Similar lemmas can be proven for all combination
of preferences that can form profile α′ which does not
contain any Condorcet triple. Together with invariance
of Borda count, plurality count and d-measure of di-
vergence from the first position, in regard to removal
(or addition) of Condorcet triplets, follows the proof of
Theorem 2.1.

In case with more than three candidates, similar
claim can not be proven. If there is four candidates,
there are profiles on which plurality count produces
different winner than Borda count, and with smaller d-
measure of divergence form the first position. Consider
the following theorem:

Theorem 2.4. Let M = {A,B,C,D} be set of can-
didates, and let WBC stands for a unique Borda count
winner candidate andWPC for a unique plurality win-
ner candidate over some profile α. For every d > 1
there is a profile α such that WBC 6= WPC , and for
d-measures of divergence from the first position there
is

βd1 (WPC) < βd1 (WBC).

It can be proven that for a profile given in the Table
4 and a given d > 1, there are values for m, i and
j for which Borda winner (candidate B) has a greater
d-measure of divergence from the first place than the
plurality winner (candidate A). In such profile, values
for m, i and j are determined by:

i >
2 · 3d − 2 · 2d − 1

3d − 2 · 2d + 1
,

2d − 2

3d − 2d − 1
· i+

1

3d − 2d − 1
< j < i− 1

and m = 2i− j − 1.

Let us demonstrate construction of the profile on
which Borda winner has a greater d-measure of diver-
gence from the first position than a plurality winner in
the following example:

Example 2.5. Let M = {A,B,C,D} be set of can-
didates, and let d = 1.05. According to Theorem 2.4,
values m, i and j from a profile in Table 4, equal to

Table 4: Construction profile for Theorem 2.4

m i j

A B D
B C C
C A A
D D B

m = 44, i = 43 and j = 44. On this profile plurality
winner is candidate A, while Borda winner is candidate
B (with Borda score 217, while Borda scores of candi-
date A and C equals to 216 and 212). d-Measures of
divergence from the first place equals to:

β1.05
1 (A) = (43 + 41) · 21.05 = 173.9245

β1.05
1 (B) = 44 + 41 · 31.05 = 173.9455

Construction from the Theorem 2.4 can be expanded
to the arbitrary large set of candidates. With first four
positions of the candidates that remain the same, all
other candidates can be arbitrary placed below 4th po-
sition in preferences of the constructed profile. Anal-
ysis of such profile leads to the same conditions for
construction as in the case with four candidates.

3 d-Measure social welfare func-
tions

3.1 Simple d-measure of divergence func-
tion, SdM

As defined in Section 1, a d-measure of divergence en-
ables new approach to the construction of the social
choice and social welfare functions. Simplest, and the
most natural way to use information about d-measure
of divergence, is to address a d-measure of divergence
from first position. In most cases, it is only important
who is the winner on a given profile. Therefore, we
can define social welfare function based only upon d-
measure of divergence from a first position, ie. values
in the first column of a d-measure of divergence matrix,
Md.

Definition 3.1. Let M = {M1, ...,Mm} be set of
m candidates, d > 1 real number, and let α ∈
L(M)n be a profile of n voters over those candi-
dates. Let Md

α =
[
βdj (Mi)

]
be a d-measure of di-

vergence matrix. We define social welfare function
SdM : L(M)n → L(M) in following way: let us
make strict linear ordering of d-measures of divergence
from a first position for all candidates

βd1 (Mi1) < βd1 (Mi2) < ... < βd1 (Mim). (6)

We define strict linear ordering implied by (6) as a re-
sult of a social welfare function SdM:

SdM(α) = Mi1 �Mi2 �Mi3 � ... �Mim , (7)



if such strict ordering exists. Otherwise, we say social
welfare function SdC is undefined on a profile α.

Of course, social welfare function SdM induces a so-
cial choice function (we will use the same name for
the function), as a function which declares a candidate
with minimal d-measure of divergence from the first
position as a winner on a given profile. Let us now
see which properties does satisfy social choice func-
tion SdM.

It is fairly simple to prove that SdM is anony-
mous and neutral for all d > 1 (which means it
symmetrically treats voters and candidates), and that
social choice function SdM is positively responsive
(monotonic) for all d > 1 (we say for a social choice
function that it is monotonic, if a voters’ increase of a
candidate ranking in his / her preference can not pre-
vent that candidate from winning an election).

There are two more properties of a SdM social
choice function we want to point out, reinforcement
and continuity. First of those two, reinforcement,
Young calls consistency, and he proves that this prop-
erty characterizes position scoring social choice func-
tions. Later of two, continuity, is technical property
needed for proof of position scoring social choice func-
tions characterization (Young, 1975).

Definition 3.2. Social choice function F satisfies rein-
forcement if, whenever we split the set of preferences α
into two subsets α′ and α′′, and some candidate would
win for both subsets, then it will also win for the full
profile α:

F (α′)∩F (α′′) 6= ∅ ⇒ F (α) = F (α′)∩F (α′′)

Definition 3.3. Social choice function F satisfies con-
tinuity if, for disjoint profiles α′ and α′′, where is
F (α′) = M1, F (α′′) = M2, there is a number n ∈ N,
such that for a profile α made (as a union) of n copies
of profile α′ and profile α′′ we have F (α) = M1.

Proposition 3.4. Social choice function SdM satisfies
reinforcement and continuity for all d > 1.

Proof: Since SdM can have just one winner, we have
to show that for some candidate Mw ∈ {M1, ...,Mm},
SdM(α′) = SdM(α′′) = Mw, it follows SdM(α) =
Mw. For all d > 1 it follows

βd1 (Mw, α
′) = min

j=1,...,m
βd1 (Mj , α

′),

βd1 (Mw, α
′′) = min

j=1,...,m
βd1 (Mj , α

′′),

where βd1 (Mj , α) stands for a d-measure of divergence
from a first position for a candidate Mj on profile α.
On the other hand, for a d-measure of divergence from
a first position for a candidateMj on profile α, we have

βd1 (Mj , α) = βd1 (Mj , α
′) + βd1 (Mj , α

′′).

Now, it follows

βd1 (Mw, α) = βd1 (Mw, α
′) + βd1 (Mw, α

′′) =

= min
j=1,...,k

βd1 (Mj , α
′) + min

j=1,...,k
βd1 (Mj , α

′′) ≤

≤ min
j=1,...,k

(
βd1 (Mj , α

′) + βd1 (Mj , α
′′)
)
= min

j=1,...,k
βd1 (Mj , α)

Therefore, Mw is SdM winner on a profile α.
To prove continuity, let us suppose that SdM(α′) =

M1, SdM(α′′) = M2 for disjoint profiles α′ and
α′′. Suppose m1,m2 ∈ R equals to corresponding d-
measures of divergence from a first position for those
two candidates:

m1 = βd1 (M1, α
′) = min

j=1,...,k
βd1 (Mj , α

′)

m2 = βd1 (M2, α
′′) = min

j=1,...,k
βd1 (Mj , α

′′).
(8)

For all d > 1 we have that a d-measures of divergence
from a first position over the profile αmade of n copies
of profile α′ and profile α′′, and for every candidateMi

there is:

βd1 (Mi, α) = βd1 (Mi, α
′′) + n · βd1 (Mi, α

′).

Specially, for candidates M1 and M2 we have

βd1 (M1, α) = βd1 (M1, α
′′) + n ·m1,

βd1 (M2, α) = m2 + n · βd1 (M2, α
′).

Now, we have to show, that there is a n ∈ N, such that

βd1 (M1, α) < βd1 (M2, α)

βd1 (M1, α
′′) + n ·m1 < m2 + n · βd1 (M2, α

′)

βd1 (M1, α
′′)−m2 < n ·

(
βd1 (M2, α

′)−m1

)
Because of (8), it follows k1 = βd1 (M1, α

′′)−m2 > 0
and α′ for k2 = βd1 (M2, α

′)−m1 > 0. Now, it is clear,
that there is n ∈ N such that k1 < n · k2, which proves
continuity.

With these properties, we are able to prove main the-
orem about SdM social choice function.

Theorem 3.5. For all d > 1, social choice
function SdM is positional score function
over set of m candidates, with scoring vector
s = (0,−1,−2d, ...,−(m− 1)d).

Proof: Young gives characterization (Young, 1975)
of the social choice functions F as a (generalized) posi-
tional scoring rule iff it satisfies anonymity, neutrality,
reinforcement and continuity. Furthermore, it is easy
to see that positional score for some candidateMk over
scoring vector s =

(
0,−1,−2d, ...,−(m− 1)d

)
is maxi-

mized iff d-measure of divergence from a first position
βd1 (Mk) =

∑n
i=1

∣∣αki − 1
∣∣d from Definition 1.1 is mini-

mized.
From Theorem 3.5 we can conclude that there is a

positional score function which produces a winner that
has the smallest d-measure of divergence from a first
position. But modeling social choice functions accord-
ing to a d-measure of divergence doesn’t end there. In
fact, we got relatively simple result because we used
only one parameter, a d-measure of divergence from a
first position. This means that we used only data from
the first column from a d-measure of divergence ma-
trix Md. Now, we will expand our approach, trying to
interpret all Md data through social choice (welfare)
functions.



3.2 Greedy approach to a d-measure of di-
vergence

Main goal in this section will be construction of social
wellfare function through utilization of a d-measure of
divergence from all positions, not just winning one.
Probably the simplest way to do that is using greedy
technique; first place in linear order we will assign to a
candidate with smallest d-measure of divergence from
a first position, second place we will assign to candi-
date with smallest d-measure of divergence from a sec-
ond position (from the set of remaining candidates, of
course), and so on. Although algorithm sounds reason-
able, it can produce strange results. Let us examine
following example.

Example 3.6. Suppose α is a profile over the set of
five candidates M = {A,B,C,D,E} given with fol-
lowing table:

38 3 10

A E B
B B C
C A A
D C D
E D E

and let d = 2. Similar example can be constructed for
lower values of d, but in this case we use d = 2 for
clarity.

In this case, candidate A is clear Borda, Condorcet
and plurality winner. But, that candidate doesn’t have
the lowest d-measure of divergence from a first posi-
tion. For d = 2, we have β2

1(A) = 52, and β2
1(B) =

41, so by SdM and greedy approach to the d-measure
of divergence, candidate B will be selected as a win-
ner. But what about other candidates in a result linear
ordering of a social welfare function? Let us take look
at a d-measure of divergence matrix:

Md(α) =


52 51 152 355 660
41 ��10 ��81 ��254 ��529
189 50 ��13 ��78 ��245
351 175 60 ��27 ��48
768 435 204 75 �3


In i-th column, lowest d-measure of divergence from

the i-th place is marked bold. Therefore, result of
greedy approach on this profile is ordering

B � C � D � E � A.

Intuitively, this result is just - wrong. More formally,
this example clearly demonstrates lack of Pareto effi-
ciency of greedy approach to d-measure of divergence.
In a given profile, candidate A is placed higher than
candidate D in all preferences. Yet, greedy approach
positioned candidate A on the last place of linear or-
dering, and so even after candidate D.

There is a way to deal with this problem. Greedy
method could be applied cumulatively. After picking
a candidate with the lowest value of d-measure of di-
vergence in first column of a matrix Md, when one
chooses a candidate for a second position in result or-
dering, one can choose candidate (among remaining
ones) which minimize a sum of d-measures of diver-
gence from first and second position. And so on.

If we apply cumulative greedy approach to a profile
described in Example 3.6, in first column of the ma-
trix Md we would choose candidate B (with the low-
est d-measure of divergence in the first column). Af-
ter that, we would choose candidate A with cumula-
tive d-measure of divergence in the first and the second
columns equal to 103, and so on. If we proceed with
that algorithm, we would end up with the final ordering
B � A � C � D � E.

Stated such way, cumulative greedy approach offers
a way of exploring the subject of social welfare func-
tions build upon a d-measure of divergence, but we
won’t pursue it in this paper. Rather than that, we will
try to find comprehensive method for minimizing a d-
measure of divergence.

3.3 Total minimization of a d-measure of
divergence

Instead of trying to minimize a d-measure of diver-
gence from positions one by one, as we tried to do with
greedy approach, we will now look at minimization of
all d-measures of divergence at once. This means that
we will look for linear ordering, among all possible lin-
ear orderings of candidates, which minimize sum of d-
measures of divergence from all positions. Such unique
ordering (if it exists) we will take as a result of Total d-
Measure social welfare function, TdM.

Definition 3.7. Let M = {M1, ...,Mm} be set of
m candidates, d > 1 real number, and let α ∈
L(M)n be a profile of n voters over those candi-
dates. Let Md

α =
[
βdj (Mi)

]
be a d-measure of di-

vergence matrix. Let Sym(Nm) be set of all per-
mutations of set {1, 2, ...,m}, with elements ξi, i ∈
{1, 2, ...,m!}. We define social welfare function
TdM : L(M)n → L(M) ("Total d-Measure") in fol-
lowing way: let ξTdM be unique permutation of the set
{1, 2, ...,m} such that

m∑
i=1

βdi
(
MξTdM (i)

)
= min

j=1,...,m!

m∑
i=1

βdi
(
Mξj(i)

)
(9)

We define:

TdM(α) =MξTdM (1) �MξTdM (2) � ... �MξTdM (m).

If there is no such unique permutation that satisfies
equation (9), we say TdM is undefined on a profile α.

Remark 3.8. In order to simplify notation, for a sum
over a order of candidates (defined with a permuta-
tion ξ) on a given profile, and for some value d > 1,



∑m
i=1 β

d
i

(
MξTdC(i)

)
, we will write

βdsum
(
Mξ(1) �Mξ(2) � ... �Mξ(m)

)
or βdsum(ξ).

For instance, if in Example 3.6, ordering of the can-
didates which has minimal sum of the d-measures of
divergence would be A � B � C � D � E with total
sum 178. Notice that this ordering differs from result
of SdM (and greedy) social welfare function, while it
is same as result of Borda count. It is clear that TdM
social welfare function doesn’t have to produce winner
with the lowest d-measure of divergence from the first
position.

Before we go any further, let us establish basic prop-
erty of TdM, that is, its asymptotic behavior. Unlike
many other social welfare functions, it is not obvious
that d-measure minimization over all orderings will
produce an ordering which extremely dominate in a
profile. In a way, following proposition is a version
of the Young continuity condition, which was proven
for SdM.

Proposition 3.9. Let M = {M1,M2, ...,Mm} be set
of candidates, and let α be a profile, in which k1 out of
n voters have preference

Mξ(1) �Mξ(2) � ... �Mξ(m) (10)

for some permutation over the set of candidates ξ,
while other k2 voters have some other preferences over
the same set of candidates. If on a profile α number of
k1 voters increase (and consequently n), then there is
some k0 ∈ N such that for every k1 > k0 the result of
social welfare function TdM is preference (10) for all
d > 1.

Proof: Profile α can be written in general form:

k1 k2,1 k2,2 · · · k2,i

Mξ(1) Mξ1(1) Mξ2(1) · · · Mξi(1)

Mξ(2) Mξ1(2) Mξ2(2) · · · Mξi(2)

...
...

...
...

...
Mξ(m) Mξ1(m) Mξ2(m) · · · Mξi(m)

for some number of preferences i, i ≤ k2, such that
k2,1 + k2,2 + · · ·+ k2,i = k2, k2,1, k2,2, · · · , k2,i ∈ N.
Let us now look how d-measure of divergence ma-
trix Md

α changes as k1 increases. Places in matrix
determined by ξ (that is, βd1 (Mξ(1)), βd2 (Mξ(2)), ...,
βdm(Mξ(m))) do not depend of k1, so they remain the
same. All other elements ofMd increases linearly as k1
increases. Therefore, at some point βdsum(ξ) will be-
come minimal sum among all sums over permutations
of the set of candidates M, which proves the proposi-
tion.

Since TdM derives its result from properties of over-
all orderings, and not from properties of individual can-
didates, it is only natural to expect that properties based
on a relationship between candidates would not always

hold. Monotonicity is first of such properties. Sup-
pose that α is profile over three candidates, A, B and
C, which contains orderingB � C � A, such thatA is
TdM winner. If we swap positions of candidates A and
C in that ordering to gain new ordering B � A � C,
we will denote new profile with α′. Let us examine
changes on a d-measure of a divergence matrix:

∆d = Md
α −Md

α′ =

 −2d + 1 −1 1
0 0 0

2d − 1 1 −1

 (11)

From ∆d we can read out changes in βdsum for various
orderings (in notation, δdsum) when we change profile
from α to α′. Specialy, we have:

δdsum(A � C � B) = 2− 2d

δdsum(B � A � C) = −2
(12)

We can see that βdsum is reduced for both orderings, but
reduction is greater for the ordering B � A � C (for
d < 2). So, to prove that social choice function TdM is
not monotonic we should construct described profile α
for which difference between βdsum of orderings A �
C � B and B � A � C is lesser than difference
between corresponding values of δdsum.

In Table 5 non-monotonic change in one such profile
(for d=1.15) is given; in the first profile TdM winner is
candidate A, and after the change (in which candidate
A swaps with candidate C for a higher position in one
preference), TdM winner becomes candidate B.

Table 5: Non-monotonic profile for TdM and d=1.15

5 14 11

B A B
C C A
A B C

4 14 12

B A B
C C A
A B C

Example in Table 5 came from the analysis of three
candidates scenario, which can be (without loss of gen-
erality) reduced to three cases, with candidate A win-
ning on some profile α: 1) in preference B � C � A,
candidate A swaps places with B; 2) in same preference
candidate A swaps places with C; and 3) in preference
B � A � C, candidate A swaps places with B. Anal-
ysis of the first case leads to conclusion that candidate
A remains TdM winner.

Second case is described prior to Table 5. To draw a
more general conclusion for all d > 1, we will analyze
if there is a profile α such that (see (12)) difference
δdsum(A � C � B) − δdsum(B � A � C) = 4 − 2d

is greater than the difference βdsum(B � A � C) −
βdsum(A � C � B). We seek such a profile only for
1 < d < 2, because in case of d ≥ 2 candidate A
remains winner.

Analysis of that scenario shows that such profile can
be constructed for all d ∈ 〈1, 2〉, with construction
rules similar to preference relations described in (Saari,



1994); each increase of certain preference in a pro-
file does fixed change to the βdsum. This allows us to
combine preferences in order to achieve certain dis-
tance in observed sums. We won’t go into detail of
that extensive analysis in this paper. Let us just point
out that, values for d which are close to 2 yield non-
monotonic profiles with much higher total number of
preferences (voters). This can be interesting finding if
we are considering usage of TdM social choice func-
tion in a smaller group of voters. Third case leads to
similar conclusion, but this time for values of d greater
than 2. Finding described profiles is relatively simple
when value of d is close to 1 or very large, and it be-
comes more challenging when d → 2. Even more, we
have following result, which follows from analysis of a
matrix ∆d:

Proposition 3.10. For d=2, social choice function
TdM over set of three candidates is monotonic.

Another important property of the social welfare
functions is Pareto efficiency.

Theorem 3.11. Social welfare function TdM is Pareto
efficient for every value d > 1.

Sketch of the proof: Suppose, TdM is not Pareto
efficient, i.e. there is a profile α and two candidates A
andB, such that isA � B in all preferences of the pro-
file, but B � A in a result ordering of the TdM. Let us
assume (without loss of generality) that candidate B is
on the i-th position in the result ordering, and candidate
A i the j-th position, i < j. Let us now analyze each
of the preferences that form profile α. Since in each
of those preferences A comes before B, we can assume
that A is on the k-th position, and B is on the l-th posi-
tion, with k < l. There are six different combinations
of values i, j. k and l. For all of those combinations
we analyze contribution of the analyzed preference to
the βdsum for two linear orderings: one which by as-
sumption minimizes βdsum over all preferences (with
B � A in the ordering), and one constructed from that
ordering with swap of the positions for A and B. Ana-
lyzis shows that contribution to βdsum is smaller for the
ordering which contains A � B, in all six preference
types.

4 Conclusion
In this paper we provided new approach to the notion
of compromise on a given profile of voters preferences.
For a compromise seen as a version of Sorties para-
dox, we provided definition of d-measure of divergence
from the j-th position, which gives numerical value
of divergence from a compromise that k-th candidate
should be placed on j-th position in strict linear order-
ing of the candidates.

Even if Borda count is usually considered a social
choice function which provides compromise result (es-

pecially when compared to plurality count), this state-
ment holds only in case of three candidates scenario. If
there are four or more candidates, there are profiles on
which plurality count produces winner with lower d-
measure of divergence from the first place than Borda
count.

Next, d-measure of divergence enables us to define
new social welfare functions, which would (in differ-
ent ways) minimize d-measure of divergence (from the
compromise): SdM, greedy minimization, and TdM
social welfare functions. Characterization for the SdM
function, as a scoring point social choice function is
given. Since d-measure of divergence offers much
richer ways for utilization, two more concept of d-
measure of divergence minimization are introduced.
But while greedy approach didn’t produce encouraging
results, there is a cumulative greedy approach which
can lead to interesting results in future analyzes. Fi-
nally, we introduced concept of social choice function
build upon total minimization of d-measure of diver-
gence, and proved its basic properties: asymptotic be-
havior, lack of monotonicity and Pareto efficiency.
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