
A Method for Automatic Selection and Interpretation of

Student Clustering Models According to Their Activity

on E-Learning System

Igor Jugo, Božidar Kovačić

University of Rijeka

Department of Informatics

Radmile Matejcic 2, 51000 Rijeka, Croatia

{ijugo, bkovacic}@inf.uniri.hr

Abstract. The paper proposes a method that is part of

a new, extended architecture of our web-based

intelligent tutoring system (ITS). It was developed to

provide hints to students during learning through the

application of educational data mining (EDM). The

architecture consists of three modules – a) a

communication module that enables seamless

communication with data mining tools; b) a clustering

module that discovers clusters in student data based

on their activity and c) a sequential pattern mining

(SPM) module that finds efficient frequent learning

patterns of students in each cluster. Finally, the

obtained results are used by the tutoring module to

provide hints to a student on which item to learn next

(or previous to the selected one). To improve the hint

selection process we developed a method for cluster

grading to determine which cluster represents the

group that has been using the ITS in the manner

closest to an envisioned optimum. We verify the

method on data gathered from two groups of students

who used the system to master a knowledge domain,

and present the obtained results.

Keywords. Clustering, Educational data mining,

Intelligent tutoring system, E-learning

1 Introduction

Intelligent tutoring systems (ITSs) are a valuable

teaching tool not only for distance education but also

as a complementary teaching/learning tool in

traditional (face-to-face) education. Many such

systems have been developed for teaching in well-

defined domains (e.g., math, physics, etc.) and are

mostly standalone desktop applications. On the other

hand, the number of web-based ITSs is much smaller

(Brusilovsky, 1999), especially for teaching in ill-

defined domains (Lynch et al., 2006). Ill-defined

domains consist of a number of knowledge units

(KUs) that do not have a strictly defined order in

which they have to be taught/learned, but instead the

system relies on a domain expert to define the

structure of the domain. One such system has been

developed at our institution to serve as an additional

learning platform.

Our web-based intelligent tutoring system

(WITS), described first by (Kovačić & Skočir, 2003)

and (Kovačić & Jugo, 2009), currently provides

teachers with functionalities for creating KUs,

teaching materials, various types of questions for

assessing acquired knowledge, and an editor to create

the KU hierarchy. Each KU is described by a start and

a threshold value which students reach by answering

the questions correctly. Furthermore, the system

features a descriptive statistics module for students

and teachers (Kovačić et al., 2012). To further

improve the system’s overall efficiency we proposed

a new architecture which integrates data mining (DM)

algorithms (Jugo et al., 2014; Jugo et al., 2015).

A valuable source of data for our system lies in the

records of student interactions with the system. We

apply educational data mining (EDM) processes

(Romero & Ventura, 2007; Romero & Ventura 2010;

Fernandez et al., 2014) to these records and use the

obtained information to enrich the system’s student

model and improve the tutoring model. In order for

improvements to take place we added several new

modules to the tutoring module. The first was an

integration layer (Jugo et al., 2013) that creates a

continuous communication channel to DM tools

Weka (Hall et al., 2009) and SPMF (Fournier-Viger et

al., 2014) which are used to execute DM algorithms

on data gathered within our ITS. Second was the

module for automatic clustering model selection and

interpretation (which implements the method

described in this paper) to discover different groups of

students based on their activity and efficiency levels.

Finally, a sequential pattern mining (SPM) (Srikant &

Agrawal, 1996) module used to discover frequent

patterns (FPs) students take through the knowledge

domain. SPM algorithms can produce a large number

of FPs. An algorithm that differentiates between

productive patterns (those that yield better gains in the

student’s knowledge levels) and non-productive

patterns (those that represent possible issues with the

knowledge domain structure, difficult questions, etc.)

was developed. In our system we use both types of

patterns: productive patterns are used to enable

dynamic creation of learning structures by our

tutoring model, while non-productive patterns are

presented to teachers so they can make actions to

correct their causes.

This paper focuses in particular on the second

module – clustering of students based on their activity

(ways of using the system) and efficiency (correctness

of answers to questions presented by the system)

levels. In order to guide the students during their

progress through the knowledge domain the system

needs to discover clusters of students that use the

system in a similar way and consequently determine

which cluster represents the highest achieving

students, average achieving ones, etc. An important

aspect of this system is that it performs automated

student model improvements (Koedinger, 2012) by

running both clustering and SPM routines at

scheduled intervals while the students are progressing

through the knowledge domain and increasing the size

of the interactions dataset.

With results from both clustering and SPM

modules, we can make the tutoring model more

adaptive: cluster ordering and discovered productive

FPs of each cluster are used to guide students from a

lower grade cluster towards the activity levels and

learning paths of a higher grade cluster, thus

improving the students’ learning experience and

overall results.

The rest of this paper is structured as follows:

Section 2 introduces related work on EDM and

focuses on applying clustering in e-learning systems.

Section 3 gives an overview of the basic functionality

of our WITS which is the environment used for

research at hand. The process through which the

system obtains clustering models using

communication with DM tools is described in Section

4, while Section 5 presents our method for automatic

clustering selection and interpretation. In Section 6

we present results of the proposed method and

conclude the paper in Section 7.

2 Related work

Combining clustering (Kaufman & Rousseeuw,

1990) and SPM is an approach that has been applied

for the purpose of recommending web pages in e-

learning systems (Romero et al., 2007) and analysing

online collaborative learning data (Perera et al.,

2007). An example of integration of data mining tools

with an e-learning system can be found in (Zorilla et

al., 2010), where authors improved the existing Black

Board monitoring tool and in (Romero et al., 2013),

where authors presented a Moodle block that enables

the users to perform clustering, classification and

association rule mining, and export the raw results to

a file. This is a useful extension of Moodle

functionalities for teachers even though it presents

them with “raw” output of DM algorithms which can

prove to be difficult to understand. Our system

integrates the results of DM algorithms into the

process of increasing the system’s adaptivity and

further presents the results using interactive, in-

browser, visualizations that are easy to comprehend

and provide immediate insights.

 Student clustering is an important research topic

in EDM. There are a number of approaches to

clustering: connectivity-based, centroid-based,

distribution-based, density-based, etc., and an even

larger number of algorithms that can be applied on

student data. An overview of the clustering analysis

critical steps was published by Miligan (1989). In

cluster analysis, the fundamental problem is to

determine the optimal number of clusters, which has a

deterministic effect on the clustering results. It is a

well-known optimization problem that has received

significant attention. A variety of methods for this

problem have been analysed by Gordon (1999), where

the author divided them into two categories: global

and local methods. The local methods are intended to

test the hypothesis that a pair of clusters should be

amalgamated. They are suitable for assessing only

hierarchically-nested partitions. With global methods,

the quality of clustering given a specific number of

clusters, g, is measured by a criterion, and the optimal

estimate of g, ^G , is obtained by comparing the

values of the criterion calculated in a range of values

of g. Some of these methods analysed were: Calinski

and Harabasz's method, Hartigan's method,

Krzanowski and Lai's method, Silhouette statistic and

the Gap method. Their performance has been

analysed by Tibshirani (2001) and Symons (1981).

Our method implements the silhouette statistic

approach.

Once a clustering model is selected, it can be

evaluated through various statistical methods

(Bouchet et al., 2013) or a number of other, more

complex methods (Gordon, 1999), while the

interpretation depends on the research area and the

nature of data. Our method relies on descriptive

statistics to sort the clusters based on cluster

members’ activity levels as well as their learning

efficiency.

3 Student data and feature

engineering

Each student has his/her own personal approach to

using the system. Some students copy the learning

materials, study them offline and then come back to

answer the questions later, others try to learn from the

bottom up or from the top down, yet others try to

brute force the system by answering the questions

until they find the right answer. To model the way the

students interact with the system, two sets of features

were used. The first set of “database” features can be

obtained directly from the database using SQL

queries. The second set consists of engineered

features developed from database features in order to

better represent the student’s current activity levels

and his/her efficiency. The first three features

(learning (L), repetition (R) and time spent (T)) are

called activity features and represent each student’s

interactions with the system. While the activity

features represent the way a student interacts with the

system, the effectiveness feature (E) represent his/her

success in answering questions about each knowledge

unit being learned within our system. The engineered

feature set FEF represents the student’s activity in

relation to: a) the quantity of content he/she has

covered up to this moment and b) the activity of other

students in the group. This evens out the activity level

of students who use the system in a similar manner in

situations where one student has already covered the

whole domain and the other has just started using it.

Before sending them to Weka, the values of the

mentioned features are standardized.

As mentioned in the introductory part of the paper,

a new module called “the integration layer” has been

developed to enable communication with two DM

tools. In this way, re-implementing any specific

algorithm into our application has been avoided,

which ensures that data can be analysed by a DM

expert on another machine running the same DM

tools, with absolute confidence that the results will be

the same (where it is possible, depending on the

algorithm). An important advantage of this

architecture is that the administrator can easily change

and use any clustering or SPM algorithm provided by

either tool. In our system we communicated with

Weka to run the kMeans clustering algorithm, and

SPMF to run the USPAN algorithm.

Algorithm 1 uses as input the engineered feature

set along with some additional information (domain,

domain group) and system settings necessary for

correct formatting of API calls towards DM tools.

With each increment of the number of clusters k, a

new API call is created and executed. It starts from

k=2 and increases the value until the DM tool returns

a model that satisfies the cut-off condition: “exit the

loop if the model contains two or more clusters with

just one student in it”.

The reasoning behind the condition is that our

overall goal is to discover groups of students that use

the system in a similar way and then provide hints

based on frequent patterns discovered in their cluster

or the cluster graded above to create a better

learning experience for students in each group.

Having that in mind, it is not particularly useful to

have single member clusters. We did however allow

for solutions in which one single-member cluster

appears (a possible outlier) because our system is

fully automated which complicates outlier detection.

Upon completion, the algorithm returns a set of

clustering models for k=2, 3, etc.

Algorithm 1: clustering using the integration layer and

DM tools

Input:

Domain identifier Di,

Domain group identifierDGj,

Engineered features set FEF= [L,R,T,E]

Settings:

 tool T  [weka*,spmf],

 format FT [arff*,spmf],

 alg. A  [kMeans*, EM,…]

Output:

 clustering models[centroids, members]

 1 prepare dataset D = (Di, DGj, FEF)

 2 generate filename

 3 write dataset to file (fn)

 4 k = sqrt(sizeof(D)/2) // the “elbow” method

 5 array models[]

 6 for i = 2 to k + 5 // more clusters in small groups

 7 x = construct_api_call (A,T, i, fn)

 8 out = execute_api_call(x)

 9 [centroids, members] = process_output (out)

10 models[i] = [centroids, members]

11 if (number of clusters in model with no.

members == 1) >= 2)

12 break

13 endif

14 endfor

15 return models[]

4 Automated clustering model

validation and interpretation

The algorithm presented in the previous Section

returns a set of clustering models with an increasing

number of clusters. The goal of this method is to

select the best model and evaluate each of the clusters

in that model. The interpretation scores and orders the

clusters so that the highest graded cluster represents

the group that has used or is using the system in a way

that the authors believe to be closest to optimal. The

cluster with the lowest grade represents the group that

was inactive at the time the clustering routine was

executed. As a result, the student’s activity model

(cluster membership and grade of cluster) is

continuously updated in the database with the latest

results based on a growing dataset of students’

interactions with the system.

4.1. Model validation

As mentioned in Section 2, many methods that

determine the quality of distribution (optimal number

of clusters in a model) have been developed and

tested by Tibshirani (2001) and Symons (1981). Some

of these methods require changes to be made in the

source code of the clustering algorithm; other can be

applied after the model was acquired. The silhouette

statistic belongs to the latter group. The definition of

the silhouette statistic is based on the notion of

silhouettes introduced by Rousseeuw (1987).

According to this approach, silhouettes are

constructed to show graphically how well each object

is classified in a given clustering output.

The silhouette index, denoted by s(g), is defined as

the average of the s(i) for all objects (i) in the data set.

In this way, s(g) represents the average silhouette

width for the entire data set, reflecting the within-

cluster compactness and between-cluster separation of

a clustering. The optimum value of g is chosen such

that s(g) is maximized over g. Average s(g) over

accumulated data of a cluster is a measure of how

tightly grouped all the data points in the cluster are.

Thus the average s(g) over accumulated data of the

entire dataset is a measure of how appropriately the

data has been clustered. The silhouette statistic is

implemented so that it receives a variable number of

clustering models obtained from Algorithm 1, and

returns only one model: the model with the highest

silhouette statistic value. This completes the first

phase of our method. The second phase grades/orders

the clusters in the selected model.

4.2. Model interpretation

The frequency of student results is usually

distributed in the shape of the “bell” curve. The area

around its highest point represents the majority or the

“average” students, while the “wings” represent the

highest and lowest achieving students. The basic idea

of our algorithm can be summarized as follows: we

divide the distribution of results for each activity

feature into intervals of equal width, assign a score to

each interval and then evaluate the position of each of

the cluster centroid values in the distribution. Since

the values of our engineered features are standardized,

we know that the left-most values represent inactive

students and the right-most values represent students

struggling to master the learning content. Students

that create less than average number of learning

material views are regarded as “fast” learners, while

those on the other side of the average can be

considered “slow”, etc. Also, when scoring intervals,

we have to give a higher score to the students that are

trying (“struggling”) than to those that are inactive.

This concept is presented in Figure 3.

The score distribution depends of what each

feature represents. For instance, the scores scale for

the learning feature is completely inverted from the

time feature, where we reward the effort in reading

the materials thoroughly as opposed to glancing over

them. We chose to divide the results into 13 intervals

meaning that a cluster centroid value for a feature can

receive a maximum of 13 points and a minimum of 1

point. At the end, the cluster with the highest sum of

points is the cluster representing the group of students

that are/were using the system in a manner we

consider optimal.

Figure 1. Scoring the intervals of feature values

distribution

It is necessary to point out that a smaller or a

larger number of intervals could also have been used.

A larger number would reduce the chance of getting

the same results for multiple clusters, while a smaller

one would simplify the calculation process.

As there is no human intervention in our method

and we cannot anticipate the distribution of feature

values, we have no guarantee that they will follow a

normal distribution. In fact, it is very unlikely,

especially in the early stages (first day) of granting the

students access to the system. Data is sparse during

that period as only a few students have made

significant progress through the domain. In such cases

the curve can be very wide/narrow, skewed to left or

right, etc. To account for the high variability, we have

developed a flexible algorithm that adapts to the

values of the dataset, prepares the grading process and

examines each of the centroid values for each cluster.

The basic steps of our cluster grading/ordering

method are presented in Figure 4 below.

The first step in the method is to determine the

width of the distribution, i.e., the leftmost and

rightmost data point in the dataset. Next, this width is

divided by 13 to get the interval width, which is the

first step in preparing the score-to-interval mapping.

Then, the value of the probability density function of

the normal distribution for each value in the dataset is

calculated. The highest value becomes the centre

position of our score-to-interval mapping “bar”.

Using this information and the interval width from

the previous step, the left and right borders of each

interval in our bar are calculated.

If the distribution is skewed to one side, several

situations are possible: 1) part of the grading bar goes

outside the width of the curve so grades in those

intervals become unreachable; 2) the grading bar does

not reach the end of the distribution, so any values

that appear have to be approximated to the last

interval in the bar. Both of these situations are

demonstrated in Step 3 of Figure 2. Finally, when the

grading bar is set we can read the centroid values of

each of the activity features of every cluster in the

model, find out which interval they fit in, read the

score of the interval, and add that to the subtotal for

each cluster.

We now turn to the description of the scoring

process for the fourth feature: student efficiency.

Figure 2. Steps of the selected model scoring

algorithm

The students’ efficiency feature is an objective

measure of his/her ability to answer the questions

about the learning materials correctly. The highest

value represents the most efficient student. Therefore,

the interpretation procedure for this feature is simpler.

The first step is to sort the centroid values of each

cluster from highest to lowest. Next, the highest value

becomes the benchmark and gets assigned 13 points.

The points for all other clusters are defined as a

rounded percentage of the benchmark value. For

example, if the highest value is 3.5 and the second

best cluster has a centroid value of 1.8, the points will

be calculated by the expression (1.8/3.5)*13 = 6.68 ~

7 points. The same process is repeated until all cluster

centroids for this feature are graded. The score is then

added to the subtotal score for each cluster, which

completes the scoring/ordering phase. The cluster

ordering and the cluster attribute of each student are

then updated accordingly in the database.

In this the system is able to continuously update

the student’s activity and efficiency model until the

student masters the domain. This model represents the

quality of the student’s interaction with the system

which reflects to his/her learning experience and the

final course grade. Every time the system performs

the clustering process the results are stored in the

database so both the teacher and the DM expert can

analyse the results. The teacher can use the WITS

teacher interface to check visualizations of each

student’s cluster assignment changes in time, while

the DM expert can review the results and identify

possible improvements to our score-to-interval

mappings. In Table 1, we present our current score-to-

interval mappings for the three activity features.

Table 1. Score-to-interval mappings for FEF

INT 1 2 3 4 5 6 7 8 9 10 11 12 13

L%std 1 2 3 4 13 12 11 11 9 8 7 6 5

R%std 1 2 3 4 13 12 11 10 9 8 7 6 5

T%std 1 2 3 4 9 10 11 12 13 8 7 6 5

Etotal calculated [1…13]

These are used by Algorithm 2 to evaluate

centroid values of clusters for activity features (L, R,

T) and the efficiency feature (E). The cluster centroid

value interpretation algorithm is presented below.

Algorithm 2: Cluster centroid value interpretation

Input:

 selected clustering model with k clusters:

 model=[k, centroids, members, dataset]

 score-to-interval mapping table for f  FEF: M[f][scores]

Output:

 evaluated/graded list of clusters

 1 array clusterOrder[], array centroidScores[]

 2 for each f  FEF

 3 if(f == E)

 4 score = calculate_efficiency_score(centroids(f));
 5 centroidScores[f][k]=score

 6 else

 7 ndf = calculate_pdf_ (dataset(f))
 8 cw = calculate_dataset_width()

 9 iw = calculate_interval_width(cw)

10 peak = max(ndf)
11 M[f][center] = center_grading_bar(peak)

12M[f][borders]= calculate_border_values(peak, iw, cw, dataset(f))

13 for each centroid  centroids[f]
14 i = find_interval(centroid)

15 score = get interval score(i,M(f))
16 centroidScores[f][k]=score

17 endfor

18 endif
19 endfor

20 for each cs  centroidScores

21 clusteringOrder[k] = sum(cs[k])
22 endfor

23 sort(clusteringOrder)

24 return clusteringOrder

The highest ranked cluster should always

represent the best group of students, while the lowest

ranked usually represents the inactive students. Other

clusters will be ranked between these two. As we

have 13 intervals, the highest possible efficiency

score is 13 and the lowest is 1. For the “time” (T)

feature, which represents the amount of time the

student spent reading learning materials, the grading

scale is inverted relative to L and R features.

Therefore, the best student (group/cluster) is the

one that needed lower than average number of

learning and repetition actions, spent more than

average time reading the learning materials and

had the highest efficiency (number of correct

answers to questions).

5 Results

The method described in Section 5 was tested on data

collected from a knowledge domain “Introduction to

web application development” developed for third

year undergraduate students at our Department. The

domain consisted of forty knowledge units.

Participants had access to the domain for 7 days in

September, 2015, and were asked to complete it in the

allotted period of time. In order to analyse differences

in the way students interact with the system, the

participants were divided them into two groups that

had an equal average result in the pre-test. The basic

statistical data is presented in Table 2.

Table 2. Basic statistics of student groups

Groups G1 G2

Number of students 33 31

Number of active students
(had > 0 interactions with the system)

33 30

Percentage of students that

completed the domain

97% 98%

In order to test the algorithm for optimal k value

selection based on the silhouette statistic we ran the

clustering analysis for both groups using the

engineered features set FEF after the access period

had expired and the majority of students had

completed the domain. The obtained results for G1

are presented in Table 3.

Table 3. Silhouette statistics and cluster sizes for G1

k S(k) 1 2 3 4 5 6 7 8

2 0.34 16 17

3 0.36 15 4 14

4 0.33 11 2 8 11

5 0.47 12 2 7 11 1

6 0.45 9 2 7 9 1 5

7 0.38 6 2 7 8 1 5 4

8 0.29 6 2 7 7 1 3 4 3

For both groups the model with k=5 clusters had

the highest value of the silhouette statistic. This model

has then been employed in the second phase. The

second phase began after the best clustering model

had been selected. As mentioned earlier, the results

presented here were obtained after the students had

already finished using the system so the presented

dataset is complete. Figures 3 and 4 represent the

distribution of values of the two main activity features

in FEF for G1 (dots) and G2 (squares). They show that

students in both groups had a similar distribution of

results. The only exception is one student, who had a

specific way of using the system (had almost zero

repetitions). These exceptions compelled us to create

a flexible solution that is able adapt to the differences

between the ways each group interacts with the

system.

Figure 3. Learning (L%std) feature results

distribution for G1 and G2

Figure 4. Repetition (R%std) feature results

distribution for G1 and G2

Since this process runs in scheduled intervals

during the entire time the student have access to the

knowledge domain, the distribution of results will

vary greatly as the students advance through the

domain. The results for G1 are presented in Tables 4

and 5.

The placement row for the activity features gives

us a simple visualization that can be useful for quick

results interpretation. The best cluster (4) is

consistently below average for L and R features, and

average for the T feature.

When we add the efficiency feature scoring, it

becomes clear that the members of this cluster are the

closest to our definition of a high achieving student. It

is also clear that cluster 2 represents students that

made the least effort and had the lowest efficiency,

which leads us to believe they kept guessing the

answers to the questions.

Table 4. Interval distribution, scores and cluster placement for activity features for G1

 Center

L Interv. -1.86 -1.57 -1.28 -0.99 -0.71 -0.42 -0.13 0.15 0.44 0.73 1.02 1.31 1.59 1.88

L Scores 1 2 3 4 13 12 11 10 9 8 7 6 5

Placement 2 1 4,5 3

R Interv. -1.97 -1.72 -1.46 -1.21 -0.95 -0.70 -0.44 -0.19 0.18 0.56 0.93 1.31 1.68 2.06

R Scores 1 2 3 4 13 12 11 10 9 8 7 6 5

Placement 2,3,5 4 1

T Interv. -1.89 -1.62 -1.35 -1.08 -0.81 -0.54 -0.27 -0.00 0.26 0.53 0.80 1.07 1.34 1.61

T Scores 1 2 3 4 9 10 11 12 13 8 7 6 5

Placement 2 1 4 3 5

Table 5. Final scores for clusters (G1)

f k=5 Centroid values/scores

Clusters 1 2 3 4 5

L Values -0.598 -1.150 1.494 -0.220 -0.260

Score 13 3 6 12 12

R Values 0.980 -1.025 -1.100 -0.692 -1.200

Score 7 4 4 12 4

T Values -0.488 -0.845 0.329 -0.048 3.660

Score 10 4 13 11 5

E Values 0.352 0.155 0.280 0.446 0.060

 Scores 8 4 7 10 2

Subtotal 38 15 30 45 23

Grading B E C A D

This is supported by the lowest value for feature T

(time spent reading/learning the materials).

6 Conclusion

In this paper we presented a method for automatic

selection and interpretation of clustering results

obtained from a database of students’ interactions

with our web-based intelligent tutoring system. The

proposed method was implemented in a clustering

module that is part of a system built to improve the

adaptivity of the tutoring module. The clustering

module discovers groups of students that interact with

the system in a similar manner. This information,

combined with the results of the SPM module, is used

to provide useful hints to students on which units in

the domain to learn next.

The presented method was tested on four different

knowledge domains, over the least two years. During

this time we identified some aspects of this method

that can be improved. First, the method tends to

choose a model with two clusters when most of the

students have completed the domain, because the

strongest difference exists between inactive students

and all other students. We will resolve this problem

by removing all inactive students from the dataset up

front and placing them in a separate, additional cluster

graded zero. Second, we will try to implement outlier

detection before executing the clustering algorithm.

Thirdly, we will develop a visualisation of centroid

valued of all obtained cluster models and present

them to a teacher to test whether they would select the

same model that our method selected based on the

silhouette index. Lastly, other clustering algorithms

with different distance measures will also be used and

their results compared to the ones produced by the

algorithm used in this research.

Acknowledgments

This work was supported in part by project

"Enhancing the efficiency of an e-learning system

based on data mining", code: 13.13.1.2.02., funded by

the University of Rijeka, Croatia.

References

Brusilovsky, P. (1999). Adaptive and intelligent

technologies for web-based education. In:

Rollinger C. et al. (Eds.) Künstliche Intelligenz,

Special Issue on Intelligent Systems and

Teleteaching, 4, 19-25.

Bouchet, F., Harley, J. M., Trevors, G. J. & Azevedo,

R. (2013). Clustering and Profiling Students

According to their Interactions with an Intelligent

Tutoring System Fostering Self-Regulated

Learning. Journal of Educational Data Mining,

5(1), 104-146.

Bostock, M. (2015) D3 JavaScript Library. Retrieved

August 10, 2015 from http://d3js.org/.

Fernandes, A., Peralta, D., Benitez, J. M. & Herrera,

F. (2014). E-learning and educational data mining

in cloud computing: an overview. International

Journal of Learning Technology, 9(1), 25-52.

Fournier-Viger, P. et al. (2014). SPMF: a Java Open-

Source Pattern Mining Library. Journal of

Machine Learning Research, 15, 3389-3393.

Gordon, A. D. (1999). Classification, 2nd ed.,

Chapman & Hall/CRC, Boca Raton, Florida.

Hall, M. et al. (2009). The WEKA Data Mining

Software: An Update. SIGKDD Explorations,

11(1), 10-18.

Jugo, I., Kovačić, B. & Slavuj, V. (2013). A proposal

for a web based educational data mining and

visualization system. In ITIS2013: International

Conference on Information Technologies and

Information Society, Novo Mesto, 59-64.

Jugo, I., Kovačić, B. & Slavuj, V. (2014). Using data

mining for learning path recommendation and

visualization in an intelligent tutoring system. In

MIPRO2014: Information and Communication

Technology, Electronics and Microelectronics,

37th International Convention on, Opatija, 924-

928.

Jugo, I., Kovačić, B. & Slavuj, V. (2015). Integrating

a Web-based ITS with DM tools for Providing

Learning Path Optimization and Visual Analytics.

In EDM2015: Proceeding of the 8th International

Conference on Educational Data Mining Madrid,

Madrid, 574-575.

Kaufman, L. & Rousseeuw, P. J. (1990). Finding

Groups in Data. An Introduction to Cluster

Analysis. Wiley-Interscience, New York.

Koedinger, K. R., McLaughlin, E. A. & Stamper, J. C.

(2012). Automated student model improvement.

In EDM2012: Proceedings of the 5th International

Conference on Educational Data Mining, Chania,

17–24.

Kovačić, B & Skočir, Z. (2003). Development of

distance learning system based on dialogue. In

EUROCON 2003: Computer as a Tool. The IEEE

Region 8, Romania, 224-228.

Kovačić, B. & Jugo, I. (2009). Applying a Distance

Learning System Based on Dialogue in e-

commerce. In MIPRO2009: Proceedings of 32nd

International Conference on information and

communication technology, electronics and

microelectornics, Opatija, 36-39.

Kovačić, B., Jugo, I. & Slavuj, V. (2012).

Improvement of system for distance learning

based on dialogue by appliance of statistical

analysis. In MIPRO2012: Proceedings of the 35th

International Convention, Opatija, 1475-1478.

Lynch, C. et al. (2006). Defining Ill-Defined

Domains; A literature survey. In ITS2006:

Proceedings of Intelligent Tutoring Systems Ill-

Defined Domains Workshop, Taiwan, 1-10.

Milligan, G. W. (1989). A validation study of a

variable weighting algorithm for cluster analysis.

Journal of Classification, 6, 53-71.

Perera, D., Kay, J., Koprinska, I., Yacef, K. & Zaiane,

O. R. (2007). Clustering and Sequential Petern

Mining of Online Collaborative Learning Data.

Knowledge and Data Engineering, IEEE

Transactions on, 21(6), 759-772.

Romero, C. and Ventura, S. (2007). Educational Data

Mining: a Survey from 1995 to 2005. Expert

Systems with Applications, 1(33), 135-146.

Romero, C. et al. (2007). Personalized links

recommendation based on data mining in adaptive

educational hypermedia systems. Creating New

Learning Experiences on a Global Scale. Springer

Berlin Heidelberg, 292-306.

Romero, C., Castro, C. & Ventura, S. (2013). A

Moodle Block for Selecting, Visualizing and

Mining Students' Usage Data. In EDM 2013:

Proceedings of the 6th International Conference

on Educational Data Mining, 400-401.

Romero, C. & Ventura, S. (2010). Educational data

mining: a review of the state of the art. Systems,

Man, and Cybernetics, Part C: Applications and

Reviews, IEEE Transactions on, 40(6), 601-618.

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid

to the interpretation and validation of cluster

analysis. Journal of Computational and Applied

Mathematics, 20, 53-65.

Symons. M. J. (1981). Clustering criteria and

multivariate normal mixtures. Biometrics, 37, 35-

43.

