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Abstract. The paper proposes a method that is part of 

a new, extended architecture of our web-based 

intelligent tutoring system (ITS). It was developed to 

provide hints to students during learning through the 

application of educational data mining (EDM). The 

architecture consists of three modules – a) a 

communication module that enables seamless 

communication with data mining tools; b) a clustering 

module that discovers clusters in student data based 

on their activity and c) a sequential pattern mining 

(SPM) module that finds efficient frequent learning 

patterns of students in each cluster. Finally, the 

obtained results are used by the tutoring module to 

provide hints to a student on which item to learn next 

(or previous to the selected one). To improve the hint 

selection process we developed a method for cluster 

grading to determine which  cluster represents the 

group that has been using the ITS in the manner 

closest to an envisioned optimum. We verify the 

method on data gathered from two groups of students 

who used the system to master a knowledge domain, 

and present the obtained results. 

Keywords. Clustering, Educational data mining, 

Intelligent tutoring system, E-learning 

1 Introduction 

Intelligent tutoring systems (ITSs) are a valuable 

teaching tool not only for distance education but also 

as a complementary teaching/learning tool in 

traditional (face-to-face) education. Many such 

systems have been developed for teaching in well-

defined domains (e.g., math, physics, etc.) and are 

mostly standalone desktop applications. On the other 

hand, the number of web-based ITSs is much smaller 

(Brusilovsky, 1999), especially for teaching in ill-

defined domains (Lynch et al., 2006). Ill-defined 

domains consist of a number of knowledge units 

(KUs) that do not have a strictly defined order in 

which they have to be taught/learned, but instead the 

system relies on a domain expert to define the 

structure of the domain. One such system has been 

developed at our institution to serve as an additional 

learning platform.  

Our web-based intelligent tutoring system 

(WITS), described first by (Kovačić & Skočir, 2003) 

and (Kovačić & Jugo, 2009), currently provides 

teachers with functionalities for creating KUs, 

teaching materials, various types of questions for 

assessing acquired knowledge, and an editor to create 

the KU hierarchy. Each KU is described by a start and 

a threshold value which students reach by answering 

the questions correctly. Furthermore, the system 

features a descriptive statistics module for students 

and teachers (Kovačić et al., 2012).  To further 

improve the system’s overall efficiency we proposed 

a new architecture which integrates data mining (DM) 

algorithms (Jugo et al., 2014; Jugo et al., 2015). 

A valuable source of data for our system lies in the 

records of student interactions with the system. We 

apply educational data mining (EDM) processes 

(Romero & Ventura, 2007; Romero & Ventura 2010; 

Fernandez et al., 2014) to these records and use the 

obtained information to enrich the system’s student 

model and improve the tutoring model. In order for 

improvements to take place we added several new 

modules to the tutoring module. The first was an 

integration layer (Jugo et al., 2013) that creates a 

continuous communication channel to DM tools 

Weka (Hall et al., 2009) and SPMF (Fournier-Viger et 

al., 2014) which are used to execute DM algorithms 

on data gathered within our ITS. Second was the 

module for automatic clustering model selection and 

interpretation (which implements the method 

described in this paper) to discover different groups of 

students based on their activity and efficiency levels. 

Finally, a sequential pattern mining (SPM) (Srikant & 

Agrawal, 1996) module used to discover frequent 

patterns (FPs) students take through the knowledge 

domain. SPM algorithms can produce a large number 

of FPs. An algorithm that differentiates between 

productive patterns (those that yield better gains in the 



student’s knowledge levels) and non-productive 

patterns (those that represent possible issues with the 

knowledge domain structure, difficult questions, etc.) 

was developed. In our system we use both types of 

patterns: productive patterns are used to enable 

dynamic creation of learning structures by our 

tutoring model, while non-productive patterns are 

presented to teachers so they can make actions to 

correct their causes. 

This paper focuses in particular on the second 

module – clustering of students based on their activity 

(ways of using the system) and efficiency (correctness 

of answers to questions presented by the system) 

levels. In order to guide the students during their 

progress through the knowledge domain the system 

needs to discover clusters of students that use the 

system in a similar way and consequently determine 

which cluster represents the highest achieving 

students, average achieving ones, etc. An important 

aspect of this system is that it performs automated 

student model improvements (Koedinger, 2012) by 

running both clustering and SPM routines at 

scheduled intervals while the students are progressing 

through the knowledge domain and increasing the size 

of the interactions dataset. 

With results from both clustering and SPM 

modules, we can make the tutoring model more 

adaptive: cluster ordering and discovered productive 

FPs of each cluster are used to guide students from a 

lower grade cluster towards the activity levels and 

learning paths of a higher grade cluster, thus 

improving the students’ learning experience and 

overall results.  

The rest of this paper is structured as follows: 

Section 2 introduces related work on EDM and 

focuses on applying clustering in e-learning systems. 

Section 3 gives an overview of the basic functionality 

of our WITS which is the environment used for 

research at hand. The process through which the 

system obtains clustering models using 

communication with DM tools is described in Section 

4, while Section 5 presents our method for automatic 

clustering selection and interpretation. In Section 6 

we present results of the proposed method and 

conclude the paper in Section 7. 

2 Related work 

Combining clustering (Kaufman & Rousseeuw, 

1990) and SPM is an approach that has been applied 

for the purpose of recommending web pages in e-

learning systems (Romero et al., 2007) and analysing 

online collaborative learning data (Perera et al., 

2007). An example of integration of data mining tools 

with an e-learning system can be found in (Zorilla et 

al., 2010), where authors improved the existing Black 

Board monitoring tool and in (Romero et al., 2013), 

where authors presented a Moodle block that enables 

the users to perform clustering, classification and 

association rule mining, and export the raw results to 

a file. This is a useful extension of Moodle 

functionalities for teachers even though it presents 

them with “raw” output of DM algorithms which can 

prove to be difficult to understand. Our system 

integrates the results of DM algorithms into the 

process of increasing the system’s adaptivity and 

further presents the results using interactive, in-

browser, visualizations that are easy to comprehend 

and provide immediate insights.  

 Student clustering is an important research topic 

in EDM. There are a number of approaches to 

clustering: connectivity-based, centroid-based, 

distribution-based, density-based, etc., and an even 

larger number of algorithms that can be applied on 

student data. An overview of the clustering analysis 

critical steps was published by Miligan (1989). In 

cluster analysis, the fundamental problem is to 

determine the optimal number of clusters, which has a 

deterministic effect on the clustering results. It is a 

well-known optimization problem that has received 

significant attention. A variety of methods for this 

problem have been analysed by Gordon (1999), where 

the author divided them into two categories: global 

and local methods. The local methods are intended to 

test the hypothesis that a pair of clusters should be 

amalgamated. They are suitable for assessing only 

hierarchically-nested partitions. With global methods, 

the quality of clustering given a specific number of 

clusters, g, is measured by a criterion, and the optimal 

estimate of g, ^G , is obtained by comparing the 

values of the criterion calculated in a range of values 

of g. Some of these methods analysed were: Calinski 

and Harabasz's method, Hartigan's method, 

Krzanowski and Lai's method, Silhouette statistic and 

the Gap method. Their performance has been 

analysed by Tibshirani (2001) and Symons (1981). 

Our method implements the silhouette statistic 

approach. 

Once a clustering model is selected, it can be 

evaluated through various statistical methods 

(Bouchet et al., 2013) or a number of other, more 

complex methods (Gordon, 1999), while the 

interpretation depends on the research area and the 

nature of data. Our method relies on descriptive 

statistics to sort the clusters based on cluster 

members’ activity levels as well as their learning 

efficiency. 

3 Student data and feature 

engineering 

Each student has his/her own personal approach to 

using the system. Some students copy the learning 

materials, study them offline and then come back to 

answer the questions later, others try to learn from the 

bottom up or from the top down, yet others try to 

brute force the system by answering the questions 



until they find the right answer. To model the way the 

students interact with the system, two sets of features 

were used. The first set of “database” features can be 

obtained directly from the database using SQL 

queries. The second set consists of engineered 

features developed from database features in order to 

better represent the student’s current activity levels 

and his/her efficiency. The first three features 

(learning (L), repetition (R) and time spent (T)) are 

called activity features and represent each student’s 

interactions with the system. While the activity 

features represent the way a student interacts with the 

system, the effectiveness feature (E) represent his/her 

success in answering questions about each knowledge 

unit being learned within our system. The engineered 

feature set FEF represents the student’s activity in 

relation to: a) the quantity of content he/she has 

covered up to this moment and b) the activity of other 

students in the group. This evens out the activity level 

of students who use the system in a similar manner in 

situations where one student has already covered the 

whole domain and the other has just started using it. 

Before sending them to Weka, the values of the 

mentioned features are standardized. 

As mentioned in the introductory part of the paper, 

a new module called “the integration layer” has been 

developed to enable communication with two DM 

tools. In this way, re-implementing any specific 

algorithm into our application has been avoided, 

which ensures that data can be analysed by a DM 

expert on another machine running the same DM 

tools, with absolute confidence that the results will be 

the same (where it is possible, depending on the 

algorithm). An important advantage of this 

architecture is that the administrator can easily change 

and use any clustering or SPM algorithm provided by 

either tool. In our system we communicated with 

Weka to run the kMeans clustering algorithm, and 

SPMF to run the USPAN algorithm.  

Algorithm 1 uses as input the engineered feature 

set along with some additional information (domain, 

domain group) and system settings necessary for 

correct formatting of API calls towards DM tools. 

With each increment of the number of clusters k, a 

new API call is created and executed. It starts from 

k=2 and increases the value until the DM tool returns 

a model that satisfies the cut-off condition: “exit the 

loop if the model contains two or more clusters with 

just one student in it”. 

The reasoning behind the condition is that our 

overall goal is to discover groups of students that use 

the system in a similar way and then provide hints 

based on frequent patterns discovered in their cluster 

or the cluster graded above to create a better 

learning experience for students in each group. 

Having that in mind, it is not particularly useful to 

have single member clusters. We did however allow 

for solutions in which one single-member cluster 

appears (a possible outlier) because our system is 

fully automated which complicates outlier detection. 

Upon completion, the algorithm returns a set of 

clustering models for k=2, 3, etc. 

 

Algorithm 1: clustering using the integration layer and 

DM tools 

Input:  

Domain identifier Di,  

Domain group identifierDGj, 

Engineered features set FEF= [L,R,T,E] 

Settings:  

        tool T    [weka*,spmf],  

        format FT [arff*,spmf],  

        alg. A  [kMeans*, EM,…] 

Output:  

    clustering models[centroids, members]  

 1   prepare dataset D = (Di, DGj, FEF) 

 2   generate filename 

 3   write dataset to file (fn) 

 4   k = sqrt(sizeof(D)/2)   // the “elbow” method 

 5   array models[] 

 6   for i = 2 to k + 5  // more clusters in small groups 

 7       x = construct_api_call (A,T, i, fn) 

 8       out = execute_api_call(x) 

 9       [centroids, members] = process_output (out) 

10      models[i] = [centroids, members] 

11      if (number of clusters in model with no. 

members == 1) >= 2)  

12          break 

13      endif 

14   endfor 

15   return models[] 

4 Automated clustering model 

validation and interpretation 

The algorithm presented in the previous Section 

returns a set of clustering models with an increasing 

number of clusters. The goal of this method is to 

select the best model and evaluate each of the clusters 

in that model. The interpretation scores and orders the 

clusters so that the highest graded cluster represents 

the group that has used or is using the system in a way 

that the authors believe to be closest to optimal. The 

cluster with the lowest grade represents the group that 

was inactive at the time the clustering routine was 

executed. As a result, the student’s activity model 

(cluster membership and grade of cluster) is 

continuously updated in the database with the latest 

results based on a growing dataset of students’ 

interactions with the system. 

4.1. Model validation 

As mentioned in Section 2, many methods that 

determine the quality of distribution (optimal number 

of clusters in a model) have been developed and 

tested by Tibshirani (2001) and Symons (1981). Some 

of these methods require changes to be made in the 



source code of the clustering algorithm; other can be 

applied after the model was acquired. The silhouette 

statistic belongs to the latter group. The definition of 

the silhouette statistic is based on the notion of 

silhouettes introduced by Rousseeuw (1987). 

According to this approach, silhouettes are 

constructed to show graphically how well each object 

is classified in a given clustering output.  

The silhouette index, denoted by s(g), is defined as 

the average of the s(i) for all objects (i) in the data set. 

In this way, s(g) represents the average silhouette 

width for the entire data set, reflecting the within-

cluster compactness and between-cluster separation of 

a clustering. The optimum value of g is chosen such 

that s(g) is maximized over g. Average s(g) over 

accumulated data of a cluster is a measure of how 

tightly grouped all the data points in the cluster are. 

Thus the average s(g) over accumulated data of the 

entire dataset is a measure of how appropriately the 

data has been clustered. The silhouette statistic is 

implemented so that it receives a variable number of 

clustering models obtained from Algorithm 1, and 

returns only one model: the model with the highest 

silhouette statistic value. This completes the first 

phase of our method. The second phase grades/orders 

the clusters in the selected model. 

4.2. Model interpretation 

The frequency of student results is usually 

distributed in the shape of the “bell” curve. The area 

around its highest point represents the majority or the 

“average” students, while the “wings” represent the 

highest and lowest achieving students. The basic idea 

of our algorithm can be summarized as follows: we 

divide the distribution of results for each activity 

feature into intervals of equal width, assign a score to 

each interval and then evaluate the position of each of 

the cluster centroid values in the distribution. Since 

the values of our engineered features are standardized, 

we know that the left-most values represent inactive 

students and the right-most values represent students 

struggling to master the learning content. Students 

that create less than average number of learning 

material views are regarded as “fast” learners, while 

those on the other side of the average can be 

considered “slow”, etc. Also, when scoring intervals, 

we have to give a higher score to the students that are 

trying (“struggling”) than to those that are inactive. 

This concept is presented in Figure 3.  

The score distribution depends of what each 

feature represents. For instance, the scores scale for 

the learning feature is completely inverted from the 

time feature, where we reward the effort in reading 

the materials thoroughly as opposed to glancing over 

them. We chose to divide the results into 13 intervals 

meaning that a cluster centroid value for a feature can 

receive a maximum of 13 points and a minimum of 1 

point. At the end, the cluster with the highest sum of 

points is the cluster representing the group of students 

that are/were using the system in a manner we 

consider optimal. 

 
Figure 1. Scoring the intervals of feature values 

distribution 

 

It is necessary to point out that a smaller or a 

larger number of intervals could also have been used. 

A larger number would reduce the chance of getting 

the same results for multiple clusters, while a smaller 

one would simplify the calculation process. 

As there is no human intervention in our method 

and we cannot anticipate the distribution of feature 

values, we have no guarantee that they will follow a 

normal distribution. In fact, it is very unlikely, 

especially in the early stages (first day) of granting the 

students access to the system. Data is sparse during 

that period as only a few students have made 

significant progress through the domain. In such cases 

the curve can be very wide/narrow, skewed to left or 

right, etc. To account for the high variability, we have 

developed a flexible algorithm that adapts to the 

values of the dataset, prepares the grading process and 

examines each of the centroid values for each cluster.   

The basic steps of our cluster grading/ordering 

method are presented in Figure 4 below. 

The first step in the method is to determine the 

width of the distribution, i.e., the leftmost and 

rightmost data point in the dataset. Next, this width is 

divided by 13 to get the interval width, which is the 

first step in preparing the score-to-interval mapping. 

Then, the value of the probability density function of 

the normal distribution for each value in the dataset is 

calculated. The highest value becomes the centre 

position of our score-to-interval mapping “bar”.  

Using this information and the interval width from 

the previous step, the left and right borders of each 

interval in our bar are calculated. 

If the distribution is skewed to one side, several 

situations are possible: 1) part of the grading bar goes 

outside the width of the curve so grades in those 

intervals become unreachable; 2) the grading bar does 

not reach the end of the distribution, so any values 

that appear have to be approximated to the last 

interval in the bar. Both of these situations are 

demonstrated in Step 3 of Figure 2. Finally, when the 

grading bar is set we can read the centroid values of 

each of the activity features of every cluster in the 

model, find out which interval they fit in, read the 

score of the interval, and add that to the subtotal for 

each cluster.  

We now turn to the description of the scoring 

process for the fourth feature: student efficiency. 



 

 
Figure 2. Steps of the selected model scoring 

algorithm 

The students’ efficiency feature is an objective 

measure of his/her ability to answer the questions 

about the learning materials correctly. The highest 

value represents the most efficient student. Therefore, 

the interpretation procedure for this feature is simpler. 

The first step is to sort the centroid values of each 

cluster from highest to lowest. Next, the highest value 

becomes the benchmark and gets assigned 13 points. 

The points for all other clusters are defined as a 

rounded percentage of the benchmark value. For 

example, if the highest value is 3.5 and the second 

best cluster has a centroid value of 1.8, the points will 

be calculated by the expression (1.8/3.5)*13 = 6.68 ~ 

7 points. The same process is repeated until all cluster 

centroids for this feature are graded. The score is then 

added to the subtotal score for each cluster, which 

completes the scoring/ordering phase. The cluster 

ordering and the cluster attribute of each student are 

then updated accordingly in the database. 

In this the system is able to continuously update 

the student’s activity and efficiency model until the 

student masters the domain. This model represents the 

quality of the student’s interaction with the system 

which reflects to his/her learning experience and the 

final course grade. Every time the system performs 

the clustering process the results are stored in the 

database so both the teacher and the DM expert can 

analyse the results. The teacher can use the WITS 

teacher interface to check visualizations of each 

student’s cluster assignment changes in time, while 

the DM expert can review the results and identify 

possible improvements to our score-to-interval 

mappings. In Table 1, we present our current score-to-

interval mappings for the three activity features. 

Table 1. Score-to-interval mappings for FEF 

INT 1 2 3 4 5 6 7 8 9 10 11 12 13 

L%std 1 2 3 4 13 12 11 11 9 8 7 6 5 

R%std 1 2 3 4 13 12 11 10 9 8 7 6 5 

T%std 1 2 3 4 9 10 11 12 13 8 7 6 5 

Etotal calculated [1…13] 

 

These are used by Algorithm 2 to evaluate 

centroid values of clusters for activity features (L, R, 

T) and the efficiency feature (E). The cluster centroid 

value interpretation algorithm is presented below. 

 
Algorithm 2: Cluster centroid value interpretation 

Input:     

   selected clustering model with k clusters: 

        model=[ k, centroids, members, dataset ] 

  score-to-interval mapping table for f  FEF: M[f][scores] 

Output:  

   evaluated/graded list of clusters 

 1   array clusterOrder[], array centroidScores[] 

 2   for each f  FEF 

 3       if( f == E ) 

 4           score = calculate_efficiency_score(centroids(f)); 
 5           centroidScores[f][k]=score 

 6       else 

 7           ndf = calculate_pdf_ (dataset(f)) 
 8           cw = calculate_dataset_width() 

 9           iw = calculate_interval_width(cw) 

10          peak = max(ndf) 
11          M[f][center] = center_grading_bar(peak) 

12M[f][borders]= calculate_border_values(peak, iw, cw, dataset(f)) 

13           for each centroid  centroids[f] 
14               i = find_interval(centroid) 

15               score = get interval score(i,M(f)) 
16               centroidScores[f][k]=score 

17           endfor 

18       endif 
19   endfor 

20   for each cs  centroidScores 

21       clusteringOrder[k] = sum(cs[k]) 
22   endfor 

23   sort(clusteringOrder) 

24   return clusteringOrder 

 

The highest ranked cluster should always 

represent the best group of students, while the lowest 

ranked usually represents the inactive students. Other 

clusters will be ranked between these two. As we 

have 13 intervals, the highest possible efficiency 

score is 13 and the lowest is 1. For the “time” (T) 

feature, which represents the amount of time the 

student spent reading learning materials, the grading 

scale is inverted relative to L and R features. 

Therefore, the best student (group/cluster) is the 

one that needed lower than average number of 

learning and repetition actions, spent more than 

average time reading the learning materials and 

had the highest efficiency (number of correct 

answers to questions). 



5 Results 

The method described in Section 5 was tested on data 

collected from a knowledge domain “Introduction to 

web application development” developed for third 

year undergraduate students at our Department. The 

domain consisted of forty knowledge units. 

Participants had access to the domain for 7 days in 

September, 2015, and were asked to complete it in the 

allotted period of time. In order to analyse differences 

in the way students interact with the system, the 

participants were divided them into two groups that 

had an equal average result in the pre-test. The basic 

statistical data is presented in Table 2. 

Table 2. Basic statistics of student groups 

Groups G1 G2 

Number of students 33 31 

Number of active students  
(had > 0 interactions with the system) 

33 30 

Percentage of students that  

completed the domain 

97% 98% 

 

In order to test the algorithm for optimal k value 

selection based on the silhouette statistic we ran the 

clustering analysis for both groups using the 

engineered features set FEF after the access period 

had expired and the majority of students had 

completed the domain. The obtained results for G1 

are presented in Table 3. 

 

Table 3. Silhouette statistics and cluster sizes for G1 

k S(k) 1 2 3 4 5 6 7 8 

2 0.34 16 17       

3 0.36 15 4 14      

4 0.33 11 2 8 11     

5 0.47 12 2 7 11 1    

6 0.45 9 2 7 9 1 5   

7 0.38 6 2 7 8 1 5 4  

8 0.29 6 2 7 7 1 3 4 3 

 

For both groups the model with k=5 clusters had 

the highest value of the silhouette statistic. This model 

has then been employed in the second phase.  The 

second phase began after the best clustering model 

had been selected. As mentioned earlier, the results 

presented here were obtained after the students had 

already finished using the system so the presented 

dataset is complete. Figures 3 and 4 represent the 

distribution of values of the two main activity features 

in FEF for G1 (dots) and G2 (squares). They show that 

students in both groups had a similar distribution of 

results. The only exception is one student, who had a 

specific way of using the system (had almost zero 

repetitions). These exceptions compelled us to create 

a flexible solution that is able adapt to the differences 

between the ways each group interacts with the 

system. 

 

 

Figure 3. Learning (L%std) feature results 

distribution for G1 and G2 

 

Figure 4. Repetition (R%std) feature results 

distribution for G1 and G2 

Since this process runs in scheduled intervals 

during the entire time the student have access to the 

knowledge domain, the distribution of results will 

vary greatly as the students advance through the 

domain. The results for G1 are presented in Tables 4 

and 5. 

The placement row for the activity features gives 

us a simple visualization that can be useful for quick 

results interpretation. The best cluster (4) is 

consistently below average for L and R features, and 

average for the T feature. 

 

When we add the efficiency feature scoring, it 

becomes clear that the members of this cluster are the 

closest to our definition of a high achieving student. It 

is also clear that cluster 2 represents students that 

made the least effort and had the lowest efficiency, 

which leads us to believe they kept guessing the 

answers to the questions. 

 

 

 

 

 

 

 



Table 4. Interval distribution, scores and cluster placement for activity features for G1 

       Center       

L Interv. -1.86 -1.57 -1.28 -0.99 -0.71 -0.42 -0.13 0.15 0.44 0.73 1.02 1.31 1.59 1.88 

L Scores 1 2 3 4 13 12 11 10 9 8 7 6 5 

Placement   2  1 4,5      3  

R Interv. -1.97 -1.72 -1.46 -1.21 -0.95 -0.70 -0.44 -0.19 0.18 0.56 0.93 1.31 1.68 2.06 

R Scores 1 2 3 4 13 12 11 10 9 8 7 6 5 

Placement    2,3,5  4     1   

T Interv. -1.89 -1.62 -1.35 -1.08 -0.81 -0.54 -0.27 -0.00 0.26 0.53 0.80 1.07 1.34 1.61 

T Scores 1 2 3 4 9 10 11 12 13 8 7 6 5 

Placement    2  1 4  3    5 

Table 5. Final scores for clusters (G1) 

f k=5 Centroid values/scores 

 
Clusters 1 2 3 4 5 

L Values -0.598 -1.150 1.494 -0.220 -0.260 

 
Score 13 3 6 12 12 

R Values 0.980 -1.025 -1.100 -0.692 -1.200 

 
Score 7 4 4 12 4 

T Values -0.488 -0.845 0.329 -0.048 3.660 

 
Score 10 4 13 11 5 

E Values 0.352 0.155 0.280 0.446 0.060 

 Scores 8 4 7 10 2 

Subtotal  38 15 30 45 23 

Grading  B E C A D 

 

This is supported by the lowest value for feature T 

(time spent reading/learning the materials).  

6 Conclusion 

In this paper we presented a method for automatic 

selection and interpretation of clustering results 

obtained from a database of students’ interactions 

with our web-based intelligent tutoring system. The 

proposed method was implemented in a clustering 

module that is part of a system built to improve the 

adaptivity of the tutoring module. The clustering 

module discovers groups of students that interact with 

the system in a similar manner. This information, 

combined with the results of the SPM module, is used 

to provide useful hints to students on which units in 

the domain to learn next.  

 

The presented method was tested on four different 

knowledge domains, over the least two years. During 

this time we identified some aspects of this method 

that can be improved. First, the method tends to 

choose a model with two clusters when most of the 

students have completed the domain, because the 

strongest difference exists between inactive students 

and all other students. We will resolve this problem 

by removing all inactive students from the dataset up 

front and placing them in a separate, additional cluster 

graded zero. Second, we will try to implement outlier 

detection before executing the clustering algorithm. 

Thirdly, we will develop a visualisation of centroid 

valued of all obtained cluster models and present 

them to a teacher to test whether they would select the 

same model that our method selected based on the 

silhouette index. Lastly, other clustering algorithms 

with different distance measures will also be used and 

their results compared to the ones produced by the 

algorithm used in this research. 
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