
Contextual Spellchecking Based on N-grams

Ivan Srdić

University of Zagreb

Faculty of Electrical Engineering and Computing

Unska 3, Zagreb, Croatia

ivan.srdic@fer.hr

Gordan Gledec

University of Zagreb

 Faculty of Electrical Engineering and Computing

Unska 3, Zagreb, Croatia

gordan.gledec@fer.hr

Abstract. Croatian Academic Spellchecker is an online

web-service used for almost 20 years by thousands of

users every day. In recent years, the service enabled

rudimentary contextual spellchecking, based on

pattern matching. In this paper we describe how it is

possible to perform n-gram based contextual

spellchecking of texts written in Croatian, regardless

of the orthographic complexity of the Croatian

language. Simple upgrade of the existing

implementation was achieved by separating the system

into several components. Using a well-known

classifier, tweaking the frequency estimator and

separating errors into confusion sets resulted in a

contextual spellchecking system with a high score of F1

= 0.95 on the examined example.

Keywords. Contextual spellchecking, statistical

approach; n-grams

1 Introduction

With the rise of remote communication, there is an

increased need for a system that corrects orthographic

and grammatical errors. This paper demonstrates an

enhancement to the contextual spellchecking system of

Haschek, a Croatian online spellchecker (service

available at https://ispravi.me/) designed by Šandor

Dembitz and described in Dembitz et al. (2011).

Contextual spelling errors, being the most complicated

type of errors, have always been difficult to detect and

correct. A spelling error in an intended word may result

in the wrong real-word; that change will go undetected

in a traditional spellchecker (sljedeći vs. slijedeći,

zahtijeva vs. zahtjeva, etc.).

For both detection and correction of contextual errors,

a statistical language model is needed. For every word

that is suspected to be an error, a word with higher

probability of occurrence in the given context must be

chosen. The substitute word can in be any word in the

language, making this computationally theoretically

impossible for a smaller system.

The remainder of this paper is organized as follows:

Chapter 2 describes the theoretical background behind

our research; Chapter 3 explains the data sets used – n-

grams collected in the more than 20 years of the usage

of Croatian spellchecker and describes the system

architecture. Chapter 4 explains the results and Chapter

5 gives detail about future research. Final chapter

concludes the paper.

2 Theoretical background

In this section, we describe the theoretical background

behind our proposed solution to the problem of

contextual spellchecking for Croatian language.

2.1 Confusion sets

To solve the problem of detecting and correcting

spelling errors, this paper proposes a solution modeled

on Kim et al. (2013). A confusion set is a set of words

for which there is a high probability of replacement due

to either a typographical error or lack of knowledge

about the language. An example of a confusion set is

{zahtjeva, zahtijeva} or {sljedeći, slijedeći}.

The confusion sets can be generated manually or

programmatically by using Levenshtein distance.

Levenshtein distance is a measure of similarity of two

texts (Martin, Jurafsky, 2000). There are four kinds of

operations that can be made on a word – insertion of a

letter, deletion of a letter, substitution of a letter or

transposition of two letters.

While using an edit distance higher than one is

possible, due to the nature of the Croatian language, the

most common errors are within edit distance of 1.

Using an edit distance of 2 or more would increase the

number of words in confusion sets and thus decrease

the results of the classifier. In addition to that, the

probability of making two errors in one word is very

low.

2.2 Classifier

The classifier used in this paper is based on the well-

known Naive Bayes classifier.

https://ispravi.me/

Figure 1. Naive Bayes classifier

In the formula above (Fig. 2) TW (target words) are

words from confusion sets and CW (context words) are

words from the context of the target words. The context

of the target words consists of words and their size

depends on the chosen window size, i.e. if the window

size is 5 and the third word is the target word, then the

first, second, fourth and fifth word form the context.

Probability P(CW|TW) can be calculated from the

conditional probability between target and context

words, but it can only be approximated because CW in

theory represents all words in the input except the

target word, while {cw1, ..., cwn} are words within the

chosen window size. P(TW) is the probability of

occurrence of target words.

Since the Naive Bayes classifier uses the probability of

occurrence of the target word, the words that occur

more frequently will be considered as correct. Because

of that, the Naive Bayes classifier must be modified –

instead of the probability of occurrence of the target

word, we use credibility reliability (Kim et al., 2013).

Figure 2. Modified Naive Bayes classifier.

In the formula above (Fig. 3), CR (credibility

reliability) is the reliability of words for which the

value of 1 – ε is given to the target word and the other

value is given to a word from the confusion set.

ε is the typing error rate for the confusion set (0 ≤ ε ≤

1) and m is the number of words in the confusion set.

2.3 Simple Good-Turing frequency

estimation

The training dataset never contains all the words from

the language. In this case, that means that there is a set

of n-grams that haven’t appeared in the training set, but

may appear after the training of the classifier. If no

method for frequency estimations is used, the system

would assign a probability of 0 to unknown words,

which would make the spellchecking of n-grams that

contain a previously unseen context word impossible.

To avoid that problem, a frequency estimator is used.

In this research we use the Simple Good-Turing

frequency estimation method (Gale, Sampson, 1995).

3 System architecture and n-grams

Our process of n-gram collection relies on the Croatian

Academic online spellchecker Hascheck, and involves

collecting n-grams from texts received for

spellchecking. Our n-gram filtering is based on

dictionary criteria. The texts received for spellchecking

are used to create the the n-gram database (n = 1, 2, 3,

…, 7). We choose to use 5-grams because they give us

enough context while not overloading the system.

3.1 System architecture

The architecture of the contextual spellchecking

system (Fig. 1) is relatively simple.

Figure 3. System architecture.

It consists of three separate subsystems. First is the data

processing subsystem that takes the submitted text,

extracts n-grams and calculates probabilities from the

number of occurrences of the n-grams.

The second part is the classifier subsystem which uses

the base probabilities to calculate the probabilities of

the occurrence of each word in the context of the target

words.

The last subsystem’s task is frequency estimation and

it uses the Simple Good-Turing method to calculate the

probability of previously unseen words. The single

most important characteristic of this system is that all

three subsystems are completely decoupled.

The classifier can be completely changed and only the

format of storing the final probabilities must remain the

same. That means that the subsystems can be replaced

without interfering with the rest of the system.

4 Results

In our research, we used the confusion set {zahtjeva,

zahtijeva}. The confusion set contains approximately

810.000 5-grams split randomly into two parts – 1000

5-grams used as the testing dataset and the rest used as

the training dataset. For consistency of the results, the

random split was done only once and the same split was

used for every improvement.

Table 1. Examples of extracted 5-grams

n-gram
zahtjeva potrebnih za igranje u
zahtjeva za nadzor i čelnika
oštar pad broja prvih zahtjeva
internetske stranice i zahtjeva korisnika
podnositelja zahtjeva na što je
osobine sustava poput zahtjeva za
zahtijeva pisanje programskog koda prema
zahtjeva u informatičke sustave na

ili prosječnu brzinu dolazaka zahtjeva

u javnosti prolazi set zahtjeva

apartmana ne zahtijeva nužno otvaranje

Table 1. shows a small subset of 5-grams extracted

from the Hascheck 5-gram data set.

Table 2. Format of result examples

Original n-

gram

Corrected n-

gram

Probabilities

5-gram from the

data set

5-gram corrected

by the classifier

probability of

zahtjeva,

probability of

zahtijeva

Table 2. contains the explanations of the format of

tables shown in the following chapters.

4.1 Using modified Naive Bayes classifier

We start by presenting the results that are achieved by

just using the modified Naive Bayes classifier.

Precision is the ability of the classifier not to label a

negative sample as positive and the formula is
tp

tp+fp
,

where tp is the number of true positives and fp the

number of false positives.

Recall is the ability of the classifier to find all positive

examples and the formula is
tp

tp+fn
, where tp is the

number of true positives and fn is the number of false

negatives.

The F1 score is the harmonic mean of precision and

recall.

Table 3. Results of modified Naive Bayes

Precision Recall F1

0.92 0.88 0.9

As seen in Table 3., the system achieved a high F1 score

of 0.9. This is significant because, as previously stated,

a frequency estimator hasn’t been used yet and the

classifier is based on the simple Naive Bayes classifier.

Table 4. Sample of results of modified Naive Bayes

Original n-

gram

Corrected n-

gram

Probabilities

zahtjeva

potrebnih za

igranje u

zahtijeva

potrebnih za

igranje u

0.49, 0.51

zahtjeva za

nadzor i čelnika

zahtijeva za

nadzor i čelnika

0.41, 0.59

oštar pad broja

prvih zahtjeva

oštar pad broja

prvih zahtijeva

0.0, 1.0

internetske

stranice i

zahtjeva

korisnika

internetske

stranice i

zahtijeva

korisnika

0.33, 0.67

podnositelja

zahtjeva na što je

podnositelja

zahtijeva na što

je

0.33, 0.67

osobine sustava

poput zahtjeva za

osobine sustava

poput zahtijeva

za

0.48, 0.52

zahtijeva pisanje

programskog

koda prema

zahtjeva pisanje

programskog

koda prema

0.7, 0.3

zahtjeva u

informatičke

sustave na

zahtijeva u

informatičke

sustave na

0.43, 0.57

ili prosječnu

brzinu dolazaka

zahtjeva

ili prosječnu

brzinu dolazaka

zahtijeva

0.29, 0.71

u javnosti prolazi

set zahtjeva

u javnosti

prolazi set

zahtijeva

0.38, 0.62

apartmana ne

zahtijeva nužno

otvaranje

apartmana ne

zahtjeva nužno

otvaranje

0.82, 0.18

Examples from the Table 4. give us some insight into

the current state of the system. We see that there are

many examples in which the system is very close to the

correct decision and only a few which we probably

won’t be able to correct by fine-tuning.

4.2 Application of the Simple Good-

Turing method

By applying the Simple Good-Turing frequency

estimator, the system can assign a default probability

to previously unseen words. In addition to that, the

probabilities of seen words have also been adjusted.

Table 5. Simple Good-Turing results

Precision Recall F1

0.95 0.94 0.95

The results have increased by a significant margin

(Table 5.). The F1 score has gone up from from 0.9 to

0.95 because of the application of a relatively simple

frequency estimator.

Table 6. Sample of Simple Good-Turing results

Original n-

gram

Corrected n-

gram

Probabilities

internetske

stranice i

zahtjeva

korisnika

internetske

stranice i

zahtijeva

korisnika

0.29, 0.71

osobine sustava

poput zahtjeva

za

osobine sustava

poput zahtijeva

za

0.43, 0.57

zahtijeva pisanje

programskog

koda prema

zahtjeva pisanje

programskog

koda prema

0.67, 0.33

u javnosti

prolazi set

zahtjeva

u javnosti

prolazi set

zahtijeva

0.33, 0.67

apartmana ne

zahtijeva nužno

otvaranje

apartmana ne

zahtijeva nužno

otvaranje

0.8, 0.2

Table 6. shows that approximately half of the errors

present before the application of the Simple Good-

Turing method were corrected.

4.3 Finding the optimal ε value

Results of the modified Naive Bayes classifier depend

on the value of ε, as discussed in chapter 2.2. By

changing the value of ε from 0 to 1 in 0.05 increments,

we calculated the corresponding precision, recall and

F1. The subset of results (0 to 0.4) is shown in Table 7.

Table 7. Simple Good-Turing results

ε Precission Recall F1

0.0 0.78610288 0.79679378 0.79002095

0.05 0.92286562 0.92286562 0.92286562

0.1 0.95099250 0.94581310 0.94828566

0.15 0.94831142 0.94422327 0.94619281

0.2 0.94668353 0.93717405 0.94154730

0.25 0.95371447 0.94114861 0.94679921

0.3 0.94852399 0.93551566 0.94133470

0.35 0.93908864 0.92749797 0.93272569

0.4 0.78610288 0.79679378 0.79002095

Considering that the test set contained 1000 examples

of which 200 were errors, the expected highest value

of F1 was for ε around 0.2. In this case, the highest F1

value was for ε=0.1.

There are two things we can conclude from the results.

First, ε can be set to an approximate value, i.e. the

average error rate for Croatian. Second, ε can later be

optimized for each confusion set separately, further

improving the overall results of the system.

5 Future research

In this section, we describe the next steps that are

needed to enhance the system described in this paper,

in order to be used in a production environment.

5.1 Word parsing

Like all languages, the Croatian language is based on

orthographic and grammatical rules. In the case of the

Croatian language, the number of grammatical rules is

above average, making it more complicated than i.e.

English. In addition to many rules, Croatian has a lot

of exceptions from those rules. Considering the size of

the Hascheck n-gram data set, there is a good chance

of “learning” most of those rules only based on

statistics. By separating words into parts of speech and

specifying the exact form of the word (i.e. past simple

verb) it is possible to further increase the quality of the

system. The word parser could be added as a separate

subsystem when the word type database will be richer.

5.2 Optimizing data storage

Considering that the size of the 5-gram dataset is

currently about 20 GB, optimizing data storage plays

an important part in the future development of the

system. Considering also that Hascheck is a relatively

small project with limited funding, the prospects of

providing enough system memory without rigorous

data optimization is small. Some of the more basic data

storage optimizations have been implemented in this

research – extracting words from n-grams and

converting words into integers.

5.3 Replacing the subsystems

Even though the Naive Bayes classifier paired together

with the Simple Good-Turing frequency estimator had

good results, there are other classifiers and frequency

estimators that would give even better results (Chen,

1996). This means that regardless of the high F1 score

of 0.95, choosing a better classifier and a frequency

estimator optimized for this specific data distribution

could make the F1 score get much closer to 1.

Conclusion

The goal of our research was to create a proof of

concept contextual spellchecking system using simple

and fast components. It was proven that a contextual

spellchecking system with fast training times and high

F1 score is possible, even for a language as complex as

Croatian, by using confusion sets to reduce the number

of possible options. The contextual spellchecking

system offers a fast and highly efficient way of

correcting most contextual errors, especially in

categories that are most frequent, i.e. ije/je.

The specific execution time is dependent on hardware,

but the fact that the spellchecking of the 1000 test n-

grams takes less than 0.1s is promising. Considering

that there is an ever-growing need for high quality

contextual spellchecking, further optimization and

implementation of our research will be prioritized in

the online spellchecking service.

References

Chen, S. F., & Goodman, J. (1996, June). An

empirical study of smoothing techniques for

language modeling. In Proceedings of the 34th

annual meeting on Association for Computational

Linguistics (pp. 310-318). Association for

Computational Linguistics.

Dembitz, Š., Randić, M., & Gledec, G. (2011).

Advantages of online spellchecking: a Croatian

example. Software: Practice and Experience,

41(11), 1203-1231.Gale, W. A., & Sampson, G.

(1995). Good‐turing frequency estimation without

tears. Journal of Quantitative Linguistics, 2(3),

217-237.

Kim, M., Jin, J., Kwon, H. C., & Yoon, A. (2013,

December). Statistical context-sensitive spelling

correction using typing error rate. In

Computational Science and Engineering (CSE),

2013 IEEE 16th International Conference on (pp.

1242-1246). IEEE.

Martin, J. H., & Jurafsky, D. (2000). Speech and

language processing. International Edition, 710,

25.

