
Reverse Engineering of a Generic Relational Database
Schema into a Domain-Specific Data Model

Slavica Kordić, Sonja Ristić
University of Novi Sad,

Faculty of Technical Sciences,
Trg D. Obradovića 6,

21000 Novi Sad, Serbia
{slavica, sdristic}@uns.ac.rs

Milan Čeliković, Vladimir Dimitrieski,
Ivan Luković

University of Novi Sad,
Faculty of Technical Sciences,

Trg D. Obradovića 6,
21000 Novi Sad, Serbia

{milancel, dimitrieski, ivan}@uns.ac.rs

Abstract. Information system (IS) reengineering
process comprises reverse engineering process of an
existing IS followed by some form of forward
engineering or restructuring. An important phase of a
data-oriented software system reengineering is a
database reengineering process and, in particular, its
sub-process – database reverse engineering process.
In this paper we present one of the model-to-model
transformations from a chain of transformations
aimed at transformation of a generic relational
database schema into a domain-specific data model
based on form types. The transformation is a step of
the data structure conceptualization phase of a
model-driven database reverse engineering process
that is implemented in IIS*Studio development
environment.

Keywords. database reengineering, reverse
engineering, relational data model, form type data
model, model-driven approach

1 Introduction

The emergence of large and complex information
systems (IS) increases the interest in Model-Driven
System Engineering (MDSE) and its appliance in
information system (re)engineering process. The
model-driven approach to information system and
software (re)engineering addresses complexity
through abstraction. A complex system consists of
several interrelated models organized through
different levels of abstraction and platform specificity.
A model-driven information system engineering
process should cover: modeling that produces
description models from existing enterprise systems;
forward engineering that produces specification,
prescription and implementation models; and reverse
engineering that produces description models from
engineered software systems.

Through a forward engineering process models
need to be refined and integrated and used to produce

code and therefore they would undergo a series of
transformations. Each transformation adds levels of
specificity and detail starting from an initial model at
the highest level of abstraction (Platform Independent
Model, PIM), through the less abstract models, with
different levels of platform specificity (Platform
Specific Models, PSMs), and resulting in an
executable program code that represents a model at
the lowest level of abstraction (fully PSM).
Conversely, in a reverse engineering process, the
abstraction level of models and degree of platform
independency are increasing throughout the chain of
transformations. PIMs use the domain-specific
concepts that are understandable to the users and in
that way users get an opportunity to participate
directly in the design, implementation, integration and
evolution of an information system. Once a domain-
specific framework has been established, a new
version of the system does not take a long time to
generate and deploy using model-driven techniques.
All together it enables easier uncovering of the
problems and provides the opportunity to correct
mistakes early in the IS (re)engineering process.

Through a number of research projects on model-
driven intelligent systems for information system
development, maintenance and evolution, we have
developed the IIS*Studio tool. It is aimed to provide
the multi-paradigm approach to IS design (Dimitrieski
et al., 2015), generating executable application
prototypes (Aleksić et al., 2007; Aleksić et al., 2013;
Popović et al., 2015) and IS reverse engineering. Our
approach is mainly based on the model-driven
information system and software engineering
(Bézivin, 2006; Favre, 2005) and domain specific
language (DSL) paradigms (Kosar et al., 2010;
Dejanović et al., 2010). In IIS*Studio we use form
type data model as domain-specific data model (DM).
The explanation of basic concepts of this model is
presented in Section 2.

Meta-modeling is of great importance in the
context of database reverse engineering. In (Ristić et
al., 2014) are presented different database meta-

models (MM) in support of IIS*Studio reengineering
process. The database reverse engineering (DBRE) is,
according to (Hainaut et al., 2009), the process of
recovering the conceptual schema of a database and it
is divided in two main phases: data structure
extraction and data structure conceptualization. In
(Ristić et al., 2015) we have proposed a model-driven
approach to data structure conceptualization phase of
database reverse engineering process. The presented
data structure conceptualization is conducted through
a chain of model-to-model (M2M) transformations.
Each of them is based on two meta-models: source
and target meta-model where the source meta-model
of a model transformation is at lower abstraction level
than the target meta-model of the transformation.

In (Ristić et al., 2016) we have given the blueprint
of the final step of the conceptualization phase the
M2M transformation of a generic relational database
schema into a form-type model. The transformation is
illustrated by an example of simple transformation of
a basic relation scheme into a basic form type.

In practice, we face not only with basic relation
schemes and form types, but with more complex data
structures in both data models (relational DM and
form type DM). In this paper we address the problem
of transformation of weak and all key relation
schemas into complex form types (in the paper they
are denoted as F _Tree2 and F _Treen form types).

Apart from Introduction and Conclusion the paper
has six sections. Form type concept of IIS*Studio is
elaborated in Section 2. The reverse engineering
process in IIS*Studio is described in Section 3. The
classification of form types and terms of F _Basic,
F _Tree2 and F _Treen form types are presented in
Section 4. Terms of basic, weak and all key relation
schemas are introduced and explained in Section 5.
The transformation of generic relational database
schema into form type data model is presented in
Section 6. Related work is given in Section 7.

2 The Form Type Concept

According to (Brinkkemper et al., 2000) three main
functions of an IS are: (i) to maintain a consistent
representation of the state of a domain (F1); (ii) to
provide information about the state of a domain (F2);
and (iii) to perform actions that change the state of a
domain (F3). A model-driven (MD) approach to IS
engineering would support several viewpoints and
modeling languages to enable creation of different
models that capture the knowledge required to support
main functions of an IS. IIS*Studio is based on an
MD approach that comply to these requirements.

In order to provide design of various platform
independent models by IIS*Studio, a number of

modeling, meta-level concepts and formal rules that
are used in the design process are created.

A form type is central IIS*Studio PIM concept,
used to model the structure and constraints of various
business forms. Business forms (documents) are
broadly used in organizations to conduct daily
operations and to communicate with their affiliated
entities (e.g. staff, superior managers, customers,
suppliers, etc.). The adjective business is used to
emphasize that a business form need not to be a part
of computer graphical user interface (GUI), but can be
a paper form that is filled in manually or a printed
report, too. They may provide an important input
source for database (db) schema design, since the
most widely used data are gathered or reported in
them. Forms are objects, easy to read and understand,
well-structured and, consequently, easy to formalize.
Therefore, business forms are a source for eliciting
user information requirements and also for designing
and developing user-oriented information systems.
Initially, each form type (FT) is an abstraction of a
business form. In that way FT concept supports IS
function F1. However, it may be enriched by
additional specifications that are not included in the
entry business form, like specifications of: key and
unique constraints; check constraints (both
additionally support function F1); allowed database
CRUD (Create, Retrieve, Update and Delete)
operations applied by means of screen computerized
forms to manipulate data of an IS (supporting IS
function F3); functionalities concerning relationships
between generated screen forms, i.e. transaction
programs (supporting IS functions F2 and F3), etc.

In the paper we use the case study of a simplified
Airline Ticket Reservation System (ATRS). The
business form Customer Reservations (CR-bf),
presented in Figure 1, is used to keep track about the
customers and their reservations. A customer
reservation is the unit of payment and it can comprise
more seats for one or more flights, that are reserved
on the same date and that would be paid by single
payment.

Figure 1. Business form Customer Reservations

The business form Customer Reservations may be
modeled by the form type Customer Reservations
(CR-ft). The simplified representation of the structure
of the CR-ft, which generalizes the CR-bf, is presented
in Figure 2. As can be seen, a form type is a
hierarchical structure of form type components. The

form type Customer Reservations (Figure 2) has two
component types: CUSTOMER and RESERVATION.
Underlined attributes represent keys of component
types. Letters placed in the rectangle on the right side
of the component name stand for the allowed CRUD
operations: r for retrieve, i for insert, u for update and
d for delete.

In the traditional approaches to the IS design,
database schema design not rarely precedes the
specification of screen or report forms of transaction
programs. On the contrary, in IIS*Studio a designer
the first specifies screen and report forms, and
indirectly, creates an initial set of attributes and
constraints. The form type structuring rules provide
automatic inference of relational db constraints from
form types. A form type in IS design by means of
IIS*Studio has a dual role. On the one hand it
provides an important input data for database design
(to support IS function F1), and on the other hand it is
a source for the generation of a sole transaction
program (to support IS function F3) and its screen or
report form (to support IS function F2).

Figure 2. Form type Customer Reservations

IIS*Studio introduces domain-specific data model
based on form type concept (Luković et al., 2007) and
uses it for conceptual database design. In the paper
data model based on form type concept is called form
type data model.

The main advantage of this approach is two
folded. Firstly, the FT concept is closer to the end-
users' perception of data, than it would be, for
example, the concepts of entity and relationship types
in the Entity-Relationship (ER) data model. It is a
concept that is formal enough to allow a precise
expressing all of the rules significant for structuring a
database schema. Secondly, a designer by means of
FT specifies business, screen and report forms, and
indirectly, creates an initial set of attributes and
constraints. The FT specifications can be enriched
with the specification of future transaction programs
and business applications, too.

3 Reverse engineering process in
IIS*Studio

IIS*Studio comprises three tools: IIS*Case,
IIS*UIModeler and IIS*Ree. These tools
communicate by means of shared repository aimed at
storing project specifications. The IIS*UIModeler is

an integrated part of the IIS*Studio DE, aimed at
modeling of GUI static aspects. By means of
IIS*UIModeler a designer specifies UI templates.

In a forward engineering process, supported by
IIS*Case tool, designers start with a high-level model,
abstracting from all kinds of platform issues. Through
a chain of M2M transformations, ending up with a
model-to-text (M2T) transformation, the initial PIM
transforms iteratively to a series of models with less
degree of platform independency, introducing more
and more platform specific extensions. Conversely, in
a reverse engineering process, supported by IIS*Ree
tool, the abstraction level of models and degree of
platform independency are increasing throughout the
chain of transformations.

Relational databases are at the core of most
company information systems, hosting critical
information for the day to day operation of the
company. The knowledge captured in them can serve
as an important resource in a legacy information
system modernization project and they are a common
source of reverse engineering processes. Starting from
a physical database schema, that is recorded into the
relational database schema data repository, the
conceptual database schema or logical database
schema may be extracted. The IIS*Ree tool in our
IIS*Studio extends IIS*Case tool in order to enable
reverse engineering of relational databases to
conceptual data models.

Several reasons motivate us to develop IIS*Ree
tool. The first one is that an enterprise IS
implemented to fulfill organizational information
requirements, now more than ever, would adapt to
emerging business models and technology changes
and innovations. Legacy system replacement or
reengineering can be done with significantly reduced
amount of effort and cost if the conceptual models are
reconstructed from them. IIS*Ree tool conceptualize
a relational database into a domain-specific form type
data model. That schema may be restructured and
improved by means of IIS*Case tool and afterwards
transformed into improved relational database
schema.

The second reason is to enable database integration
of different information systems. Integrated database
schema can be used as a platform for ISs integration.
The databases of different ISs that would be
integrated can be conceptualized into several external
database schemas expressed by concepts of form type
data model. These external database schemas are the
input of IIS*Case tool and its integration process. By
means of IIS*Case tool the collisions in expressing
real world constraints between different external
database schema can be detected and resolved
(Luković et al., 2007). In that way, PIM models of
legacy ISs are restructured and consolidated. M2M
and M2T transformations carried out over
consolidated external database schemas are able to

generate transaction programs from form types
specifications extracted from legacy databases and
restructured and improved by means of IIS*Ree and
IIS*Case tools.

Initial database design and further changes are
poorly documented mostly thanks to the deadline
pressures to which designer are exposed. Database
schema design based on the experience mostly
incorporates awkward constructs and non-standard
design patterns that are hard to understand and
communicate. A lot of knowledge about the logical
and physical database design is not explicit and is
hidden in the repository, program code and in
physical data structures. Reverse database engineering
enables data structure extraction and data structure
conceptualization. In our approach form type database
model is reverse engineered from a relational
databases. It is very important and useful because
IIS*Case tool uses a set of form types to generate,
integrate and consolidate relational database schema.
IIS*Case tool extracts set of functional and non-
functional dependencies from the set of form types
and applies modified synthesis algorithm (Beeri &
Bernstein, 1979) to generate relational database
schema in the 3rd normal form. The detailed
description of that extraction process can be found in
(Luković et al., 2007). In that way, empirically
designed database model without appropriate up-to-
date documentation is transformed into a database
model that is designed following the disciplined
database design approach.

Reverse engineering process in IIS*Ree is
implemented by means of a series of database model
transformations that are M2M transformations
between database models. These transformations are
based on meta-models that are conformed by the
source and target database models of the
transformations. In the purpose of specifying and
managing meta-models in support of database model
transformations implemented in IIS*Ree we use the
Eclipse Modeling Framework (“EMF Eclipse
Modeling Framework”, 2017) Eclipse Juno 4.2.1. and
OCL 3.2.1. A blueprint of a model-driven approach to
database reengineering process applied in IIS*Studio
is presented in (Ristić et al., 2015). Here we present
one of the M2M transformations aimed at
transformation of a generic relational database
schema into a form type data model with focus on
weak and all key relation schemes and more complex
form types. Firstly, in the next section a formal
specification of a form type is presented alongside
with a classification of form types.

4 Classification of Form Types

A form type F is a named tree structure, whose
nodes are called component types. Let C(F) denotes

a set of component types making up the form typeF .
Each component type is identified by its name within
the scope of a form type, and has nonempty sets of
attributes and keys, and a possibly empty set of
unique constraints. Formally, a component type is a
named pair N(Q, O), where N denotes name of the
component type, Q is the set of component type
attributes Q={A1, .., An} and O is a set of component
type constraints. O is a union of three sets: a set of
key constraints, a set of unique constraints and a
singleton containing a tuple constraint. The tuple
constraint of a constraint type refers to a set of
attribute-based constraints (attribute data type
specification and not-null constraint) paired with a
tuple-based constraint (constraint on tuple value).
Let C(F) = {Ni(Qi, Oi) i = 1, ... m}. W(F) denotes
a set of the form type attributes that satisfy (1) & (2).

m

i
iQ

1

 W(F) (1)

 (Ni, Nj C(F))(i ≠j Qi ∩ Qj =). (2)
A set of allowed database operations must be

associated with each component type. The set of
allowed operations is a subset of the CRUD
operations set. Form types are classified as:
 F _Basic – an elementary form type containing

only one root component type (an example is
presented in Figure 3);

 F _Tree2 – a form type containing a root
component type with only one child component
type (already presented in Figure 2); and

 F _Treen – a form type that apart from a root
component type contains an arbitrary number of
child component types (two examples in Figure 4).
Throughout the following text F TB denotes a set

of F_Basic form types, F TT2 denotes a set of F
_Tree2 form types, and F TTn denotes a set of F
_Treen form types.

5 Classification of Relation Schemes

In the context of M2M transformation aimed at
transformation of a generic relational database
schema into a form type data model it is necessary to
classify relational schemes in the source data model.

During a reverse engineering process of a relational
database schema, it is important to be aware of the
limited expressiveness of the relational data model
compared to other data models, like ER data model or
form type data model. In (Hammer et al., 2002) a
classification of relation schemes in the context of the
transformation of a relational database schema into
ER database schema has been proposed. Here we
present a classification that is adapted according to
the target data model (form type data model) that is

used in the approach presented in this paper.
Identifying different categories of relation schemes is
performed according to the primary key information
and the inclusion dependencies of a relational
database schema. We distinguish three kinds of
relation schemes:
 Basic Relation Scheme (BR);
 Weak Relation Scheme (WR); and
 All Keys (AK) relation scheme.

Figure 3. An example of F _Basic form type

Figure 4. Two examples of F _Treen form types

 A basic relation scheme is a relation scheme whose
primary key (PK) does not properly contain a key
attribute of any other relation.

A weak relation scheme N is a relation scheme that
satisfies the following three conditions: i) a proper
subset of its PK contains key attributes of other basic
or weak relation schemas; ii) the remaining attributes
of its PK do not contain key attributes of any other
relation scheme; and iii) it has an identifying owner
(parent) relation scheme and properly contains the PK
of its parent relation scheme.

An AK relation scheme contains only key attributes
of other relation schemes, and does not contain any
other self-inherent attributes.

A graphic representation of ATRS relational
database schema is presented in Figure 5. It contains

relation schemes Company, CompanyHasType,
AirplaneType, Airport, Airlane, AirlineDays, Flights,
Seat, Reservation, Customer, PhoneContact and
EmailContact. Underlined attributes belong to a key
of a relation scheme. Relation scheme Airline has a
key that is singleton containing AirlineId attribute,
and relation scheme AirlineDay has a composite key
that contains two attributes AirlineId and DayOfWeek.

Figure 5. ATRS relational database schema

The relation schemes Company, AirplaneType,
Airport, Airlane, and Customer are basic relation
schemas. The relation schemes AirlineDays, Flights,
Seat, Reservation, PhoneContact and EmailContact
are weak relation schemes. The relation scheme
CompanyHasType is an example of AK relation
scheme.

6 Transformation of a Generic
Database Schema into a Form
Type Data Model

The input of the data structure conceptualization
phase applied in IIS*Studio is XML specification of
captured physical database model. This XML
specification conforms to XML meta-model. The data
conceptualization phase is realized as a chain of three
M2M transformations: 1. XML2RDBMS,
2. RDBMS2RM, and 3. RM2IISCase.

The first transformation transforms a model
conformant with XML meta-model into a model
conformant with an SQL standard meta-model.

The transformation RDBMS2RM transforms a
model conformant with an SQL standard meta-model
into a model conformant with generic relational db
meta-model. It is not possible to transform a model

conformant with an SQL standard directly into a
model conformant with FT meta-model. The reason
lies in the fact that FT approach to database design is
based on the Universal relation schema assumption
(URS assumption). Physical database meta-models
and database meta-models based on SQL standard do
not support URS, while generic relational database
meta-models does. Both of aforementioned
transformations are PSM2PSM transformations.

The third one, denoted by RM2IISCase, is a
PSM2PIM transformation. It transforms a model
conformant with generic relational database meta-
model into a model conformant with FT meta-model.
The transformation RM2IISCase is the main subject
of our paper.

We have considered two approaches to implement
RM2IISCase transformation. In the first approach the
transformation would generate only simple form types
(F_Basic form types). In this approach a user is free
and responsible to add component types and other
concepts in initial FT data model obtained by the
transformation. In the second approach the
transformation is able to generate all relevant
combinations of form types. It is a user who chooses
form types to be introduced in the form type data
model. The remaining form types are deleted.
RM2IISCase implementation is based on the second
approach. In that way a user will invest less effort to
select between already generated form types
comparing to the effort that would be invested in the
first approach.

The proposed transformation is carried out in three
steps. They are aimed at transforming set of relation
schemes from a generic relational database schema
into three sets of form types, respectively: F TB, F
TT2, and F TTn. Detail description of the first step of
the transformation, with parts of generic relational
schema MM and FT data model MM and ATL rules
to specify a mapping between the concepts of these
MMs is already presented in (Ristić et al., 2016).
Therefore, in subsection 6.1 just the input parameters
and outputs of that transformation step are given. In
subsections 6.2 and 6.3 the other two steps of the
transformation are presented in detail.

6.1 Relation scheme – F _Basic FT
transformation

In this step a F _Basic form type is created for each
relation scheme from a relational database schema.
The input parameters for this transformation are:

 S = i(Ri, ORS
i) i = 1,.., n (3)

 ORS = KRS UQRS CHRS, (4)
where S is a set of the relation schemes i(Ri, ORS

i) .
i is relation scheme name, Ri is nonempty set of its

attributes and ORS
i is set of its constraints. Each

constraint set is a union of three sets containing: key
constraints, unique constraints; and tuple constraints,
respectively (4).The transformation as output returns a
set F TB containing F _Basic form types.

6.2 Relation scheme – F _Tree2 FT
transformation

The next step of the transformation is to create a set of
F _Tree2 form types. A F _Tree2 form type is
generated for referential integrity that has WR relation
scheme on the left hand side. The set of input
parameters in addition to (3) and (4) contains a set of
referential integrities of a relational database schema:

 RIC = rici: Nl LHS Nr RHS i = 1,.., m (5)
where Nl and Nr are relation schemes, LHS and RHS
are subsets of attribute sets Rl and Rr of relation
schemes Nl and Nr, respectively. The transformation
as output returns a set F TT2 of F _Tree2 form types.

For each referential integrity Nl LHS Nr RHS
from RIC (5), with Nl that is WR relation scheme, a
F _Tree2 form type is created based on the pair of
relation schemes (Nl, Nr). In Figure 6 are presented
parts of source and target meta-models alongside with
ATL rule ChildCT to implement transformation of a
relational database schema into F TT2. In the lowest
part of the table several helpers can be found. Four of
them (RS_AllKeys, AttributesOfRSs, Child-
ComponentTypeAttributes, and ExistIRIC) are called
directly from ChildCT rule and the fifth
(AllRelatedRS) is called from AttributesOfRSs helper.
Corresponding calling messages are shaded within the
ChildCT rule and AllRelatedRS helper.

6.3 Relation scheme – F _Treen FT
transformation

The last step of the transformation is aimed at creating
the third set of form types set denoted by F TTn.
There are two cases to arise an F _Treen form type.
An F _Treen form type will be created for each
relation scheme that is referenced by at least two WR
relation schemes. Besides, an F _Treen form type
will be created for each relation scheme that is
referenced by at list one WR relation scheme that is
referenced by some WR relation scheme, too.

The input parameters are same as the input
parameters of the transformation that creates F TT2
set. The transformation as output returns a set F TTn
of F _Treen form types.

This transformation is based on the same meta-
models as the transformation presented in previous
section. The transformation use rules and helpers
already mentioned in previous transformation steps.
Rules GetFormType and ChildComponentType and
helper Children that are specific for this step of the
transformation are presented in Figure 7. The main

difference lies in the fact that the transformation
problem solved by these rules is recursive because a
form type tree structure may have several nodes and
they can be distributed over several tree levels. The
calls of rule ChildComponentType and helper
Children are shaded within the rules GetFormType
and ChildComponentType, respectively.

In that way the transformation process of a generic
relational database schema to a form type data model
made of a union of F TB, F TT2, and F TTn is
finished. End-users are now able to reexamine and to
restructure obtained conceptual model and to launch a
new forward engineering process to create renewed
and improved IS.

7 Related Work

Favre in (Favre, 2005) emphasizes the importance
of reverse engineering and its integration with
forward engineering in MDSE process to support a
smooth evolution of software. Our approach is in
compliance with this statement since we integrate
forward (IIS*Case) and reverse (IIS*Ree) engineering
tools. In (Hainaut et al., 2009) main steps of database
reverse engineering are described. The creation of
OO conceptual database schema from the relational
data dictionary is presented in (Perez et al., 2002) and
(Boronat et al., 2004). Beggar et al. (Beggar et al.,
2013) propose a reverse engineering process based on
MDSE that presents a solution to provide a
normalized relational database which includes the
integrity constraints extracted from legacy data. Vara
et al. have implemented an ATL model
transformation that generates an object-relational
(OR) database model from a conceptual data model
and an MOFScript M2T transformation that generates
the SQL code for the modeled database schema (Vara
et al., 2009). Our approach uses relational data
dictionary, legacy data and ATL model
transformations to implement reverse engineering
process that conceptualize a relational database into a
form type data model.

There are various research works about the use of
forms (business or computerized) in different
contexts. In (Tsichritzis, 1982) the concepts of form
type, form template and form instance are introduced
to integrate services in Office Information system,
and in (Shu, 1985) they are used to specify system
requirements. In the context of database schema
design distinguished papers are (Batini, Demo & Di
Leva, 1984) and (Choobineh & Venkatraman, 1992)
that present usage of business forms as input data for
the process of database schema design based on
generating ER diagrams and for derivation of
functional dependencies from business form,
respectively. A form-based approach for reverse
engineering of relational databases is proposed in

(Malki, Flory & Rahmouni, 2002). A dual role of
IIS*Studio form type concept described in Section 2
is what distinguishes our approach compared to other
approaches based on forms.

8 Conclusion

One of the main assumptions of the model-driven
approach to information system and software
development is that systems of large complexity can
only be designed and maintained if the level of
abstraction is considerably higher than that of
programming languages. By means of models,
semantics in an application domain can be precisely
specified using terms and concepts the end-users are
familiar with, such as the form types used in
IIS*Studio are. Approaches to database
conceptualization are mostly based just on two
database meta-models. Vendor-specific physical or
standard relational meta-model mainly are found on
the source side of M2M transformation. On the other
side, EER, class or standard/vendor-specific relational
meta-models occur on the target side of M2M
transformation. Most of the authors obtain relational
database schema as the final result of data structure
conceptualization process. According to (Hainaut et
al., 2009) relational database schema cannot be seen
as a pure conceptual database schema. In our
approach FT database schema is obtained as the result
of the data structure conceptualization process. FT
specification is based on business forms, users are
familiar with, and in that manner it models system as-
is in a platform independent way. At the same time,
the specification is platform independent prescription
model of future screen and report forms and input for
series of M2M transformations that ends up with
model to text transformation generating application
prototype.

The meta-models and models that we use in our
approach are intensional models. Our future research
has to consider extensional database meta-models,
too. Namely, we have defined the transformations of
the models. Problem is what to do with the data that
has been accumulated in the database conformant
with a source data model. System evolution should be
supported by automatic MD data migration and
extensional database MM may play important role in
its implementation.

Acknowledgments

Research presented in this paper was supported by
Ministry of Education, Science and Technological
Development of Republic of Serbia, Grant III-44010,
Title: Intelligent Systems for Software Product
Development and Business Support based on Models.

A part of generic relational dbS MM A part of IIS*Case PIM (FT) meta-model

lazy rule ChildCT{
from
 ric: RM!ReferentialIntegrityCon

to
 ct: IISCase!ComponentTypeChild(

 Name <- 'ComponentType_' + ric.LHS_RS.LHS_RS_IND.Name,
 Title <- 'ComponentType_' + ric.LHS_RS.LHS_RS_IND.Name,
 ComponentTypeAttributes <- if thisModule.RS_AllKeys(ric.LHS_RS.LHS_RS_IND)
 then thisModule.AttributesOfRSs(ric.LHS_RS.LHS_RS_IND,
 ric.RHS_RS.RHS_RS_IND)->collect(e|
 thisModule.RSAttributes2CompTypeAttribute(e))
 else ric.ChildComponentTypeAttribute->collect(e|

 if (e.oclIsTypeOf(RM!NotNullAttr)) then
 thisModule.RSAttributes2NotNullCompTypeAttribute(e) else

 thisModule.RSAttributes2NullCompTypeAttribute(e) endif) endif,
 ComponentTypeKeys <- (ric.LHS_RS.LHS_RS_IND.EquivalentKey->collect(e|

 thisModule.EquivalentKey2CompTypeKey(e))).append(
 thisModule.EquivalentKey2CompTypeKey(ric.LHS_RS.LHS_RS_IND.PrimaryKey)),
 ComponentTypeUniques <- ric.LHS_RS.LHS_RS_IND.UQConstraints->collect(e|
 thisModule.UniqueCon2ComponentTypeUnique(e)),
 ComponentTypeCheck <- thisModule.TupleConstraints2ComponentTypeCheckCon(

 ric.LHS_RS.LHS_RS_IND.TupleConstraint),
 Query <- true,
 Delete <- false,
 Insert <- false,
 Update <- false,
 NoOfOcurrences <- if thisModule.ExistIRIC(ric) then #OneOrMany else

 #NoneOrMany endif
)
 do{

 thisModule.attributes <- Sequence{};}}

Lazy rule ChildCT
helper def: RS_AllKeys(rs:RM!RelationScheme):Boolean=
 let AllRSAttributes:Sequence(RM!AttValCon)=rs.RSAttributes.asSet() in

 if AllRSAttributes-rs.PrimaryKey.KeyAttr.asSet() = Set{} then true
 else false endif;

helper def: AttributesOfRSs(rs:RM!RelationScheme,parent:RM!RelationScheme):Set(RM!AttValCon)=
let relatedRS:Sequence(RM!RelationScheme)= thisModule.AllRelatedRS(rs,parent) in
 relatedRS->iterate(rsc; rez:Set(RM!AttValCon)= Set{}|

 rez.union(rsc.RSAttributes));
helper def: AllRelatedRS(rs:RM!RelationScheme,parent:RM!RelationScheme):

Sequence(RM!RelationScheme)=
let allRIC:Sequence(RM!ReferentialIntegrityCon)=

RM!ReferentialIntegrityCon.allInstances() in
 allRIC->iterate(ric; rez: Sequence(RM!RelationScheme) = Sequence{} |

 if ric.LHS_RS.LHS_RS_IND=rs then
 rez.append(ric.RHS_RS.RHS_RS_IND).excluding(parent) else

 rez.excluding(parent) endif);
helper context RM!ReferentialIntegrityCon
def:ChildComponentTypeAttribute:Sequence(RM!AttValCon) =
self.LHS_RS.LHS_RS_IND.RSAttributes ->
 iterate(attr; rez: Sequence (RM!AttValCon) = Sequence{}|
 if self.RHS_Key.KeyAttr->collect(e | e.AttributeName.refGetValue('Name'))

 ->asSet().includes(attr.AttributeName.Name) then rez else
 rez.append(attr) endif);

helper def:ExistIRIC(ric: RM!ReferentialIntegrityCon):Boolean =
 let allIRIC:Sequence(RM!InverseReferentialIntegrityCon)=

 RM!InverseReferentialIntegrityCon.allInstances() in
 allIRIC->iterate(iric; rez:Boolean = false |
 if iric.RIC = ric then true else false endif);

Helpers used (directly or indirectly via some other helper) in the lazy rule ChildCT

Figure 6. Relation scheme – to – F _Tree2 Form Type transformation

lazy rule GetFormType{
from
 p: RM!RelationScheme
using {
 children: Sequence(RM!RelationScheme)= thisModule.Children(p);

}
to
 ft: IISCase!FormTypeProgram(

 Name <- 'FormTypeN_' + p.Name,
 Title <-'FormTypeN_' + p.Name,
 ConsideredINDBSchDesign <- true,
 Frequency <- 1,
 ResponseTime <- 1,
 RootComponentType <- ctr

),
 ctr: IISCase!ComponentTypeRoot(

 Name <- 'ComponentTypeRootN_' + p.Name,
 Title <- 'ComponentTypeRootN_' + p.Name,
 ComponentTypeAttributes <-p.RSAttributes -> collect(e|

 if (e.oclIsTypeOf(RM!NotNullAttr)) then
 thisModule.RSAttributes2NotNullCompTypeAttribute(e) else

 thisModule.RSAttributes2NullCompTypeAttribute(e) endif),
 ComponentTypeKeys <- (p.EquivalentKey->collect(e|

 thisModule.EquivalentKey2CompTypeKey(e))).append(
 thisModule.EquivalentKey2CompTypeKey(p.PrimaryKey)),

 ComponentTypeUniques <- p.UQConstraints->collect(e|
 thisModule.UniqueCon2ComponentTypeUnique(e)),

 ComponentTypeCheck <- if p.TupleConstraint.oclIsUndefined() then OclUndefined else
 thisModule.TupleConstraints2ComponentTypeCheckCon(p.TupleConstraint) endif,

 Query <- true,
 Delete <- false,
 Insert <- false,
 Update <- false,
 ComponentTypeChildren <- children->collect(c | thisModule.ChildComponentType(c,p))

)
 do{

 thisModule.attributes <- Sequence{};}}
Lazy rule getFormType

lazy rule ChildComponentType{
from
 rs:RM!RelationScheme,

 p:RM!RelationScheme
using{
 children: Sequence(RM!RelationScheme)= thisModule.Children(rs);

}
To
 ct: IISCase!ComponentTypeChild (

 Name <- 'Child_ComponentTypeN_' + rs.Name,
 Title <- 'Child_ComponentTypeN_' + rs.Name,
 ComponentTypeAttributes <- (rs.RSAttributes.asSet()-

 thisModule.parentKeyAttributes.asSet()) ->collect(e|
 if (e.oclIsTypeOf(RM!NotNullAttr)) then

 thisModule.RSAttributes2NotNullCompTypeAttribute(e) else
 thisModule.RSAttributes2NullCompTypeAttribute(e) endif),

 ComponentTypeAttributes <- if thisModule.RS_AllKeys(rs) then
 thisModule.AttributesOfRSs(rs, p)->collect(e|
 thisModule.RSAttributes2CompTypeAttribute(e)) else rs.RSAttributes ->
 collect(e| if (e.oclIsTypeOf(RM!NotNullAttr)) then
 thisModule.RSAttributes2NotNullCompTypeAttribute(e) else
 thisModule.RSAttributes2NullCompTypeAttribute(e) endif) endif,

 ComponentTypeKeys <- (rs.EquivalentKey->collect(e|
 thisModule.EquivalentKey2CompTypeKey(e))).append(

 thisModule.EquivalentKey2CompTypeKey(rs.PrimaryKey)),
 ComponentTypeUniques <- rs.UQConstraints->collect(e|

 thisModule.UniqueCon2ComponentTypeUnique(e)),
 ComponentTypeCheck <- if rs.TupleConstraint.oclIsUndefined() then

 OclUndefined else
 thisModule.TupleConstraints2ComponentTypeCheckCon(rs.TupleConstraint)

 endif,
 Query <- true,
 Delete <- false,
 Insert <- false,
 Update <- false,
 NoOfOcurrences <- #NoneOrMany,
 ComponentTypeChildren <- children->collect(c |

 thisModule.ChildComponentType(c,rs))
)
 do{

 thisModule.attributes <- Sequence{};}}
Recursive ATL lazy rule ChildComponentType

helper def: Children(rs:RM!RelationScheme): Sequence(RM!RelationScheme) =
let allRIC:Sequence(RM!ReferentialIntegrityCon)= RM!ReferentialIntegrityCon.allInstances() in
allRIC->iterate(ric; rez:Sequence(RM!RelationScheme) = Sequence{}|
if ric.RHS_RS.RHS_RS_IND=rs and thisModule.isRSforFormType(ric) then rez.append(ric.LHS_RS.LHS_RS_IND) else rez

endif);
Helper aimed at finding direct descendents of a relation scheme

Figure 7. Relation scheme – to – F _Treen Form Type transformation

References

Aleksić, S., Luković, I., Mogin, P. & Govedarica, M.
(2007). A generator of SQL schema specifications.
Computer Science and Information Systems, 4(2),
81–100.

Aleksić, S., Ristić, S. , Luković, I., & Čeliković, M.
(2013) A Design Specification and a Server
Implementation of the Inverse Referential
Integrity Constraints. Computer Science and
Information Systems, 10(1), 283–320.

Batini, C., Demo B., & Di Leva, A., (1984) A
methodology for conceptual design of office data
bases, Information Systems 9 (3/4), 251– 263.

Beeri, C., & Bernstein, P.A. Computational Problems
Related to the Design of Normal Form Relational
Schemas. ACM Transactions on Database
Systems, 4(1), 30–59.

Beggar, O. E., Bousetta, B., & Gadi, T. (2013).
Getting Relational Database from Legacy Data-
MDRE Approach, Computer Engineering and
Intelligent Systems 4(4), 10–32.

Bézivin, J. (2006). Model driven engineering: An
emerging technical space”, Generative and
transformational techniques in software
engineering, 36–64.

Boronat, A., Perez, J., Cars, J. A., & Ramos, J. A.
(2004). Two Experiences in Software Dynamics.
Journal of Universal Computer Science, 10(4),
428–453.

Brinkkemper, S. (2000). Method engineering with
Web-enabled methods. In: S. Brinkkemper,
Lindencrona E, Sølvberg A (Eds.), Information
Systems Engineering-State of the Art and
Research Themes Springer, 123–133.

 Choobineh, J., & Venkatraman, S.S. (1992). A
methodology and tools for derivation of functional
dependencies from business form. Information
Systems 17 (3), 269–282.

Dejanović, I., Milosavljević, G. , Perišić, B. , &
Tumbas, M. (2010). A Domain-Specific Language
for Defining Static Structure of Database
Applications. Computer Science and Information
Systems, 7(3), 409–440.

Dimitrieski, V., Čeliković, M., Kordić, S., Ristić, S.,
Alargt, A., & Luković, I.(2015) Concepts and
Evaluation of the Extended Entity-Relationship
Approach to Database Design in a Multi-Paradigm
Information System Modeling Tool, Computer
Languages Systems and Structures, Elsevier Inc.
44, 299–318. doi: 10.1016/j.cl.2015.08.011

EMF Eclipse Modeling Framework, (2017). Retrieved
from http://www.eclipse.org/modeling/emf/.

Favre, J. M. (2005). Foundations of Model (Driven)
(Reverse) Engineering: Models. Dagstahl
Seminar Proceedings.

Hainaut, J-L. , Henrard, J., Englebert, V., Roland, D.,
& Hick, J-M. (2009) Database Reverse Enginee-
ring. In: L. Liu and Özsu, T. (Eds), Encyclopedia
of Database Systems, Springer-Verlag.

Hammer, M., Schmalz, M., O’Brien, W., Shekar, S.,
& Haldevnekar, N. (2002). Knowledge Extraction

in the SEEK Project Part I, Tecnical Report TR-
02-008.

Kosar, T., Oliveira, N., Mernik, M., Pereira, V. J.
M., Črepinšek, M., Da, C. D. & Henriques, R. P.
(2010). Comparing general-purpose and domain-
specific languages: An empirical study. Computer
Science and Information Systems, 7 (2), 247–264.

Luković, I., Mogin, P. , Pavićević, J. & Ristić, S.
(2007). An approach to developing complex
database schemas using form types. Software:
Practice and Experience, 37 (15), 1621–1656.

Malki, M., Flory, A, & Rahmouni, M. K. (2002).
Extraction of Object-oriented Schemas from
Existing Relational Databases: a Form-driven
Approach. INFORMATICA, 13(1), 47–72.

Perez, J., Ramos, I. , & Anaya, V. (2002) Data reverse
engineering of legacy databases to object oriented
conceptual schemas. Electronic Notes in
Theoretical Computer Science, 74(4), 1–13.

Popović, A., Luković, I. , Dimitrieski, V. , & Djukić,
V. (2015). A DSL for modeling application-
specific functionalities of business applications.
Computer Languages, Systems & Structures, 43,
69–95.

Ristić, S., Aleksić, S., Čeliković, M., Dimitrieski, V.
& Luković, I. (2014). Database reverse
engineering based on meta-models. Central
European Journal on Computer Science (Open
Computer Science), 4(3), 150–159.
doi: 10.2478/s13537-014-0218-1

Ristić, S., Kordić, S., Čeliković, M., Dimitrieski, V. ,
& Luković, I. (2015). A Model-driven Approach
to Data Structure Conceptualization. In Procee-
dings of the 2015 FEDCSIS, 5, 977–984.
doi: 10.15439/ 978-83-60810-66-8.

Ristić, S., Kordić, S., Čeliković, M., Dimitrieski, V.,
& Luković, I. (2016). A Model-to-Model
Transformation of a Generic Relational Database
Schema into a Form Type Data Model, In
Proceedings of the 2016 Federated Conference on
Computer Science and Information Systems,
1577–1580. doi: 10.15439/2016F408

Shu, N.C., (1985). FORMAL: a form-oriented, visual-
directed application development system.
Computer, 38– 49.

Tsichritzis, D., (1982). Form management.
Communications of the ACM 25 (5), 453–478.

Vara, J., Vela, B., Bollati V.A., & Marcos, E. (2009).
Supporting model-driven development of object-
relational database schemas: a case study. In: R.
Paige (Ed.), Theory and Practice of Model
Transformations, 181–196.

