
Integrating Two Worlds: Relational and NoSQL

Dražena Gašpar, Mirela Mabić

Faculty of Economics, University of Mostar

Matice hrvatske bb, 88 000 Mostar, BiH

{drazena.gaspar, mirela.mabic}@gmail.com

Tihomir Krtalić

HERA d.o.o.

Kralja Petra Krešimira IV bb, 88000 Mostar, BiH

tihomir.krtalic@hera.ba

Abstract.NoSQL databases emerged as a response

to the Big Data challenges generated because of

extensive use of Internet and Web applications.

However, not all problems are the Big Data

problems. Transaction-oriented problems still can be

better-solved using relational databases, while

NoSQL databases are better solution for the Big Data

demands. Because the users want to analyze this data

together, the integration of relational and NoSQL

databases becomes necessity.

The authors discuss two approaches to data

integration between relational and NoSQL databases:

native and hybrid solutions explained on the example

of integration transactional data from Oracle

databases with data stored in MongoDB.

Keywords.NoSQL, relational databases, native

solution, hybrid solution, Oracle, MongoDB.

1 Introduction

Over the last ten years, the challenges related to the

Big Data phenomenon have been the main driving

forces behind NoSQL database development. There

are many different and unclear definitions of the Big

Data term. Usually, the definitions are related to

domains and use different numbers of Vs to explain

the Big Data. Firstly, the Vs refer to data volume,

velocity and variety (Lanely, 2001). In 2016 IBM

added veracity, while Microsoft added variability and

visibility. However, these definitions are focused on

data itself, not on the using the data as a tool for

resolving business problems. That is the reason why

Wu, Buyya, and Ramamohanarao (2016) in their

definition of the Big Data started from the business

view and use three aspects: data domain (searching

for patterns), business intelligence domain (making

predictions) and statistical domain (making

assumptions). They understood that the purpose of

data is to gain hindsight (i.e., metadata patterns from

historical data), insight (i.e., a deep understanding of

issues or problems), and foresight (i.e., more accurate

predictions in the near future) in a cost-effective

manner (Wu, Buyya, & Ramamohanarao, 2016). The

development and practical implementation of both,

NoSQL and relational databases, is showing that they

were right. Today, after more than 10 years of

development and use of NoSQL databases, it is clear

that neither everything is good in NoSQL nor

everything is so bad in relational databases. Not all

problems are the Big Data problems, so transaction-

oriented problems still can be better solved by using

relational databases, while NoSQL databases are

better in resolving the Big Data demands. But, the real

problem is the fact that when business perspective of

data is in questions, there is no always clear boundary

between transactional and the Big Data requirements.

Namely, database users are not interested in technical

details about their data (about type of database,

storage methods, database server, etc.), they just want

to analyse their data together, regardless of whether

the data are stored in relational or NoSQL databases.

Business users are looking for patterns in their data,

they need better insight of data in order to make better

decisions and ensure further development and

survival of their organizations in globalized, dynamic

and turbulent world. Users’ requirements related to

data analysis through business intelligence (BI)tools

have forced vendors of both, relational and NoSQL

databases, to look for solutions that will enable them

to integrate data stored in relational with data stored

in NoSQL databases. Most of NoSQL vendors have

recognized the necessity to provide support for

Structured Query Language - SQL (Hive Query

Language – HQL, Cassandra Query Language – CQL,

Cypher, etc.) in order to attract more experienced

developers and users, to enhance usability and

programmer efficiency, and to provide easier

integration with BI and analytical tools. On the other

hand, most of relational databases vendors offer

support for JSON (JavaScript Object Notation). The

JSON is primarily used as data interchange format

between a server and web application. It enables

storing of JavaScript objects as text, avoiding

complicated parsing and translations (JSON, 2017).

When applications use JSON data stored in NoSQL

database, it is their responsibility to ensure data

integrity, but native support for JSON by relational

databases means that these databases provide use of

JSON together will all of the benefits of relational

databases (transactions, indexing, declarative queries,

etc.).

In this paper, the authors discuss two approaches

to data integration between relational and NoSQL

databases: native and hybrid solutions. These

solutions are explained on the example of integration

transactional data from Oracle databases with data

stored in MongoDB.

2 Relational and NoSQL databases

integration

The integration of relational and NoSQL databases is

one of the possible solutions that can ensure that users

get the best of the both worlds, high scalability and

availability of NoSQL databases and transactions,

integrity and standardization (SQL) of relational

databases. During last few years different approaches,

all with the same goal to ensure data integration

and/or migration from relational and NoSQL

databases, have arisen. Developing of Bridge Query

Language (BQL) as a tool for interface

standardization (Curé, Hecht, Le Duc & Lamolle,

2011) was one of the approaches. Atzeni, Bugiotti,

and Rossi (2012) proposed the "SOS (Save Our

Systems) platform" as a common API for interface

standardization. Some authors (Rocha et al., 2015;

Stanescu, Brezovan & Burdescu, 2016, Nikam et al.,

2016) proposed frameworks for mapping relational

data to NoSQL databases, while others (Liao et al.,

2016) developed data adapters for querying and

transformation between relational and NoSQL

databases. The different approaches related to

relational and NoSQL databases integration can be

summarized as:

1. Native solution,

2. Hybrid solution.

A native solution is based on the standard database

drivers and ways how the business layer

communicates with a specific database. Since data is

stored in both, relational and NoSQL, databases in

order to use it together it is necessary to integrate it

somehow. This integration is implemented on the

business layer. When data is extracted from the

databases (relational and NoSQL), it is linked and

converted into format adequate for its use on the user

(business) layer. If data is storing in a database (either

relational or NoSQL), it is the responsibility of the

business layer to prepare it to storage and to store it in

the specific (relational or NoSQL) database.

A hybrid solution is based on development of

additional layer that enables SQL communication

between business and data layer. It means that

developers can use familiar SQL patterns on the

business layer, but they must employ new layer for

translating these patterns into the NoSQL

programming interface in order to enable

communication with the NoSQL database.

It is easier to explain and understand these two

solutions if concrete examples are presented. In

preparing the examples the authors started with

requirement for integration of data about university’s

teaching staff stored in relational (Oracle) database

with data about their publications (papers, chapters,

books, etc.) stored in NoSQL database (MongoDB).

Namely, in this example, data about teaching staff is

part of university’s information system based on

transactional (relational) database, in this case Oracle

database. Storing data about teachers’ publications is

new application, developed lately, and it requires

storing a lot of pdf documents and images. That is the

reason why MongoDB is used for storing this data.

Namely, MongoDB performs extremely well in

working with such types of data. MongoDB uses

GridFS based on two collections within the database:

one for storing metadata about the file, and another

for the file itself where the file is broken down into

small pieces called chunks. Thanks to this file system

organization, neither the number of files nor their size

is limited. Also, it is easier to access specific parts of

large files by extracting respective chunks, which

makes MongoDB very fast in storing and extracting

data of any type. Figure 1 shows user’s requirement

and how data used in the examples is stored.

{ }
{
 PROFESSOR_PAPER: {
 professor_id: 222'
 title: NoSQL vs relational databases
 journal: CECCIIS
 year: 2016'
 }}

Professors

ORACLE

Request: TOTAL number of
papers by
each professor?

Figure 1. User’s requirement and data storage

2.1 Native solution

The native solution for the requirement presented in

Figure 1 involved the use of native drivers for

communication with Oracle and MongoDB. In order

to answer on question how many papers was

published by each teacher, it is necessary to integrate

data about teaching staff from Oracle database with

data about publications from MongoDB. In native

solution this integration is implemented on the

business layer. In the presented example,

REpresentational State Ttransfer(REST) Web

services, the Java programming language and the Java

EE 7 framework were used. Although it is common to

use JPA (Java Persistence API) for work with

relational data when using this technology, in this

case that was not possible because JPA lack the

functionality of working with multiple data sources.

Because of that, access to Oracle database was

ensured through the JDBC (Java

DatabaseConnectivity) driver, while the Java

MongoDB driverwas used to access the MongoDB

database. Since it is not possible to map the results of

queries from the MongoDB database with Java

objects directly, the authors decided to use the open-

source library Gson. Gson Java library performs

conversion in two directions: converting Java objects

into their JSON representation or converting JSON

string to an equivalent Java object.

In presented example, relational table of

professors (teaching staff) and MongoDB collections

of publications need to be linkedin order to get the

required data. A native driver was used as the

connector for an individual database. Therefore, the

use of native drivers eliminates the possibility to

make queries that would be performed on Oracle and

MongoDB databases at the same time. The problem

of linking databases and extracting the data was

solved through the following steps:

• Data about teaching staff (professors) were

stored in relational database (Oracle) and for

access was used Oracle JDBC driver. The

method List<Professor>getProfessorList()was

used for retrieving data about teaching staff

(Figure 2).

• Java MongoDB driver was used for access to

MongoDB where publications were stored. All

publications were retrieved by the method

List<ProfessorPaper>getProfessorPaperList()

(Figure 3).

• The method ProfessorPaper getProfessor

PaperById(String id) returns all publications

by professor (for a submitted professor’s id)

(Figure 4).

• Upon retrieval, the data are linked by a key

(id).

• Linking results in an object of the class

ReportModel (Figure 5). It contains data about

professors and the total number of publications

by each professor while the result is a Java

object that is passed to the report engine that

uses it to generate the expected report.

public List<Professor> getProfessorList()throws BusinessException, SQLException {

 Connection conn =null;

 PreparedStatement preparedStatement =null;

 String selectSQL ="SELECT ID,TITLE, FIRST_NAME, LAST_NAME, UNIVERSITY_ID,

FACULTY_ID FROM PROFESSOR";

 List<Professor> professorList =new ArrayList();

try{

 conn = dataSource.getConnection();

 preparedStatement = conn.prepareStatement(selectSQL);

 ResultSet rs = preparedStatement.executeQuery();

while(rs.next()){

 Professor professor =null;

 professor =new Professor();

 professor.setId(rs.getBigDecimal(1));

 professor.setTitle(rs.getString(2));

 professor.setFirstName(rs.getString(3));

 professor.setLastName(rs.getString(4));

 University university = universityService.getUniversityById(rs.getBigDecimal(5));

 BigDecimal fac = rs.getBigDecimal(6);

 Faculty faculty = facultyService.getFacultyById(fac);

 professor.setUniversity(university);

 professor.setFaculty(faculty);

 professorList.add(professor);}

}catch(SQLException ex){

thrownew BusinessException("Error fetching professor!");

}finally{

if(conn !=null){

 conn.close();

}

if(preparedStatement !=null){

 preparedStatement.close();}}

return professorList;}

Figure 2. The method for retrieving data about teaching staff

public List<ProfessorPaper> getProfessorPaperList(){

 MongoCollection collection = mongoClientProvider.getMongoCollection("professorPaper");

 MongoCursor<Document> cursor = collection.find().iterator();

if(cursor !=null){

 String cursorString = util.cursorToString(cursor);

 GsonBuilder gsonBuilder =new GsonBuilder();

 Gson gson = gsonBuilder.create();

 List<ProfessorPaper> list = gson.fromJson(cursorString,new TypeToken<List<ProfessorPaper>>(){

}.getType());

return list;

}else{

returnnull;}}

Figure 3. The method for retrieving all publications by professor

public ProfessorPaper getProfessorPaperById(String id){

 MongoCollection collection = mongoClientProvider.getMongoCollection("professorPaper");

 Bson filter = eq("_id", id);

 Document document =(Document) collection.find(filter).first();

if(document !=null){

 String json = document.toJson();

 Gson gson =new Gson();

 ProfessorPaper ecoTest = gson.fromJson(json,new TypeToken<ProfessorPaper>(){

}.getType());

return ecoTest;

}else{

returnnull;}}

Figure 4. The method for returning the total number of publications by professor

public List<ReportModel> getNumberOfPaperByProfessor()throws BusinessException, SQLException {

 List<Professor> professorList;

 professorList=professorService.getProfessorList();

 List<ReportModel> reportList =new ArrayList();

for(Professor professor : professorList){

 Long count = professorPaperMongoService.getCountByProfessorId(professor.getId());

 reportList.add(new ReportModel(professor, count));

}

return reportList;}

Figure 5. The class ReportModel

2.2 Hybrid solution

A hybrid solution involves development of additional

layer that enables SQL communication between

business and data layer. Namely, work with data

stored in relational databases is based on the unique

standard of the SQL. SQL implementations vary

slightly among relational database vendors.

Acceptance of the standard by different relational

vendors has allowed integration of various databases,

and brought the developer community to a situation

that it is almost the immaterial which relational

database product they use. As opposite, development

of the NoSQL market has brought a huge number of

solutions that offer various data organization models

and data management APIs. This diversity of

programming languages and interfaces for work with

data in the NoSQL databases makes the huge

challenge in finding appropriate solution for

integration relational and NoSQL databases. That is

the reason why the SQL has been seen as powerful

solution for the problem of integration relational and

NoSQL world (Lawrence, 2014).

In their paper, Vilaça et al. (2012) present the

DQE (Distributed Query Engine) as a platform to

execute SQL queries on NoSQL databases, while

keeping their data-model scalability and flexibility.

DQE represents a strong concept that will combine

said scalability and flexibility of NoSQL schemas

with the expressiveness of SQL. Further, they show

how simple key-value operations and the associated

data model can be mapped into SQL structures, and

describe a full implementation of the model on the

HBase database using Apache Derby's query engine.

Lawrence (2014) considered DQE-like solutions

to connect the relational and NoSQL worlds, and

found a solution in SQL, which provided a theoretical

foundation for the system called Unity. Unity is a

generalizable integration and virtualization system

based on SQL interface. According to Lawrence

(2014), the key features of the Unity are:

• It uses a SQL query processor and optimizer

that include support for push-down filters and

cross-source hash joins.

• It has a SQL dialect translator that brings

different SQL dialects of relational-database

vendors to the same form.

• It has a SQL-form to NoSQL APIs translator,

and operators not supported by native NoSQL

database APIs are performed using the Unity

virtualization engine.

• It offers mapping of SQL functions into

appropriate forms supported by various

vendors of relational and NoSQL databases.

• It provides data virtualization allowing queries

and joins across relational and NoSQL data

sources.

Unity offers compatibility with existing SQL

solutions and new ones being developed by the

developer community, based on the SQL standard. At

the same time, it offers the possibility of using the

appropriate dataorganization philosophy that meets

the needs and requirements that applications bring to

developer teams. Unity offers an answer to growing

needs of web applications for simultaneous use of

NoSQL and relational systems.

Unity also offers a kind of extension of the

NoSQL system, by implementing unsupported

operators through its virtualization engine. It seems

that this architecture allows use of the best of the two

philosophies, using the interface most appropriate for

most of the developer community.

Figure 6. Unity architecture (Lawrence, 2014)

Presently, Unity is available as a commercial

product on the market of JDBC drivers. It supports

Oracle, MySQL, SQL Server, and any other relational

JDBC data source. The main features of the

MongoDB drivers of Unity are (UNITYJDBC, 2017):

• Access to MongoDB collections using SQL

including WHERE filters and ORDER BY

clause.

• Data manipulation using standard SQL

functions that are not natively supported in the

MongoDB.

• Use of JOIN clause between MongoDB

collections and relational tables of databases

that are supported by Unity.

• Full support for nested documents andstrings

including functionalities of filters and regular

expressions (RegEx).

All that lead to decision that the Unity model

should be used in testing hybrid solution. The same

example, making the report that shows professors

with total number of paper by each professor, was

used for presenting hybrid solution based on Unity

model. Figure 7shows the example of method that

retrieves data from Oralce and MongoDB for the

required report.

public List<ReportModel> getReport()throws UnsupportedEncodingException {

 List<ReportModel> reportModelList =new ArrayList();

 Connection con =null;

 Statement stmt =null;

 ResultSet rst;

 String url ="jdbc:unity://"+ getWebInfPath()+"/OracleMongoSources.xml";

try{

 Class.forName("unity.jdbc.UnityDriver");

 con = DriverManager.getConnection(url);

 stmt = con.createStatement();

 String sql =" SELECT PR.ID,\n"

+" PR.TITLE,\n"

+" PR.FIRST_NAME,\n"

+" PR.LAST_NAME,\n"

+" PR.UNIVERSITY_ID,\n"

+" PR.FACULTY_ID,\n"

+" COUNT (1)\n"

+" FROM Mongo.PROFESSOR_PAPER PP, Oracle.PROFESSOR PR\n"

+" WHERE PP.doc.professor.id = PR.id\n"

+"GROUP BY PR.ID,\n"

+" TITLE,\n"

+" PR.FIRST_NAME,\n"

+" PR.LAST_NAME,\n”

+" PR.UNIVERSITY_ID,\n"

+" PR.FACULTY_ID";

 rst = stmt.executeQuery(sql);

while(rst.next()){

 ReportModel report =new ReportModel();

 Professor professor =new Professor();

 professor.setId(rst.getBigDecimal(1));

 professor.setTitle(rst.getString(2));

 professor.setFirstName(rst.getString(3));

 professor.setLastName(rst.getString(4));

 report.setValue(rst.getLong(5));

 report.setProfessor(professor);

 reportModelList.add(report);}

}catch(Exception ex){

 System.out.println("Exception: "+ ex);

}finally{

if(con !=null){

try{

 con.close();

}catch(SQLException ex){ System.out.println("SQLException: "+ ex);}}}

return reportModelList;}

Figure 7. The method that retrieves data from Oracle and MongoDB

The query is executed on two data sources:

Mongo.Professor_Paper and Oracle.Professor. These

sources are described in the UnityJDBC configuration

file OracleMongoSources.xml. The WHERE clause of

a SQL query reveals the possibility of linking data

from different sources. The query result is a Java

object that can be forwarded to the report engine for

the formatting and presentation of the retrieved data.

3 Conclusion

From the viewpoint of users, the real value of data,

stored either in relational or NoSQL databases, lays in

the possibility to use it for better understanding of

their businesses, customers and suppliers. In

globalized, volatile and dynamic world, data is stored

everywhere, in transactional systems, social networks,

web sites, and users do not want to be limited in data

analysis to the only some data storages. Overall data

analysis can result with discovering of knowledge

hidden in huge amounts of data and empower the

users and their organizations to efficiently respond to

present and future business challenges. In that sense,

the users see the database technology as a powerful

tool that has the task to provide access and use of data

wherever is stored. Today, it necessary leads to

integration of data stored in different databases,

relational and NoSQL.

The paper presents two approaches to integration

relational and NoSQL databases: native and hybrid

solution. The use of native drivers eliminates the

possibility to make queries that canbe performed on

both, relational and NoSQL database at the same

time, so the programmers are responsible for

developing the code that will enable such queries. A

hybrid solution means development of additional

layer that enables to developers to use familiar SQL

on the business layer. In this case, the query is

executed on two data sources, relational and NoSQL,

but the additional layer is used to enable data

integration.

Theseapproachesare also generating additional

challenges, including the following:

• Increased responsibility of developers in the

optimization of database processes, which

means that additional programming and time

are necessary for completing the integration of

data.

• Difficulties in finding developers with good

knowledge of NoSQL databases, while finding

developers with knowledge about both worlds,

relational and NoSQL, is still equal to a

jackpot.

• Finding an appropriate driver or tool for a

particular problem is a time-consuming and

exhaustive process because the market is full

of many different drivers and tools offered by

third vendors.

The need for the integration of relational and

NoSQL databases can lead to databases evolution in

sense that they will provide support for different and

often opposite users requirements, by enabling

combinations of both approach and tunable and

configurable capabilities that will give the users the

possibility to use databases on the way that best suits

their needs.

References

Atzeni, P., Bugiotti, F., Rossi, L. (2012). Uniform

access to non-relational database systems: the

SOS platform, 24th International Conference,

CAiSE 2012, Gdansk, Poland, June 25-29.

Retrieved from

http://www.inf.uniroma3.it/~atzeni/psfiles/CAiS

E2012Atzeni.pdf.

Curé, O., Hecht R., Le Duc C., Lamolle M. (2011).

Data Integration over NoSQL Stores Using Access

Path Based Mappings. DEXA, August, 481-495,

Lecture Notes in Computer Science

JSON (2017). Introducing JSON. Retrieved from
http://www.json.org/

Laney, D. (2001). 3D Data Management: Controlling

Data Volume, Velocity, and Variety. META

Group. Retrieved from

http://blogs.gartner.com/douglaney/files/2012/01/a

d949-3D-Data-Management-Controlling-Data-

Volume-Velocity-and-Variety.pdf

Lawrence, R. (2014).Integration and Virtualization of

Relational SQL and NoSQL Systems including

MySQL and MongoDB, International Conference

on Computational Science and Computational

Intelligence. 285-290.

Liao, Y., Zhou, J., Lu, C-H., Chen, S-H., Hsu, C-H.,

Chen, W., Jiang, M-F., Chung, Y-C. (2016). Data

adapter for querying and transformation between

SQL and NoSQL database. Future Generation

Computer Systems 65, 111–121.

Nikam, P., Patil, T., Hungund, G., Pagar, A.,

Talegaonkar, A., Pawar, S. (2016). Migrate and

Map: A Framework to Access Data from Mysql,

Mongodb or Hbase Using Mysql Queries. IOSR

Journal of Computer Engineering (IOSR-JCE).

Volume 18, Issue 3, Ver. IV (May-Jun), 13-17.

Rocha,L., Vale, F., Cirilo, E., Barbosa, D., Mourao, F.

(2015). A Framework for Migrating Relational

Datasets to NoSQL. ICCS 2015 International

Conference On Computational Science.

Procedia Computer Science. Volume 51, 2593–

2602.

Stanescu, L., Brezovan, M., Burdescu, D.D. (2016).

Automatic Mapping of MySQL Databases to

NoSQL MongoDB. Proceedings of the

Federated Conference on Computer Science and

Information Systems. ACSIS, Vol. 8. 837–840.

UNITYJDBC (2017). JDBC Driver for MongoDB.

Retrieved from
http://www.unityjdbc.com/mongojdbc/mongo_jdb

c.php

Vilaça R., Cruz F., Pereira J., Oliveira R. (2013). An

effective scalable SQL engine for NoSQL

databases. HASLab - High-Assurance Software

Laboratory. INESC TEC and Universidade do

Minho Braga, Portugal. doi: 10.1007/978-3-642-

38541-4_12

Wu, C., Buyya, R., Ramamohanarao, K. (2016).

BDA=ML +CC. In book ed. Buyya,R., Calheiros,

R.N.,Dastjerdi, A.V. Big Data Principles and

Paradigms. Elsevier Inc. USA.

