

Software Product Lines: Source Code Organization

for

3-tier OLTP Architecture Systems

Zdravko Roško

Faculty of Organization and Informatics

University of Zagreb

Pavlinska 2, 42000 Varaždin, Croatia

zdravko.rosko@zd.t-com.hr

Abstract. This paper proposes the use of 3-tier class

of system as core software architecture for building

Software Product Lines (SPL). A base for building a

SPL is commonality among software products based

on 3-tier architecture, use of available industry

frameworks, development organization’s “glue” code

and developed services needed by most of the

software products within the proposed SPL. A

software development organization specialized to

develop 3-tier (logical tiers) client-server applications

for differnet kind of industries such as: banking,

tourism, telecommunictions, etc., can benefit from

adopting SPL principles. SPL assumes management

of commonality and variability among applications

belonging to 3-tier SPL. This paper focuses on

benefits from well structured source code

organization architecture for 3-tier class of system

which is based on SPL principles. To illustrate the

approach, the paper presents a usage of 3-tier for On

Line Transaction Processing (OLTP) software

product line, based on Java technology which serves

as the implementation platform.

Keywords. OLTP, SPL, Java, framework,

domain, platform

1 Introduction

The key difference between traditional single system
development and software product line engineering is
a fundamental shift of focus: from the individual
system and project to the product line. As opposed to
many other reuse approaches that focus on code assets,
the product line infrastructure includes all assets that
are relevant throughout the software development life-
cycle [1]. SPL can be divided to: domain engineering
(development for reuse) and application engineering
(development with reuse) that builds the final

products. Successful product lines have enabled
organizations to capitalize on systematic reuse to
achieve business goals and desired software benefits
such as productivity gains, decreased development
costs, improved time to market, higher reliability, and
competitive advantage [2, 3].

Software development organizations that develop
systems or products, software consultant organizations
developing software on a project basis for other
organizations in different business domains, or IT
departments that develop IT support systems, can
benefit from well structured source code organization
architecture which is based on SPL principles.

An organization involved to many projects, on one
project can be developing a “core banking” application
for a local bank. The same organization can be
working on a project developing an Operation Support
System (OSS) inventory for a telecommunication
company. The third project for the same organization
could be a development of an on-line reservation
system for an international tour operator. One
responsible for all these projects would benefit if
looking for a common assets among these projects. Is
there 20% or even 80% of the common reusable assets
among the projects, could be an important question to
answer for anyone who wants to achieve better
productivity, decreased development cost, improved
time to market, higher reliability and maintenance
cost. One could argue that there are already existing
industry frameworks, standards for project
management, test case and architecture templates that
cover commonality among these projects, but our
experience prove that building of core SPL assets for
reuse among different projects is a benefit.

SPL is mostly used by organizations that develop
software for mobile phones, cars, electronic
instruments, while information systems domain,
mostly implemented as a 3-tier class of system, is not
often considered as a potential base for developing
SPL.

Proceedings of the 22nd Central European Conference on Information and Intelligent Systems 381

Varaždin, Croatia
__

Faculty of Organization and Informatics Varaždin

September 21-23, 2011

OLTP is a one of the most typical 3-tier system
that facilitates and manages transaction-oriented
applications, typically for data entry and retrieval
transactions in a number of industries, including
banking, airlines, travel, supermarkets, manufacturers,
telecommunications, and others, that shares common
set of components and architecture that can be used for
subsequent projects. OLTP as a way of designing,
developing, deploying and managing software systems
has these characteristics:

 It provides reusable transactions (Logical Unit of
Work) to multiple users.

 Applications or other transaction consumers are
built using functionality from reusable
transactions.

 Transactions performance time is critical to the
end user.

 Transactions are predominantly, but not
exclusively, short-running processes.

A specific object-oriented framework for 3-tier OLTP
systems as a domain-independent layer of
commonality between different domains, on one level,
and between different software products of the same
domain on another level, can be defined as a SPL
platform to be used for building products in more than
one business domain. Specific business domain such
as banking can benefit from inheriting a domain
independent platform, and building a domain specific
layer of components and services to be used by more
domain specific products.
Specific 3-tier object-oriented framework (platform)
has high level of configurability which allows for the
easy configuration of components for individual
product in a specific business domain.

A number of authors have suggested relations
between SPL and other technologies [4, 5, 6, 7, and 8].
These works did not address 3-tier or OLTP as core
software architecture for building SPL. The goal of
this paper is to identify the key components for 3-tier
product line and to propose the organization
architecture of the product line source code.

In this paper the technologies supporting 3-tier
class of system (EJB, JCA, JDBC, etc.) are viewed as
an adaptable layer of inter-organizational reusable
components connected to the domain independent
object-oriented framework. SPL allows a
configuration or a substitution of the technologies
supporting the 3-tier class of system. Many of the
principles of SPL apply to 3-tier software products
which can be developed in more than one business
domain. SPL platform components do not necessarily
implement all of domain-specific requirements nor do
the domain specific components implement all of
product-specific requirements. The subset of the
requirements that is not fulfilled by the SPL platform
must be implemented as domain specific components
and the subset of the requirements that is not fulfilled
by domain specific components must be implemented
by product-specific software. The components that are
not part of the shared SPL platform assets are only
included in the source code for the specific domain.

Also, components that are not part of the SPL platform
and specific domain assets are only included in the
source code for the specific domain product.

2 SPL Concepts

The SPL involves core asset development and product

development using the core assets, both under the

aegis of technical and organizational management [2].

Core asset development has also been called domain

engineering. Product development from core assets is

often called application engineering. Besides

components, requirements, architecture, modeling and

analysis, test cases, test data, test plans,

documentation templates and other software

engineering artifacts were also expected to be

reusable while working on a new SPL project or

product.

Product line scope is a description of the products that

will constitute product line [2]. For the purpose of

this paper we define the scope of the 3-tier OLTP

product line to include any software product for

domain independent transactional system which is

expected to follow 3-tier concept and principles.

3 OLTP source code organization

architecture

The software architecture of a program or computing

system is the structure or structures of the system,

which comprise software elements, the externally

visible properties of those elements, and the

relationship among them [9]. Source code structure,

as one of them, reflects the level of compliance to the

architecture.

3.1 Layered Style

Recurring forms have been widely observed, even if

written for completely different systems. We call

these forms architecture styles. An architecture style

is a specialization of element and relation types,

together with a set of constraints on how they can be

used [10].

In this paper a layered style where the layers are

allowed to use only the facilities of lower layer, is

dominantly applied to the SPL for 3-tier class of

system design. We arrange the modules into useful

units (layers and layer segments) by restricting what

each one is allowed to use “Fig. 1”. SPL for 3-tier

module structure determine how changes to one part

of a system might affect other parts, and its ability to

support modifiability and reuse. SPL for 3-tier is

composed of three layers: presentation, business

logic, data access logic which in turn is using other

services components such as security, transaction,

logging, and etc.

Proceedings of the 22nd Central European Conference on Information and Intelligent Systems 382

Varaždin, Croatia
__

Faculty of Organization and Informatics Varaždin

September 21-23, 2011

At the run time, the system can be configured to run

within one or two processes where some modules

(services) are used by more than one system layer.

Web UI

CLIENT / End user / Other System

Rich Client
Command

Line

Transaction Controller (JTA, EJB, POJO)

Facade (business domain transactions)

Business Logic (POJO BO, EJB,...)

Local Data

Access

Remote

Data

Access

Data Access

Services

Validation,

Transport,

Security,

Loooging,

Rule

Engine,

Workflow

Error

Handling,

...)

Figure1. SPL for 3-tier Layers

3.2 Platform components

Software product line engineering relies on a common

product line architecture (also called reference

architecture). The central role of a common

architecture is a major ingredient of the success of

product line engineering compared to other reuse

approaches [1]. We propose development of the 3-tier

OLTP specific product line platform (framework),

which is composed of the technologies such as EJB,

JMS, JTA, JCA, Spring, Struts, Hibernate, TopLink,

and 3-tier OLTP product line specific components,

both considered a variations points of the 3-tier

product line “Fig. 2”. Technologies used to build the

platform are abstracted and integrated into the

platform, and are viewed as the interorganizational

reusable components while 3-tier OLTP product line

specific components such as error handling, caching

and validation are viewed as the intraorganizational

reusable parts.

Product line platform abstracts the business domain-

independent functionality where its variation points

can be used to build products for different business

specific domains. Having developed SPL platform for

a 3-tier product line one can implement additional

services, typically needed in 3-tier products such as:

validation service, rule engine, exception handling,

and may also abstract the technology services such as

transaction, connection pool, logging, security and

etc. The SPL platform can be viewed as a „glue“ code

which encapsulates technology domain independent

functionality and also implements a new services

which are not available from the standard

technologies. SPL for 3-tier assumes that

organizations does not start from scratch on each new

project or product, but rather inherit a tested and

documented variability points enabling application

developer to select among the available variations.

SPL for 3-tier OLTP class of system is composed

from a three types of packages (modules): client,

common, server “Fig. 3”.

OLTP SPL - PLATFORM

(Transaction, Security, Connection Pool, Looging,

Validation, Rule Engine, Workflow, Caching, Error

Handling, etc.)

EJB, JMS, JTA, JCA,

JDBC, OS, ...

(Transaction, Security,

Connection Pool, Looging,

etc.)

OLTP SPL specific

services:

Validation, Rule

Engine, Workflow,

Caching, Error

Handling, etc.

 Figure 2. 3-tier OLTP SPL Platform

Common package is used both by client and by server,
and contains value objects, utility classes and domain
interfaces used by client while calling the server
components.
Server is used to name the group of classes which
contain business logic and data access logic. It does
not necessary means that server process is separated
from the client. Server also means a logical server
which can be used to compose a “fat client” product
and run within the same process where the client is
running. The common package of SPL platform
contains the transport classes used by the client to send
a message (data transfer object) to the logical server.
The transport is using a “protocol plug-in” design
pattern to implement local, RMI, IIOP, SOAP, and
other transport protocols. Local transport can be used
within an IDE for unit or integration test purposes, and
also in the case the “fat client” architecture is an
acceptable variation, used when deploying the
application.

Client

Domain A

Client

Domain B

Client

SPL Platform

Common

SPL Platform

Server

SPL Platform

Common

Domain A

Common

Domain B

Server

Domain A

Server

Domain B

Client

Domain A

Prod A1

Client

Domain B

Prod B1

Common

Domain A

Prod A1

Common

Domain B

Prod B1

Server

Domain A

Prod A1

Server

Domain B

Prod B1

Client

Domain A

Prod A2

Client

Domain B

Prod B2

Common

Domain A

Prod A2

Common

Domain B

Prod B2

Server

Domain A

Prod A2

Server

Domain B

Prod B2

Platform

layer

Domain

Layer

Product

Layer

Figure 3. SPL domain independent/dependent

layers

3.3 Domain components

Having developed, tested and documented a domain

independent platform for SPL, domain specific

components can be built on top of the SPL platform.

All common and repeating components, specific for a

domain, may be organized as a layer between the

platform and domain specific applications (products).

A common domain classes such as: value objects,

user interface parts, desktop, component facades,

business objects, data access objects, which may be

used by many domain specific applications as a

variation points at the time of building the application,

may also be considered by domain engineering group

to be a part of the domain-specific layer components.

Proceedings of the 22nd Central European Conference on Information and Intelligent Systems 383

Varaždin, Croatia
__

Faculty of Organization and Informatics Varaždin

September 21-23, 2011

3.4 Product (application)

Any domain-specific application includes the

components from platform (client, common, and

server) and components from domain (client,

common, and server) beside its own components “Fig.

4”. Applications share a common business domain

assets and SPL platform assets to satisfy its

requirements. All potential reusable components done

by application engineering team may be candidates

for platform or domain-specific framework.

Client

Domain A

Client

Domain B

Client

SPL Platform

Common

SPL Platform

Server

SPL Platform

Common

Domain A

Common

Domain B

Server

Domain A

Server

Domain B

Client

Domain A

Prod A1

Client

Domain B

Prod B1

Common

Domain A

Prod A1

Common

Domain B

Prod B1

Server

Domain A

Prod A1

Server

Domain B

Prod B1

Client

Domain A

Prod A2

Client

Domain B

Prod B2

Common

Domain A

Prod A2

Common

Domain B

Prod B2

Server

Domain A

Prod A2

Server

Domain B

Prod B2

Figure 4. Domain specific product

3.5 Client (Models, Views, Controllers)

Client layer contains all product specific parts needed

to represent the application to the end user. It includes

abstracted components such as charts, attachment

handling, interfaces to Excel, Word, PDF, and etc.

Client application may be implemented by using

different technologies such as GWT, Servlet, JSP,

JSF, SWT or SWING. The term client means a logical

client which is initiating a communication to the

business logic implemented by business objects which

in turn call the data access logic layer to get the data

from a data source. Deployment of the client assumes

packaging the required components as shown “Fig.

5”.

Client

Domain A

Client

Domain B

Client

SPL Platform

Common

SPL Platform

Server

SPL Platform

Common

Domain A

Common

Domain B

Server

Domain A

Server

Domain B

Client

Domain A

Prod A1

Client

Domain B

Prod B1

Common

Domain A

Prod A1

Common

Domain B

Prod B1

Server

Domain A

Prod A1

Server

Domain B

Prod B1

Client

Domain A

Prod A2

Client

Domain B

Prod B2

Common

Domain A

Prod A2

Common

Domain B

Prod B2

Server

Domain A

Prod A2

Server

Domain B

Prod B2

Figure 5. Client packages

3.6 Common (Value Objects, Façade

proxies)

Common layer contains utility classes, exception

handling, security, session, data caching, transport

classes, data transfer objects, domain interfaces

(façade proxies) which are packaged together and

used by a domain applications. Utility classes include

the components for processing XML, email, File,

String formatting, and etc. In the case some or all of

the functionality provided by product line is also

implemented by abstracted technologies, the

variability management allows using them if required.

3.7 Server (Façade components, BO,

DAO)

Server layer assumes all classes implementing the

business logic and data access logic, transaction

handling components, data source connection pool,

value list handler, security, transport, and other

services components. Deployment of the server

assumes packaging the required components as shown

“Fig. 6”. Packaged server can be deployed to an EJB

container or to a Servlet container, depending on

specific application requirements. In case the server is

deployed as an EJB component the variability has to

be handled properly to enable all required variation

points needed by the used container. SPL can have an

option to use Plain Old Java Objects (POJO) or EJB

entities to handle application specific business logic.

SPL transaction management is not tied to JTA or any

other technology and can work with different

transaction strategies.

Client

Domain A

Client

Domain B

Client

SPL Platform

Common

SPL Platform

Server

SPL Platform

Common

Domain A

Common

Domain B

Server

Domain A

Server

Domain B

Client

Domain A

Prod A1

Client

Domain B

Prod B1

Common

Domain A

Prod A1

Common

Domain B

Prod B1

Server

Domain A

Prod A1

Server

Domain B

Prod B1

Client

Domain A

Prod A2

Client

Domain B

Prod B2

Common

Domain A

Prod A2

Common

Domain B

Prod B2

Server

Domain A

Prod A2

Server

Domain B

Prod B2

Figure 6. Server packages

3.8 Design Structure Matrix (DSM)

Hierarchical relationships and interdependencies

among design parameters can be formally mapped

using a tool called the Design Structure Matrix [17].

The mapping procedure was invented by Donald

Steward [13], and has been extended and refined by

Steven Eppinger [15]. The distinction between

acceptable and unacceptable SPL for 3-tier module

dependencies is expressed using design rules, which

are entered in the DSM matrix table “Fig. 7”. Design

rules come in two forms Component₁ can use

Component₂ and Component₁ cannot use Component₂

Proceedings of the 22nd Central European Conference on Information and Intelligent Systems 384

Varaždin, Croatia
__

Faculty of Organization and Informatics Varaždin

September 21-23, 2011

indicating that Component₁ can and cannot depend on

Component₂. Each row and each column of the DSM

corresponds to a module, and each dependency is

denoted by a mark “1” in the column corresponding

to the dependent module and the row corresponding

to the depended upon module. DSM is used to spot

circular dependencies since they are immediately

visible as marked cells on both sides of the matrix’s

diagonal.

The three layers of the 3-tier OLTP product line

system: product, domain and platform may be

documented using the DSM. The product line DSM,

shows dependencies above the matrix’s diagonal but

it does not violate the circular dependencies rules

since common modules are not representing a layer

but rather a common set of utility or data

encapsulating classes used on presentation layer as

MVC models and on business logic and data access

layer as data transfer objects.

Figure 7. DSM for layered design of OLTP
product line

3.9 Use Cases

SPL source code is the core artifact for developers

“Fig. 8”, code reviewers and tester, which suggests

the high importance of its organization structure. The

structure can improve the productivity,

maintainability, testing processes, architecture

compliance, documentation and other source code

related activities.

Developer

Create/Change

Review

Reviewer

Build/Package

Version Control

Test

Compile

Tester

*

*

* **

*

*

*

*

*

*

** *

* *

Run

User

* *

Document

*

*

Distribute

Administrator

* *

*

*

Figure 8. SPL Source code Use Cases

Developer who are able to make changes, check-in,

check-out, do builds, document a do compile of the

source code independently from other developers,

may be more productive in case the source code is

properly structured. Application engineering, where

one can instantiate the environment, specific for a

product, with no collision with other applications,

have less interactions and saves the resources while

programming. Testers performing integration,

regression, stress test and other tests, which require

direct interaction with the source code, can benefit

from well structure code. Having the option to merge

client and server to a “fact client” and at the same

time the option to split them, in order to run the

application within two separate processes is also a

benefit “Table 1”. SPL platform’s component named

transport, which connects client and server

programming logic, needs to be tested just once

during the SPL platform test, and later used by all

applications. The development within an IDE and

most of the tests can be performed using local

transport. Code review, where source code is

organized as three units: client, common, and server

within all three layers: application, domain and

platform, makes it easier to spot a potential

noncompliance with the reference architecture.

Table 1. SPL benefits

Actor
Source code Use Cases

Activity Benefit

Developer

Create/Change/

Compile/Build/

Package/Version
Control/

Document

Develop more

independently, less check-

in/check-out actions since
the code is divided among

domain and application

engineering developers for
each business domain

specific products.

Tester
Test/Compile/Bui

ld/Package

Perform unit and

integration test in local
development environment

using “local” transport
mechanism between client

and server (no need to

have all system set-up).

Reviewer Review
Easier to spot non-
compliance.

Administrat Build/Package/ Adaptable to build tools

Proceedings of the 22nd Central European Conference on Information and Intelligent Systems 385

Varaždin, Croatia
__

Faculty of Organization and Informatics Varaždin

September 21-23, 2011

Actor
Source code Use Cases

Activity Benefit

or Distribute for easier packaging.

User Run

The size of the executable

program, performance,

encapsulated platform
errors.

4 Variability management

3-tier OLTP product line aims at supporting a range

of products from different business domains such as

banking, telecommunications, travel and etc. These

products may also support different individual

customers within a business domain. Management of

variability points within the platform, domain or

application is a key to product line success.

4.1 Domain variability

Assuming the inheritance of the platform components

by business domain-specific components or services,

the variability can be achieved by configuration,

parameters, use of a system including the

functionality of other system, reflection, dynamic

class loading, overloading or inheritance of other

classes from the platform layer.

4.2 Product variability

Product-specific characteristics as a part of the 3-tier

product line variability, often required by specific

product needs, are handled mostly in application

engineering while inheriting domain and platform

components.

5 Conclusions

The implementation of software product line for 3-tier

OLTP products using domain independent platform,

domain specific and application specific components,

has significant potential for organizations developing

software products, consulting companies and IT

departments. The available technologies that support

3-tier are viewed as inter-organizational reusable

components which still need to be integrated, tested,

documented and extended in the form of 3-tier OLTP

product line platform to be used while building

domain-specific and customer-specific applications.

A building of 3-tier platform component is part

of domain engineering, which sets up the common

product line infrastructure. Business domain specific

engineering is also part of domain engineering while

development of products is considered as part of

application engineering. By partitioning the typical

application into layers and programming using SPL,

the third party technology used for each application

layer can be replaced. Source code organization

architecture for SPL is of significant importance in

order to achieve the high productivity and other

benefits from adopting SPL principles.

References

[1] Frank J. van der Linden (Author), Klaus Schmid
(Author), Eelco Rommes, “Software Product
Lines in Action: The Best Industrial Practice in
Product Line Engineering”, Springer; 1st Edition.
edition , 2010, pp. 6, 14.

[2] Clements, P. & Northrop, L. M. „Software
Product Lines: Practices and Patterns“, Addison-
Wesley, 2001, pp. 17, 29, 31.

[3] Kyo C. Kang, Vijayan Sugumaran, Sooyong
Park, “Applied Software Product Line
Engeenering”, Taylor and Francis Group, 2011,
pp. 6.

[4] Cohen, Sholom & Krut, Robert. Proceedings of
the First Workshop on Service-Oriented
Architectures and Product Lines (CMU/SEI-
2008-SR-006). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon
University, 2008.

[5] Cohen, Sholom & Krut, Robert, „Managing
Variation in Services from a Software Product
Line Context“, Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon
University, 2009 - forthcoming.

[6] Ralph Mietzner, Andreas Metzger, Frank
Leymann and Klaus Pohl, „Variability Modeling
to Support Customization and Deployment of
Multi-Tenant-Aware Software as a Service
Applications“. In Proceedings of PESOS
Workshop, ICSE, Vancouver, Canada, May 18-
19, 2009.

[7] Tarr. P. Technologies for Software Product Line
Development. https://www-
950.ibm.com/events/wwe/grp/grp004.nsf/vLooku
pPDFs/tarr-product-lines-033009-
slides/$file/tarrproduct-lines-033009-slides.pdf

[8] S. G¨unther and T. Berger, „Service-oriented
product lines: Towards a development process
and feature management model for web
services“, in SPLC ’08: 12th International
Software Product Line Conference, pp. 131–136,
2008.

[9] J. Bosch, “Design and Use of Software
Arhitectures,” Addison-Wesley Professional,
May 2000, pp. 11, 169–170.

[10] Paul Clements, Felix Bachmann, Len Bass, Davig
Garlan, “Documenting Software Architecture”,
Addison Wesley, 2011, pp. 25.

[11] Northrop, L. & Clements, P. “A Framework for
Software Product Line Practice”, Version 5.0
http://www.sei.cmu.edu/productlines/framework.
html (2009).

[12] Neeraj Sangal, Ev Jordan, Vineet Sinha, Daniel
Jackson, “Using Dependency Models to Manage
Complex Software Architecture”, OOPSLA '05
Proceedings of the 20th annual ACM SIGPLAN
conference on Object-oriented programming,
systems, languages, and applications.

[13] Steward, D. V. “The Design Structure System: A
Method for Managing the Design of Complex
Systems.” IEEE Trans. on Eng. Mgmt EM-28.3:
71-74, Aug, 1981.

[14] Baldwin, C. Y. and Clark, K. B.. Design Rules,
Vol. 1: “The Power of Modularity”. The MIT
Press, 2000.

[15] Eppinger, S. D. “Model-based approaches to
managing concurrent engineering,” Journal of
Engineering Design, 2(4):283–290, 1991.

Proceedings of the 22nd Central European Conference on Information and Intelligent Systems 386

Varaždin, Croatia
__

Faculty of Organization and Informatics Varaždin

September 21-23, 2011

[16] Kevin J. Sullivan, William G. Griswold,
Yuanfang Cai, and Ben Hallen. 2001. “The
structure and value of modularity in software
design”. In Proceedings of the 8th European
software engineering conference held jointly with
9th ACM SIGSOFT international symposium on
Foundations of software engineering
(ESEC/FSE-9). ACM, New York, NY, USA, 99-
108.

[17] LaMantia, M.J.Yuanfang Cai, MacCormack,
A.D.Rusnak,J., "Analyzing the Evolution of
Large-Scale Software Systems Using Design
Structure Matrices and Design Rule Theory: Two
Exploratory Cases", Software Architecture, 2008.
WICSA 2008. Seventh Working IEEE/IFIP
Conference, 2008, pp. 83-92.

[18] Bass, Len; Clements, Paul; & Kazman, Rick.
„Software Architecture in Practice“, 2nd ed.
Boston, MA: Addison-Wesley, 2003.

[19] Dennis Smith and Grace Lewis, "Service-
Oriented Architecture (SOA) and Software
Product Lines: Pre-Implementation Decisions",
SPLC 2009, pp. 310.

Proceedings of the 22nd Central European Conference on Information and Intelligent Systems 387

Varaždin, Croatia
__

Faculty of Organization and Informatics Varaždin

September 21-23, 2011

