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Abstract. We present the modeling of dynamical
systems and finding of their complexity indicators
by the use of concepts from computation and in-
formation theories, within the framework of J. P.
Crutchfield’s theory of ε-machines. A short formal
outline of the ε-machines is given. In this approach,
dynamical systems are analyzed directly from the
time series that is received from a properly adjusted
measuring instrument. The paper serves also as a
theoretical foundation for the future presentation of
the DSA program that implements the ε-machines
modeling up to the stochastic finite automata level.
Keywords: modeling from a time series,
stochastic finite automata, deterministic and stat-
istical complexity, ε-machines, DSA program.

1 Introduction

In this work we illustrate an innovative approach in
which computation theory1 and information theory
are used in analyzing and modeling of dynamical
systems. These new and highly successful theor-
ies and their concepts are used for investigating
the problems that belong in the domain of nat-
ural sciences. The basic idea is to build models
"solely" from the data that are received from the
observed systems. Specifically, here we expose the
J. P. Crutchfield’s theory of ε-machines in which
hierarchically more and more complex computation
entities are introduced [1]. The fundamentals of the
theory applied to the chaotic systems were intro-
duced as early as 1989 [2], and matured ever since
among a group of physicists and computer scient-
ists interested in describing the structure and com-
plexity of natural systems in a new way. Instead
of stating differential equations and using mathem-
atical tools, we analyze the process directly from a
time series emitted by a suitably adjusted measur-
ing instrument. The model is presented by using
automata with added statistical indicators, such as

1We use the term Computation Theory as a synonym for
the Theory of Computation.

Stochastic Finite Automata in our case, or String
Production machines on the higher level.
Another well known example of the use of com-

putation modeling for the spatial dynamical sys-
tems is cellular automata, the computation entit-
ies that operate in 2 or more dimensional spaces
[3]. These new concepts led Stephen Wolfram to
postulate his Principle of Computational Equival-
ence, which can be shortly stated as: All processes,
whether they are produced by human effort or occur
spontaneously in nature, can be viewed as compu-
tations. Many underlying natural systems, with the
exception of those which are obviously simple, can
perform computations up to a maximal, universal
level of computational power, and are equivalent in
that sense [4].
The modeling from a time series and the theory

of ε-machines were invented primarily to explore
the nonlinear and chaotic dynamical systems, but
can serve also as a general modeling scheme for a
much broader range of processes that are generated
by natural, technical and human systems. The new
concepts emanating from the computation and in-
formation theory can shed new light on the prop-
erties and behavior of dynamical systems and thus
affi rm the above stated Principle. Although the
theory of ε-machines is now two decades old, it
can still be considered as a novelty. In our opinion,
it deserves greater attention of broader scientific
community.
Another aim of this paper is to give a theoretic

foundation for the presentation of Dynamical Sys-
tems Automata (DSA) program that is developed
to reconstruct the stochastic finite automata from
the input binary time series [5]. The description of
the program will be given elsewhere.

2 Modeling of dynamical
systems

As we have announced in the introduction, the the-
ory of ε-machines builds scientific models by seek-
ing for structure within the data itself, and by try-
ing to "understand" the language of a system with



imposing as little presumptions as possible. Follow-
ing the idea of the principle of the computational
equivalence, we are estimating the system’s compu-
tational power and present the resulting model by
means of modified automata from the computation
theory.

2.1 Epistemological foundation

Before giving the specifics of our approach, let us
outline the general features that scientific modeling
must provide. These are:
Meaning and Knowledge. The extraction of
meaning and knowledge refers to our ability of
recognizing different structures and substructures
in the data received from a system, to which we
then appoint a certain "meaning". The meaning
emerges from the mutual relationships of the ex-
tracted structures. For example, if some substruc-
ture A leads to a substructure B with certainty, and
never leads to some third substructure C, this be-
havior establishes a certain meaning of A for us. It
can be described as: "A means that the following
state is B, and never C". If we succeed to systemat-
ically analyze the meanings found out from system
data, we are on a way to build knowledge about
the system.
Compression. The compression of data needed
to describe a system is essential for the abstraction
of the important notions in our modeling. Once
we can speak in the "language of the substruc-
tures", and not only in the "language of the data"
itself, we will be able to describe states and beha-
viors of the system in a shortened and abstracted
form. The compression enables saving of the (stor-
age) space and (processing) time complexity of the
calculations needed to reproduce the system gener-
ated data, and thus to reduce the model size. The
compression is not possible without introduction of
meaning and knowledge, and only all of these to-
gether make it possible to infer progressively better
and better models.
Prediction. The prediction of system behavior
gives us knowledge on the system future states,
based on some initial conditions or presumptions.
The ability to predict future states can be assumed
as a part of the knowledge about the system, but is
stressed separately because of its obvious import-
ance. The scientific prediction is accurate in the
sense that the error or tolerance margin must be
known, and that the model must reproduce the be-
havior of the real system within that margin.
The above points also reflect the key steps in

producing a scientific theory. For the sake of com-
pleteness, we shall ad a few remarks to the original
epistemological theory [6]. A totally ignorant ob-
server may end up in receiving erroneous or irrel-
evant data. The necessary epistemological found-

ation, which obviously cannot be avoided, can be
summarized in the three modeling prerequisites:
1. The Basic Knowledge. Some basic know-
ledge about the system under investigation and its
broader context must exist, in order to organize a
proper experimental setting and to choose a relev-
ant measuring instrument with suffi cient precision.
Also, the knowledge of broader context is necessary
to exclude the effects that may not be a subject
of our interest. On the modeling side, this basic
knowledge presents the modeler’s familiarity with
the procedures required for extracting information
out of the collected data and for building the model.
In short, we cannot conduct a successful modeling
from the condition of tabula rasa. We can change
the modeling tools from the mathematical to the
computational, but we still need to know how to
operate with whatever is used. In the same time
we try to make our models with as little theoret-
ical bias as possible. The measuring can be started
with some elementary experimental setup and the
modeling with the simplest computation entities,
so that in general we can still begin with rather
basic knowledge and simple data processing.
2. Reduction. The reduction is a common prin-
ciple in scientific modeling that is connected to the
Occam’s razor. When we decide what we shall in-
vestigate in our theory and pick an appropriate
measuring instrument to collect data, more often
than not we are forced to select what is and what is
not relevant for the system itself, or for the aspects
of the system we are interested in. This includes
the elimination of the side phenomena which com-
plicate our investigation or blur the true picture.
For a successful reduction, the basic knowledge of
the system and its broader context is needed.
3. Iterative Adjustment. Except providing the
initial experimental setting and the basic know-
ledge on the processing of the received data, we
must also provide an adequate feedback to enable
iterative adjustment of the measuring instrument
and improvement of the modeling scheme if needed.
We must track the information quantity of the re-
ceived data by measuring their entropy, and see if
the entropy can be enlarged by adjusting the instru-
ment. The process is not trivial, since we must try
to exclude the erroneous measurements and fight
the noise introduced into the communication chan-
nel, which can all enlarge the total received inform-
ation. In our case, the instrument adjustment has
to do with finding the right partition of the phase
space (confer 2.3). Also, if the obtained model di-
verges, the modeling scheme should be improved to
assure proper compression of the model.
It is interesting to note how close the theory

of ε-machines is to the fundamental questions of
philosophy of science. In its genuine attempt to
build the model from the collected data itself, it



constantly forces us to question the steps that we
make in the process. This is in contrast to the
measuring and modeling process used in the estab-
lished scientific areas, where one seeks the data of
predefined physical values within a given theoret-
ical framework. While this classical approach is,
by all means, successful when the basic knowledge
is relatively big, when the theoretical concepts are
clear and the equations mathematically solvable,
the proposed computation modeling can be of great
interest in the opposite situations – when the basic
knowledge is low, when the theoretical framework
is unknown and the equations avoid analytical solu-
tion, or in other words, when all we have are "raw
data" collected from a measuring instrument.

2.2 Dynamical systems

Dynamical systems and their evolution over time
are usually described by iterative processes [7]. We
start with a general deterministic iterative process
with Dim dimensions for which the value of a new
point x (t+ ∆t) in time ∆t after some moment t
is given in terms of the previous point x (t) as

x (t+ ∆t) = F (x (t)) , t , ∆t ∈ R . (1)

F is a vector function that presents the equa-
tions of motions of an iterative process on its phase
space, which is a set RDimx ⊆ RDim of all possible
points x (t) , x (t+ ∆t) . The above expression (1)
is known as a difference equation.
It is usual to introduce the discrete time and to

change the time variable with discrete nonnegative
indices, t → n, ∆t = 1 , n ∈ N+0 . Now the new
point xn+1 in the system trajectory is calculated
on the basis of the previous point xn as

xn+1 = F (xn) , n ∈ N+0 . (2)

This simplified form of the difference equation (1) is
also known as the recurrence relation. At the time
t0 = 0 the dynamical system is in its initial point
x0 called the iteration seed. By denoting the n-th
iteration of the system as Fn, we can calculate the
n-th trajectory point as

xn = Fn (x0) . (3)

The 0-th iteration F0 is an identity function
F0 (x) = x .
For 1-dimensional iterative processes we write

the scalar version of (2):

xn+1 = F (xn) . (4)

By knowing the function F (F ) , all the equations
can be simply implemented on the digital com-
puters. We can also note that the numerical solving
of the system’s differential (difference) equations is

equivalent to the formalism of the iterative pro-
cesses. As is well known, even the simplest nonlin-
ear differential equations, like the famous logistic
map

xn+1 = rxn(1− xn) , (5)

cannot be solved analytically [8]. On the other
hand, the observation of their iterations on com-
puters is straightforward, and thanks to that the
field of deterministic chaos flourished since the
1970s. Furthermore, according to the agenda of
the theory of ε-machines, we shall make another
step forward: the discrete computing and descrete-
state machines will be used not only to simulate the
evolution of dynamical systems through the above
recurrence relations, but also as the basic blocks of
their models.

2.3 The Measuring and Modeling
Channel

The whole our endeavor of setting an experiment,
adjusting the instrument and building a model as a
representation of a dynamical system, as described
in 2.1, can be viewed in the context of the Meas-
uring and Modeling Channel (Fig. 1). In order to
make the experimental and modeling process phys-
ically realistic, we must make a few generalizations
of the description of deterministic dynamical sys-
tems in 2.2. The system can generally be non-
stationary, and hence dependent on time t or iter-
ation index n . Furthermore, to more realistically
depict the real natural and technical systems, we
must account for the noise that can be of inherent
nature or added in the information channel, here
formally presented by ζt . Finally, since the goal of
our modeling is to find out the system states, in-
stead of points xt we shall define the system by
its states Xt . The change of states can then be
put in correspondence to the trajectory points in
the system’s phase space. The equation of a gen-
eral iterative process P that presents a dynamical
system in a multidimensional space governed by a
vector function F can now be written as:

Xt+4t = F (Xt , ζt , t) , t , ∆t ∈ R , (6a)
Xn+1 = F (Xn , ζn , n) , n ∈ Z . (6b)

In the second equation the time is made discrete in
the same way as in 2.2.
As is shown in Fig. 1, the process state Xt must

be found out by the measuring instrument I as
a projection S of the state Xt on the measur-
ing space RDim (e.g. Euclidean space). The di-
mension Dim is equal to the number of the experi-
mental probes of the instrument I , which is some
transducer. As was emphasized in the previous sub-
section, the instrument is expected to be adjustable
during the experiment.



Figure 1: The Measuring and Modeling Channel. The
modeling results should enable iterative adjustment of
the instrument through the provided feedback (the lines
going to the left). After [9].

Depending on the instrument resolution ε, we
have a division Πε(Dim) of the measuring space
on the set of cells (intervals, notches), or simply
measuring signals:

Πε(Dim) = {πi : πi ∈ RDim, i ∈ Nπ }, (7)

Dim ∈ N , Nπ ⊂ N
Nπ = {0, 1, . . . , nI − 1}, nI = p ε−Dim q .

For example if ε ≈ 10−3 and Dim = 2 , there will
be nI = 106 cells. Every cell πi is an equivalence
class of the set of states Xt projected on RDim
that are unresolvable for the given instrument. Nπ
presents the set of all possible indices i, as a set of
all possible effective measurement results.
The function of the instrument I is to find out

the measuring signal interval or notch πi to which
the projection S (Xt) corresponds. This can be
written as:

I : RDim → N , (8)

I (S (Xt)) = i , with S (Xt) ∈ πi ,
i = 1, 2, ..., nI .

2.4 Time series

The resulting output of the measuring channel is a
suitably encoded value of the index i of the inter-
val πi . The sequence of such encoded values forms
a string of symbols, or a time series. Thus, instead
of tracking the evolution of a dynamical system in
its phase space, we read discrete data from the in-
strument in a form that can be directly analyzed
by computation tools like the parse tree.
The set Nπ with nI elements can be interpreted

simply as a code alphabet A with a = card (A) =
nI symbols. Thus, the series of measurement val-
ues is formally translated into the series of symbols,

i.e. the time series s :

s = s0s1 . . . si . . . , si ∈ A . (9)

Within the time series s the substrings w can
be analyzed as words of some formal language, as
will be done in 4. The substrings are taken out
of the received strings according to some criteria,
and this will result in the investigation of the lan-
guage transmitted by the process. The alphabet
A can be arbitrary, but the most elementary and
the most computationally appealing choice is that
of binary alphabet. In order that our instrument
transmits directly in the binary form with the al-
phabet A = {0, 1}, the measuring partition of a
1-dim phase space should also be binary, with only
two measuring intervals πi , i = 0, 1 . For example,
a coarse, binary, partition of the unity interval is
{ [0, ε) , [ε, 1] } . If ε is set as the system critical
point xc defined by F ′ (xc) = 0 , usually the gen-
erating partition of the phase space is defined [5]
ch. 2, [8]. For the logistic map (5) it would be ε '
xc = 1/2 . Now the time series like (9) is equivalent
to the finite itinerary of a dynamical system.
From the course partition we get a coarse meas-

urement. However, if the instrument is well
tuned– that is, if ε is adjusted to reflect the gener-
ating partition– for large enough number of emit-
ted symbols we get arbitrary accurate trajectory
points. In this way the ε-machine theory is con-
nected to the symbolic dynamics [7].

2.5 Process as a source of
information

The measuring instrument is a source of inform-
ation which can be information-theoretically ana-
lyzed. In connection with the process P we intro-
duce the measure µ (X) on its configuration space,
and the entropy rate hµ (X) of the random variable
X as a measure of information quantity produced
by the process during time τ needed to accomplish
the state measurement. The usual choice is τ = 1.
The instrument I that measures the process P
represents the information channel through which
the information hµ (X) is transferred to the model
builder. The capacity of that channel presents the
maximal information IP of the process that can be
transmitted by the instrument:

IP = H (Pr(X)) . (10)

Here Pr(X) is the probability distribution:

Pr(X) = (p0, p 1, . . . , pa−1) , (11)

pi = µ (πi) , πi ∈ Πε (Dim) . (12)

pi is the probability that a single measurement
from the measuring space RDim results within the
interval πi . The measure µ must be normalized as



a probability distribution. H(Pr(X)) is the Shan-
non entropy:

H (Pr(X)) = −
a−1∑
i=0

pi log 2 pi . (13)

For the instrument to transfer all the information
about the process, the Shannon theorem for the
noiseless coding must be valid:

IP ≥ hµ (X) . (14)

If the above expression is not valid, the instrument
will cause the loss of information or equivocation
that is equal to: hµ (X) − IP > 0 . This will be
the lowest limit of the noise introduced in the re-
constructed model.
To get the information received from the pro-

cess we observe sequences xl = s0s1 . . . sl−1 with
l symbols, which are in the context of dynamical
systems also called l-cylinders [10]. The inform-
ation measure for such a source is defined as the
entropy of the strings xl per one symbol, or as the
entropy for the next symbol after the l − 1 previ-
ous symbols. The two quantities are the same for
the stationary ergodic processes as l →∞ , and are
known as the source entropy rate hµ [11]:

hµ = lim
l→∞

1

l
H
(
Pr
(
xl
))

, (15a)

hµ = lim
l→∞

∑
xl− 1

Pr (x
l−1

) H
(
Pr (sl |xl−1)

)
. (15b)

Pr
(
xl
)
denotes the probability distribution for the

strings of the length l , and Pr (sl |xl−1) denotes
the conditional distribution for the appearance of
the next symbol sl ∈ A , after the string xl−1 of l−
1 previous symbols. H is the Shannon entropy over
each distribution. The entropy rate is the "speed"
at which the system emits the information, i.e. the
average information per symbol.

3 Complexity measures

The metrics of computation capabilities is gener-
ally expressed through the concept of complexity.
The automaton with greater computation capabil-
ities has greater complexity. The source capable of
producing more elaborate and intricate time series
is considered to be more complex. If we observe
a general object x described with the vocabulary
of some formal language λ , then we talk about
the "presentation of x by λ”. This can be presen-
ted as a scalar product 〈x|λ〉 of the vectors 〈x|
and |λ〉 from the mutually dual vector spaces, i.e.
the spaces which depict a state of the object on
one hand, and the words of the chosen language on
the other. Our preposition is that the former (x)
can be expressed with the latter (λ). The first can

present the measurements of the system, and the
second our current choice of the modeling class.
Let Mmin 〈x|λ〉 denote the minimal presentation

with regard to the vocabulary λ . Then the com-
plexity C (x) is a certain measure of it:

C (x) = ||Mmin 〈x|λ〉 || . (16)

The complexity defined as above depends on the
choice of language λ , or, in other words, on the
choice of the automata class applied for the mod-
eling. Thus, for example, the presentation and
the corresponding complexity will generally be of
different size for a modeling based on the class
of stochastic finite automata, and for a modeling
based on the stack automata.

3.1 Deterministic complexity

To fix the notion of complexity, a standard rep-
resentation language or computation machine is
needed. The natural choice for the standard com-
puter is Universal Turing Machine (UTM). In
information theory the Kolmogorov-Chaitin (K-
C) complexity, also called algorithmic complexity,
K (x) is equal to the length of the shortest pro-
gram on the UTM that produces the observed x
(or some equivalent of it) as output, and stops the
machine. This is written as:

K (x) = min
prog : UTM(prog)=x

length (prog) . (17)

In our context the K-C complexity is named de-
terministic complexity, because the work of UTM is
fully determined, as is the outcome of all the pro-
grams run on it. Deterministic complexity has a
property that it is small for the time series which
are easy to describe algorithmically. On the other
hand, for randomly generated symbols, it diverges
with the length of the series. The K-C complexity
growth ratio converges to the entropy rate (15) for
long sequences:

1

l
×K (s0s1 . . . sl−1) −→

l→∞
hµ , (18)

so that the previous statement about the K-C com-
plexity divergence can be written as:

K (s0s1 . . . sl−1) −→
l→∞

l × hµ = H (x) . (19)

This is a consequence of the formal equivalence
of the K-C complexity theory and the informa-
tion theory based on the Shannon entropy [11].
The main conceptual novelty of the K-C complex-
ity comparing to the entropy is that its definition
is independent of the probability distribution and
the system stochasticity. It can be calculated also
for the deterministic systems, like computer pro-
grams, thus expanding the notion of the informa-
tion quantity. But, as shown above, for stochastic



systems with internal randomness that cannot be
unriddled by observer, the K-C complexity does not
bring quantitatively new measure of the system in-
formation comparing to the Shannon entropy. For
them the divergence of deterministic complexity in
(19) may happen despite of the system’s possible
structural (physical) simplicity. The K-C complex-
ity will, besides the true algorithmic complexity
of the object– which generally does not depend
crucially on the series length – measure also its
stochastic component which is linearly dependent
on the number of symbols. For big l the stochastic
component of the complexity prevails over the bits
contributed by the algorithmic complexity. Thus,
if a simple but fully stochastic system, like the coin
toss, is run for a long time, it will be immensely
complex in the terms of the K-C complexity.
The problem, of course, is in the underlying de-

terministic concept and the requirement to search
for the shortest program that will accurately re-
produce the series x . In the coin toss there are no
deterministic components and the pure randomness
prevail (see 3.2 and eq. 20). The end result is that
the shortest program needed to reproduce such a
series on the UTM will be the series itself, and it
diverges with the sequence length.

3.2 Statistical complexity

All dynamical systems that are of interest to us are
supposed to be intrinsically unknown. Their "com-
putation program" is yet to be discovered. With a
limited length time series we may never get the full
knowledge of their underlying mechanisms. A sys-
tem may be deterministic but very intricate, or can
have some inherent source of randomness. Upon
that the noise from information channel will be su-
perimposed, introducing more stochasticity in the
model. So we can ask the following question: Can
we find a measure of the system structure in which
the pure random processes will not be included?
To answer this, J. P. Crutchfield proposed statist-

ical complexity [9, 12]. Its main difference from the
deterministic complexity is that the amount of bits
used for the computation effort to simulate ran-
domly generated symbols in x are not accounted
for. We can say that we give up from the (futile)
effort of describing the random pattern in a pre-
cise, algorithmic, manner. But nevertheless, the
random patterns are statistically analyzed by ap-
propriately modified computer language tools, as
are binary parse trees (see 4.1), and are simulated
in the resulting model with the causal and statist-
ical accuracy (4.2, 4.3).
There are three intuitively clear postulates that

define the statistical complexity Cµ :

1. It vanishes for the trivial periodic systems, as
is for example xfix = 111 . . . 1 , Cµ(xfix) =

0 . Such objects are fully monotone and
hence structureless. Their statistical complex-
ity is in compliance with the K-C complexity
(K (xfix) = 0 ).

2. It also vanishes for completely stochastic sys-
tems xstoh:, so that Cµ (xstoh) = 0 . Such sys-
tems lack structure and are "simply" random
(like the motion of gaseous particles). This is
different from the K-C complexity, which di-
verges for such systems with the string length
(K (xstoh) ∼ l × hµ ).

3. For the systems different from the above two
boundary cases, the statistical complexity is
generally greater than 0 , Cµ (x) > 0 . It meas-
ures the system structure, and is, again, gen-
erally different from the K-C complexity. Fur-
thermore, since we require Cµ (x) to be a con-
tinuos and nontrivial function, it must reach
its maximum for certain system parameters in
between the two limit cases.

The essential relationship between the determ-
inistic and statistical complexity is given by the
following approximate expression [12]:

K (s0s1 . . . sl−1) ≈ Cµ (s0s1 . . . sl−1) + l × hµ .
(20)

As it was announced, to obtain the statistical com-
plexity the "stochastic bits" must be subtracted
from the K-C complexity, so that only the structur-
ally relevant bits remain. The relationship is shown
in Fig. 2 where K (x) and Cµ (x) are drawn as ar-
bitrary functions of the process stochasticity which
is expressed by the entropy rate hµ . K (x) rises
monotonously with hµ and does not present qual-
itatively new information. Contrary to that, Cµ (x)
has a maximum between the points of the zero
and maximum stochasticity of the process. For the
binary alphabet or a two-state process, as shown
on the figure, hµ ,max = 1 bit, which can be con-
sidered as ideal randomness, or random oracle.
The maximal complexities for the l-cylinders are
l × log2 a bit.
Another suggestive interpretation of the stat-

istical complexity is the following: the statistical
complexity is the minimal quantity of information
which is to be gathered in the system’s history that
is suffi cient for optimal prediction of the symbols
(bits) in object x with the uncertainty (and the
underlying probabilities of prediction error) that is
not bigger than the entropy rate hµ .
If the system entropy is hµ = 0 bit, it is fully

deterministic (case 1 above). No structure needs
to be found in the past since the behavior is fully
monotonous, so that we can predict without error
that the system will stay in the same state forever.
On the other hand, for a fully stochastic system
like the coin toss (case 2), the entropy rate is hµ =



Figure 2: (a) Deterministic (Kolmogorov-Chaitin)
complexity K(hµ) and (b) Statistical complexity
Cµ(hµ) as functions of the stochasticity of the process
measured in entropy rate hµ(X) [9, 12].

1 bit . The quantity of information that must be
gathered in the past to predict the future states
of the coin toss with the uncertainty of 1 bit is
again Cµ (x) = 0 , because the allowed uncertainty
is already the maximal possible for the two-state
system. In other words, we can give up searching
the structure in the past since there is none. The
system is fully random and the best we can do is
to guess its state with the prediction error of 1

2 .
The true, structural, complexity lies in between

these two extremes (case 3). If, for example,
hµ = 0.25 bit, we must browse through the sys-
tem’s past symbols to find out its statistical com-
plexity. The past should provide us the know-
ledge to guess the future state with uncertainty of
at most hµ = 0.25 bit . This entropy corresponds
to the two-state probability distribution Pr (x) =
p (x) = (0.0417, 0.9583) , or the inverse one. Our
prediction accuracy must be bigger than 0.9583 or,
equivalently, the prediction error must be less than
0.0417.
The statistical complexity can be formally con-

nected to the computation theory in the same man-
ner as the K-C complexity. In order to effectively
simulate the system randomness, the Turing ma-
chine is upgraded by a "guessing unit" for the gen-
eration of random symbols. The new machine is
called Bernoulli-Turing Machine (BTM) and is
shown in Fig. 3. It has a "particle-velocity probe"
emerged in a heat bath as a genuine source of ran-
dom numbers. Now we can define the statistical
complexity Cµ (x) of a time series x as

Cµ (x) = min
prog : BTM(prog)=x

length (prog) . (21)

It is equal to the length of the shortest program
on the BTM which will produce the output equi-
valent to x . By introducing the vocabulary vec-
tors |UTM〉 and |BTM〉 for the Universal and
the Bernoulli-Turing Machine, we can summarize
the expressions for deterministic and statistic com-
plexity:

K (x) = ||Mmin 〈x|UTM〉 || , (22)

Figure 3: The Bernoulli-Turing Machine is made by
adding a source of randomness to the Universal Turing
Machine (UTM).

Cµ (x) = ||Mmin 〈x|BTM〉 || . (23)

The above definitions are not immediately use-
ful in practice except in the simple boundary cases
discussed above. Only then it was easy to distin-
guish between the stochastic and algorithmic sys-
tem components. The operational expressions for
statistical complexity will emanate from the con-
crete reconstruction model and the corresponding
stochastic matrices (sec. 4.4).
We can conclude that the statistical complex-

ity is complementary to the K-C complexity and
the Shannon entropy. It brings qualitatively and
quantitatively new measure of complexity for dy-
namical systems, connecting them explicitly to the
computationally-based models.

4 Modeling by ε-machines

ε-machines are hierarchically structured compu-
tation models that resemble the original system
within an accuracy parameter ε. In the modern
science influenced by quantum physics, the experi-
mental error is not just a defect of our measuring
devices or a failure of the observing procedure that
could and should be mended somehow. It is a fun-
damental parameter of every epistemological pro-
cess. Furthermore, the computation science explic-
ates that every computing effort has its unavoidable
error, since it is bounded within the finite space-
time frame.
To apply the theory of formal languages and

automata theory to the modeling of the real world
systems, the following three new features must be
added [12, 13]:

i. Stochasticity —to account for the system ran-
domness;

ii. Inductive inferring — to include the invention
step during modeling;



iii. Multidimensionality —to enable description of
the spatial phenomena, if needed.

The requirement (i) is already met on the ax-
iomatic level by introduction of the BTM, and on
the concrete level by the means of Stochastic Finite
Automata (SFA) [9, 14], with its formal explica-
tion in [5]. In short, the SFA are obtained from
the standard Finite Automata (FA) by adding the
probability for each possible transition. The re-
quirement (iii) is not needed for the modeling from
the time series, but in the modeling of the spa-
tial problems. These are generally solved by the
concept of connected cells [15], and particularly by
the cellular automata [3].
To provide the inductive inferring (ii), the recon-

struction of ε-machines is hierarchically organized
in the following two steps.
I. Finding of the SFA as the basic modeling
blocks, with the following levels:

0. Data string. This is 0-th model level on
which received data represent themselves. In
practice, we shall always have to limit the
number of the received symbols to some ns ∈
N . The model size is also ns (symbols, bits),
the same as the length of the time series. There
are in total ans different sequences.

1. The parse tree. The tree of the depth
(height) D ≤ ns is built by extracting all the
possible words wD with D symbols out of the
received sequence, and by feeding them into
the tree. With the usual restriction to the bin-
ary symbol alphabet, the parse tree becomes a
special kind of binary tree (see 4.1).

2. Stochastic Finite Automata. The SFA are
deduced from the trees, by recognizing mor-
phologically and stochastically similar sub-
trees, calledmorphs, within the parse tree from
the level 1. The subtrees are of height L with
the usual choice L ≈ D/2 . The size of the
model is here denoted as a measure obtained
from the tensor T, in which the information on
all the system states and their corresponding
transitions is contained (see 4.4).

II. Innovative step. If the step I results in a di-
vergent model– despite the use of bigger and big-
ger computation resources and enlargement of the
model (e.g. by increasing the tree depth D )– then
it is necessary to make an innovation step and use
a higher computation model with infinite memory
capacity. However, in accordance to the principle
of computational equivalence (sec. 1) and as shown
by the modeling of chaotic systems [2], it need not
be the UTM. It can be:

3. String Production Machine (PM), or a
type of Stack Automaton (1NnSA, one-way

nondeterministic nested stack automaton).
These should be deduced from the SFA when
the number of the finite memory automata di-
verges. The size of the model is proportional
to the number of the string production rules
[12, 13].

4.1 The parse tree

The parse tree is a first computation step in our
modeling scheme. It is a tool for recognizing all
the different words and for providing the statistics
necessary for the next step of finding the SFA.
The binary tree of the fixed depth D is fed by

the words of length D or D-cylinders

wD = s0s1s2 . . . sD−1 , (24)

extracted from the string of ns symbols, following
the ideas already exposed in 2.4 and 2.5 [9]. Fig. 4
in sec. 5 can serve as an illustration. The modeler
tries to make the model minimal by choosing D �
ns . On the other hand, D must be big enough to
capture all the structure, that is, longer than the
longest correlations in the time series. There are in
total nw = ns − D + 1 words of length D , each
starting with the next symbol in the time series.
Together with the empty string e and the word

wD itself, every word defines D + 1 prefixes. Each
prefix defines exactly one tree node. The prefix
e defines the root node at the zero depth, the pre-
fix s0 defines the left (right) node if the symbol is
0 (1) , on the tree depth 1 . The prefix s0s1 defines
one of the four nodes on the tree depth 2 , etc..., up
to the word wD which defines the node on the
depth D . All the nodes presented by the prefixes
of the word wD define the feed path Θ(wD). Since
our parse tree is always fed with the words of the
same length, all the leaves are on the same depth
D . There are 2D possible different words, and the
corresponding paths and leaves. Every leaf in the
tree can either exist or not exist, so that there are
22

D−1 morphologically different trees of depth D .
During the tree feeding process, if some node on

the path Θ(wD) does not exist, it is created and
its counter is initialized to 1 . If the node already
exists, then the counter is incremented. Thus, be-
sides the possible correlations which are recognized
as different paths to the leaves and recorded in the
morphology of the tree, we also capture a precise
statistics of the symbol appearance.

4.2 Causal states

Before moving on to the definition of ε-machines,
the notion of the system and conditional states
must be explicated. The encoded measurements
received from an instrument in the form of a time



series s = s0s1 . . . si . . . , provide the data from
which the model states ξi :

ξi ∈ Ξ = {ξ1, ξ1, . . . , ξv} , (25)

are to be inferred. Ξ is the set of all found states,
with v = card (Ξ) . This is our model representa-
tion of the system deterministic and noise compon-
ents Xn , ζn from 2.3. In our modeling up to the
level of SFA, the states ξi will correspond to some
subtrees of the given depth, found within the main
parse tree.
The goal of the modeler is to find out:

i. The unknown system states from the series of
measurements s = s0s1s2 . . . , by assigning the
corresponding automaton states to them;

ii. The possible transitions between the system
states by establishing the equivalent trans-
itions between the automaton states;

iii. The probabilities for the state transitions.

The faithful model will be the one in which the
assigned automaton states, the transitions between
them, and the probabilities for the transitions, cor-
respond well to the real states, or at least simulate
them in a way good enough to produce the same or
similar (analogous) output strings. Of course, the
real states for closed systems may never be truly
discovered, but, by comparison of the predictions
given by the model to the behavior of the real sys-
tem we can get the ε-estimate of the model quality.
This provides a foundation for the necessary rigor
in the modeling process.
What follows next is a short review of the cru-

cial definitions of the theory of ε-machines: causal
states, equivalent states, morphs, and morpholo-
gical equivalence of states. The original elaboration
of the topic can be found in [9, 10, 12, 14]. Another
formal approach to this is given in [5] ch. 4.
Causal states. For each discrete moment
in time t in the observed time series s =
. . . st−2 st−1 st st+1 st+2 . . . , we define the forward
string of symbols s→t = st+1 st+2 st+3 . . . , present-
ing the future of the process, and the backward
string s←t = . . . st−2 st−1 st , presenting its past.
For the backward string s←t , we say that it is a
causal state for the forward string s→t .
δ−equivalence of states. Two causal states s =
s←t and s′ = s←t′ defined by the times t, t

′ ∈ Z , are
δ-equivalent for some δ ∈ R , δ > 0 , if their con-
ditional probability distributions are equal within
the chosen δ parameter:

s ∼
δ
s′ ⇐⇒ |Pr(s→t | s) − Pr(s→t | s′)| ≤ δ ,

∀ s→t ∈ A∗. (26)

Morphs. The set M→ξi of all forward strings s→i
which are possible from the state ξi ∈ Ξ ,

M→ξi = { s→i+1 : Pr(s→i+1| s←i ) > 0 } ,

is called future morph, or simply morph and is de-
noted as Mξi . The set of all backward sequences
s←i which led to the state ξi ∈ Ξ :

M←ξi = {s←i : Pr(s→i+1 | s←i ) > 0 } .

is called the past morph.
Morphologically equivalent states. The states
which in general need not to be δ-equal according
to (26), but have the equal structure of nodes, or
simply, equal morphs, are morphologically equival-
ent :

ξi ∼
L
ξj . (27)

L is the characteristic length parameter of the
morph presentation and its approximation level.
It presents the depth of a corresponding subtree
within the main parse tree (see 5).

4.3 Formal definition of ε-machines

Once we have established all the different causal
states– by checking the equivalence relation
between them– the temporary evolution of the
process is defined by transitions from one state to
another. This is described by operator T :

T : Ξ −→
s→i

Ξ , ξt+1 = T (ξt , s
→
i ) . (28)

T is found out by the morph analysis. By read-
ing the conditional probabilities Pr(s→t | s←t ) , the
full insight into the possible transitions and their
probabilities can be obtained. The operator can
be connected to the transition tensor T , which is
defined by the probabilities for the possible trans-
itions described for the SFA class (see e.g. [9], [5]
ch. 3).
The formal definition is now simple: ε-machine

is an ordered pair (Ξ , T )ε , with parameter ε re-
minding us that it is:

i. A construction dependent on the measuring in-
struments and its resolution or accuracy (ε) ,
and the number of experimental probes Dim ;

ii. An approximation of the computing structure of
the process by means of a certain computation
automaton.

4.4 Complexity measures from the
modeling results

Here we shall briefly sketch how to find out the
complexity measures from the parameters of the re-
constructed ε-machines. The state topological com-
plexity or simply topological complexity C0 of the



process can be taken as a first approximation. It is
derived simply from the size of the state set [9, 14]:

C0 = log2 ‖Ξ‖ = log2 v , (29)

where ‖Ξ‖ = card (Ξ) . The topological complexity
has the meaning of the average information needed
to establish the process state if the states’ prob-
ability distribution is uniform. According to the
theorem of maximal entropy, this is also the max-
imal information for the set with v members.
The ε-machine reconstruction gives us the oper-

ator T and the corresponding transition tensor T
with elements T s

qq′ . The elements denote a probab-
ility for transition from the SFA state with index
q to the state with index q′, q, q′ = 1, 2, . . . , v ,
upon reception (emission) of the symbol s ∈ A ,
and satisfy the standard normalizing property:

T s
qq′ = pq→

s
q′ ,

∑
q′

∑
s∈A

pq→
s
q′ = 1 . (30)

Fig. 6 and 7 in sec. 5 illustrate such SFAs with
transitions marked as directed labeled edges from
one state to another, together with the trigger-
ing symbols and transition probabilities. With the
usual choice of the binary alphabet the tensor T
is simply two matrices: T s=0 and T s=1 .
The nonzero elements from T form the set E of

the SFA graph edges,

E=
{
e : e ∼ pq→

s
q′ > 0

}
. (31)

From the number of edges we can derive the trans-
ition topological complexity Ce :

Ce = log2 ‖E‖ . (32)

By summing the tensor elements T s
qq′ over all

symbols of the alphabet A , we get the elements
Tqq′ of the transition matrix T . The elements are
the total probabilities Tq q′ = pq→q′ for a transition
q → q′ regardless of the initiating symbol. The
analogous matrix operation is summing of the T s

matrices. This can be summarized as follows:

T = [Tqq′] , Tqq′ =
∑
s∈A

T s
qq′ , T =

∑
s∈A

T s . (33)

Obviously, the matrix T presents a Markov process
transition matrix of dimension v × v , with the row
normalization

∑
q′ Tqq′ =

∑
q′ pq→q′ = 1 .

Another "rough" complexity measure can be
defined from the structure of the machine by disreg-
arding its probability details. In tensor T we ex-
change the nonzero elements corresponding to the
graph edges with unities, and get the connection
tensor T0 with elements:

(T0)
s
qq′ =

{
1, pq→

s
q′ > 0

0 , T s
qq′ = 0 .

, s ∈ A . (34)

From T0 we can get the connection matrix

T0 =
∑
s∈A

(T0)
s
qq′ . (35)

Now the connection topological entropy hT0 is cal-
culated from the principal eigenvalue λmax of T0 as

hT0 = log2 λmax (T0) . (36)

hT0 shows the grow rate of the number of sequences
produced (accepted) by our ε-machine [9, 14].
The full information-theoretic analysis of our

model starts by finding out the full entropy of the
reconstructed SFA. This is the transition or edge
entropy H (Pre) of the edge probability distribu-
tion Pre =

(
p1p1−→s 1, . . . , pv pv−→s v′

)
for every ex-

isting edge, where pq, q = 1, . . . , v , are the state
probabilities (to be determined below). Now the
edge entropy is [9, 10]:

H (Pre) = −
∑
q

∑
q′

∑
s∈A

pqpq→
s
q′ log2 pq pq→

s
q′ .

(37)
This can be expanded to an information-
conservation expression:

H (Pre) = H (Prq) + hµ , (38)

where H (Prq) is the entropy of the distribution of
the SFA states, and hµ is the source entropy rate
(15b). In the terms of our reconstructed machine
hµ is a conditional entropy for the next state q′

and the accepted (emitted) symbol s , given the
previous state q :

hµ = −
∑
q

pq
∑
q′

∑
s∈A

pq→
s
q′ log2 pq→

s
q′ . (39)

The probability distribution Prq that gives the
probabilities pq for the SFA states is most nat-
urally recognized as the stationary (asymptotic)
probability distribution pstat for the time invari-
ant Markov processes. It is the crucial statistical
parameter defined by the condition of stationarity:

pstat T = pstat . (40)

Here pstat = (p1, p2, . . . , pv) is a left eigenvector
of T with eigenvalue 1 , with its components being
normalized to 1:

∑v
i=1 pi = 1 .

The entropy H (pstat) of this distribution was
shown to represent the structural complexity of the
reconstructed ε-machine [2, 10], i.e. the statistical
complexity Cµ , as it was introduced in 3.2:

Cµ = H (pstat) . (41)

Cµ quantifies the information stored in the model’s
states, or in other words, it gives the amount of the
model’s memory.



In analogy to the statistical complexity, the full
entropy H (Pre) of the model can be named edge
complexity Ceµ . Now from eq. (38) we have:

Ceµ = Cµ + hµ . (42)

For the Markov chain of states presented by the
transition matrix (33), the entropy (rate) hµ(T ) is

hµ (T ) = −
∑
q

pq
∑
q′

pq→q′ log2 pq→q′ . (43)

It can be shown that the total entropy rate hµ from
(39) can be expressed via hµ(T ) as

hµ = hµ (T ) + hµ (αs) . (44)

The last term presents the remaining uncertainty
from the tensor T , that is, the uncertainty for the
same transition q → q′ to be triggered by more
than one symbol s ∈ A , with the averaging being
done over all possible state pairs:

hµ (αs) =

= −
∑
q

pq
∑
q′

pq→q′
∑
s∈A

aq→
s
q′ log2 aq→

s
q′ . (45)

In (45) αq−→s q′ is the weight factor that connects the
probabilities from the tensor T and matrix T :

pq→
s
q′ = αq→

s
q′ pq→q′ ,

∑
s∈A

αq→
s
q′ = 1 . (46)

hµ (αs) may by interpreted as the "symbol-per-
transition" entropy, with the upper boundary of
log2 abit. This entropy vanishes if every transition
q → q′ , q, q′ = 1, 2, . . . , v , is triggered by only one
symbol, as is often the case (see sec. 5). A careful
reader will note that then the connection matrix
T0 in (35) will have elements not larger than 1.
After eq. 44 the edge complexity (42) can be re-

written as

Ceµ = Cµ + hµ (T ) + hµ (αs) . (47)

This equation generally expresses the conservation
of information quantities, and in our case, it is the
conservation of complexity measures and entropy
rates.
The modeling by ε-machines insists on the min-

imality of the model. If the reconstruction is suc-
cessful regarding this criterion, and if the model
size ||Ξ || does not diverge with the enlargement
of the cylinder length l , then Cµ presents the
memory needed for the modeler to predict the pro-
cess state with the given ε-accuracy.

5 A few simple examples

To illustrate the above theoretical concepts and the
building of an ε-machine up to the SFA level, we

Figure 4: Feeding of the binary tree. The state of
the (ε) tree of depth D = 5, after it was fed by the
time series s = 01101011011110110101..., generated
by the rule "no consecutive zeros". The paths that are
allowed by the rule, but are not traversed by the words
from the string s, are denoted by dotted lines.

start with a simple but quite general process that
includes both, a structure with nonzero complexity,
and a source of randomness. It will then be contras-
ted with a few elementary processes which generate
the periodic sequences, and the purely random time
series.

5.1 Structure within randomness

Let us consider the time series s emitted by a pro-
cess "generate 1 if 0 preceded, otherwise randomly
generate 0 or 1", or shortly "no consecutive 0s",

s = 01101011011110110101 ... . (48)

Its regular expression is

(0 + e)(1 + 10)∗ , (49)

where + denotes the choice of equal probability,
and asterisk is the Kleene closure.2 This and sim-
ilar time series can be generated by the DSA pro-
gram introduced in section 1.
Here we shall take the tree depth D = 5. From

the 20 symbols in s we can extract in total 16
words of length 5 and parse them through the bin-
ary tree of Fig. 4. The first word defines the path
Θ(01101) which is marked with the bold line. The
second word 11010 defines the 5-th leaf from the
right. The last 5-letter word is 10101 . In the true
modeling process, much longer symbol sequences
would be required in order to obtain suffi cient stat-
istical relevance.
The subtrees of depth L = 2 will enable tracking

of only short correlations, but long enough for the
simple rule of our system (Fig. 5). The first subtree
or morph growing from the root of the main tree

2For some word w consisting of the symbols s from the
alphabet A, the Kleene closure is defined as w∗ =

∑∞
i=0 w

i .
w0 = e is the empty string (word), with no symbols. A∗ is
the set of all possible words of the alphabet A .



Figure 5: Subtrees of depth L = 2 found as unique
morphs (states) in the parse tree in Fig. 4. A and
C are morphologically equivalent, but with different
transition probabilities upon generation of 0 and 1.

is A. As a first morph, it is always unique and it
defines a new equivalence class. After emitting 0
with probability 1/3 the system goes from A to B.
B has a form different from A, and it also defines a
new equivalence class. After emitting 1 with prob-
ability 2/3 the process goes from A to a morpho-
logically equal state because the two subtrees of
depth 2 are equal in their structure. However, the
two morphs have different transition probabilities,
as can be proved by a simple argumentation (see
e.g. [5] ch. 4). Hence, that is a new state C .
To connect this with the theory from 4.2, let

us repeat that each morph defines a class of equi-
valence for the past-independent causal state from
which it emanates, by having determined transition
possibilities (the morph shape) and their probabil-
ities. By proclaiming the found morphs (subtrees)
to be the system states, the system model in the
form of a SFA can be deducted (Fig. 6).
The above model can also be automatically re-

constructed by the DSA program. Besides showing
the engaged nodes and paths, it provides the full
statistics of every node of its parse tree. Also, it en-
ables showing of the found subtrees. If long enough
time series are read, the δ parameter from 4.2 can
go very small while still exactly reproducing the
process (e.g. δ < 10−4, [5] ch. 6).
Formally, we can say that the process "no consec-

utive zeros" is presented by an ε-machine (Ξ , T )ε ,
with the set of states Ξ = {A,B,C}, and the oper-
ator T , which is fully defined by the corresponding
SFA graph in Fig. 6. The system starts in the ini-
tial state A corresponding to the subtree A. After
0 is emitted the system goes to the state B, from
where only the deterministic transition to C is al-
lowed upon emission of 1. From C the system can
emit both symbols with equal probabilities, going
either to B after emitting 0, or back to C after
emitting 1.
The tensor T is presented by the two matrices:

T s=0 =

 0 1
3 0

0 0 0
0 1

2 0

 , T s=1 =

 0 0 2
3

0 0 1
0 0 1

2

 .

E.g. the probability for the transition triggered by

Figure 6: Stochastic Finite Automata for the process
"no consecutive zeros". The states are circles, the ini-
tial state has an additional inner circle. A transition
between states is labeled with the symbol that initiates
it, and with the transition probability.

0 from A to B is T s=0
12 = 1

3 , for the transition
triggered by 1 from B to C is T s=1

23 = 1, etc.
From the number of states and the number of the

SFA edges (the nonzero elements in tensor T), we
get the topological complexity C0 and the trans-
ition topological complexity Ce:

C0 = log2 ||Ξ || = log2 3 = 1.5850 bit ,

Ce = log2 5 = 2.3219 bit .

The topological matrix

T0=

 0 1 1
0 0 1
0 1 1


gives the connection topological entropy hT0 from
its maximal eigenvalue of λmax = 1

2

√
5 + 1

2 :

hT0 = log2 1.6180 = 0.6942 bit .

It is easy to note that A is a transient state,
since there is no transition and no "connection"
to its 1st column in T and T0 above. The sys-
tem leaves the state after emitting the first symbol
and never returns back to it. Generally, a system
leaves the transient states as soon as it "catches the
phase". Then it turns into the recurrent states that
describe its stationary behavior. In our case the re-
current states B and C form the set Ξr = {B,C}.
The corresponding recurrent topological complexity
is C0,r = log2 2 = 1 bit .
The statistical properties are summarized in the

transition matrix T obtained from eq. (33):

T =

 0 1
3

2
3

0 0 1
0 1

2
1
2

 . (50)

Here the information about the triggering sym-
bols is lost, and we track just the state transitions.
A straightforward calculation gives the stationary
probability distribution (the left eigenvector):

pstat =

(
0,

1

3
,

2

3

)
. (51)



Again, as a consequence of A being a transient
state, its probability in the stationary probability
distribution pstat is zero: p1 = Pr (A) = 0 . So,
we can exclude the state A from the matrix T and
present the system with the recurrent state trans-
ition matrix:

Tr =

(
0 1
1
2

1
2

)
. (52)

Tr has effectively the same eigenvector: pstat, r =(
1
3 ,

2
3

)
, because the transient states do not contrib-

ute to the statistical complexity of the system.
The statistical complexity is now:

Cµ (Ξ, T ) = H (pstat) = H (pstat, r)

≈ 0.91830 bit . (53)

After having found the state probabilities, the
edge probability distribution follows:

Pre =
(
pA pA−→

0
A, . . . , pC pC−→

1
C

)
=

(
0× 2

3 , 0× 1
3 ,

1
3 × 1, 23 ×

1
2 ,

2
3 ×

1
2

)
=

(
0, 0, 13 ,

1
3 ,

1
3

)
. (54)

The corresponding entropy (edge complexity) is:

Ceµ = H (Pre) = log2 3 = 1.5850 bit . (55)

The transitions emanating from the transient states
with zero-probability– in our case the two trans-
itions from the state A– do not contribute to the
entropy. The joint state-transition probabilities for
the rest 3 transitions from the two recurrent states
give a uniform distribution and the complexity Ceµ
that is the same as the topological complexity C0 .
The entropy rate hµ (T ) follows directly from

the transition matrix T (or Tr ) according to (43):

hµ (T ) = 1
3 ×H (0, 1)+ 2

3 ×H
(
1
2 ,

1
2

)
= 2

3 bit . (56)

The symbol-per-transition entropy hµ (αs) from
(45) is zero, so that, according to (44) we have:

hµ = hµ (T ) ≈ 0.6667 bit (57)

The same result could be obtained from the limes
hµ = lim

l→∞
H
(
Pr
(
xl
))
/ l (15a). The probabil-

ity distributions Pr
(
xl
)
on the tree depth l fol-

low from the probabilities of the nodes in the parse
tree according to the system rules (or by inspecting
them in the the parse tree of the DSA program).
From there one calculates the entropies for the l-
cylinders. With l = 1, 2, 3, 4, 5, 6 , the values are
(.9183, .7925, .7505, .7296, .7170, .7086) bit, show-
ing the convergence to the value in (56). Similarly,
by applying (15b) and by calculating the condi-
tional entropies for the next symbol after the (l − 1)
previous ones in the same way– that is, directly
from the parse tree– the result hµ = 2/3 bit is

Figure 7: Stochastic Finite Automata for: (a) Period 1
process, (b) Period 2 process, (c) Bernoulli time series.

obtained immediately for l ≥ 2, showing that the
system has the first order memory. These results
are easily verifiable directly from the system rule,
showing the consistency of the reconstructed ma-
chine.
Now we can confirm the complexity-entropy rate

conservation law (42, 47):

Ceµ = Cµ + hµ = 1.5850 bit . (58)

In this system the statistical complexity prevails
over the entropy rate: Cµ > hµ. Namely, the
former is close to 1 bit which is the maximal value
for the two states. And the latter is diminished
by the fact that the second row in T (the first in
Tr ) is a degenerate distribution with zero entropy
because of the certainty in the B → C transition.
Thus the average in (56) is lowered.
By recognizing the deterministic transition, our

model correctly distinguished the system’s inner
rule (organization) from the inherent random pro-
cesses. It also gave us the statistical complexity
Cµ ≈ 0.92 bit as a measure of the system’s memory.
Computationally, we need 1 bit of memory to re-
cord the present recurrent state, and statistically,
a bit less because of the prevalence of the state C.

5.2 Structure from periodicity

Period 1 process is the simplest periodic process,
as was already mentioned in 3.2. It can be de-
scribed as 0∗ (or 1∗), and it generates a fully mono-
tonous sequence 0000 . . . (or 1111 . . . ). Such a
string defines only one path in the parse tree, filling
only the left most (right most) leaf. All the subtrees
that originate from the lower nodes are identical
to the whole, degenerate, tree. The system has
just one morph and the corresponding single state.
Also, it is fully deterministic. The SFA of the sys-
tem is shown in Fig. 7a. The trivial transition
tensor and matrix T = (1) lead to zero topological,
statistical, and all other complexities and entropies
that are listed in Table 1.
Period 2 process is described by the regular ex-

pression (01)
∗ or (10)

∗ and generates the time series
0101 . . . or 1010 . . .. The subsequences from either



Table 1: The SFA statistics for: (i) periodical dynamical systems with period n, (ii) for the systems with a source
of randomness, "no consecutive 0s" [ (0+e)(1+10)* ], and for the Bernoulli series of random 0s and 1s [ (0+1)* ].
The complexities and entropies are in bits. "Logaritmus dualis" is abbreviated as log2 = ld .

D y n a m i c a l S y s t e m : Period n Regular Expression
Stochastic Finite Automaton Statistics 1 2 3 n x(1 + 10)

∗
(0 + 1)

∗

Number of states v = ||Ξ || 1 3 5 2n− 1 3 1
Number of transient states v − ||Ξr|| 0 1 2 n− 1 1 0
Number of recurrent states ||Ξr|| 1 2 3 n 2 1
Topological complexity C0 / bit 0 1.585 2.322 ld v 1.585 0
Topolog. complex. of recurr. states C0, r / bit 0 1.000 1.585 ldn 1.000 —
Number of SFA edges ne = ||E || 1 4 7 3n− 2 5 2
Transition topological complexity Ce/ bit 0 2.000 2.807 ldne 2.322 1
Topological entropy hT0 / bit 0 0 0 0 0.694 1
Statistical complexity Cµ / bit 0 1.000 1.585 ldn 0.918 0
Markov chain entropy rate hµ (T ) / bit 0 0 0 0 0.667 0
Symbol-per-transition entr. rate hµ (αs) / bit 0 0 0 0 0 1
Total entropy rate [hµ = hµ (T ) +hµ (αs)] / bit 0 0 0 0 0.667 1
SFA full edge complexity

[
Ceµ = Cµ+hµ

]
/ bit 0 1.000 1.585 ldn 1.585 1

of these fill two paths in the parse tree. There are in
total three states corresponding to three morpholo-
gically different morphs (subtrees): the first grow-
ing from the root node, and the other two growing
from the left and the right node (Fig. 7b). After
the model catches the phase (decides which of the
two series it receives), it leaves the transient state A
and oscillates deterministically between the two re-
current states B and C . Its topological state and
edge complexities are C0 = log2 3 = 1.5850 bit ,
Ce = log2 4 = 2 bit . The transition matrix

T =

 0 1
2

1
2

0 0 1
0 1 0

 (59)

leads to the left eigenvalue pstat =
(
0, 12 ,

1
2

)
and

the statistical complexity Cµ = 1 bit. The reduced
topological complexity for the recurrent states is
the same, C0,r = 1 bit. The full edge complexity
is also Ceµ = Cµ = 1 bit, since the entropy rate
hµ = 0 . The topological entropy is hT0 = 0 bit
because the topological matrix T0 has the principal
eigenvalue 1. The vanishing hT0 entropy tells us
that the growth rate of the number of sequences
emitted from the system is zero, since there are
just two different "starting-phase versions" of one
and the same periodic sequence. All these results
can be easily verified by following the procedure
given for the first example.
The analogous conclusions are valid for the gen-

eral period n processes. From them we observe the
repeating blocks of n symbols wn = (0)k (1)m ,
with k 0s and m 1s , 1 ≤ k, m < n , k + m = n ,
in which the symbols can be permuted in such a
way that the period is not reduced. The SFA stat-
istics and complexities for this generalized case are
presented in the fourth column of the Table 1, after

our two simple examples and the period-3 system.
The proof of the results and further consideration
of the periodic systems will be omitted from here.

5.3 Pure randomness

Our last elementary example is the Bernoulli
series– the randomly generated 0s and 1s with
equal probability, described as (0 + 1)

∗ (confer also
3.2). By feeding the words of length D from such a
series into the parse tree, all the tree nodes on the
same level will have equal probability, and from
every node the probability that the next symbol is
either 0 or 1 is 1/2. This means that the resulting
SFA has just one state as is shown in Fig. 7c. The
system topological complexity C0 = 0 bit.
The transition tensor can be described with its

two matrices T =
(
T 011 =

(
1
2

)
, T 111 =

(
1
2

))
, which

give the topological matrix T0 = (2) and the to-
pological entropy hT0 = 1 bit. So, although there
is just one state, the system’s growth rate of the
number of sequences it can produce is maximal for
the binary alphabet.
The transition matrix T = (1) yields the eigen-

vector pstat = (1) and the statistical complexity
Cµ = 0 bit .We see no structure in this system, just
the randomness. It is the symbol-per-transition en-
tropy hµ (αs) = 1 bit that solely contributes to the
entropy rate hµ and to the full edge entropy Ceµ of
the model because there is just one state, and the
Markov chain entropy hµ (T ) = 0 . The SFA stat-
istics of this "random oracle" can be compared to
the statistics of the "no consecutive zeros" model
in the last two columns of the Table 1.
The advanced information-theoretic elaboration

of similar and several other examples can be found
in the references in [1].



6 Conclusion

Building of a dynamical system model from a time
series by means of computation theory machines is
an iterative and inductive process. It requires an
appropriate measuring instrument which is adjus-
ted in a way to provide the transmission of relevant
and suffi cient data, coded in a suitable way. Al-
though the basic idea is to build the model from
scratch, without many theoretical presumptions, it
is obvious that the basic knowledge is needed for
both, the instrument setup and adjustment, and for
the computation of the model parameters. From
the (partial) modeling results the entropy of the
received data should be checked. If needed, the
measuring instrument should be readjusted to ob-
tain the maximal quantity of information from the
system.
The information received in the form of a time

series is then used to build the hierarchical ε-
machine model. The build starts with parsing
of the symbol strings through the binary tree of
the fixed depth (modeling level 1). From there
the stochastic finite automaton follows (model-
ing level 2) for all the systems with finite in-
ternal memory. To enable a proper minimiza-
tion of the model through finding of the equival-
ent states that are probabilistically equal within
some δ parameter, the modeler must provide suffi -
cient computing resources. Within the framework
of ε-machines a new complexity measure is intro-
duced– the statistical complexity. Besides that,
several other information-theoretic quantities fol-
low from the SFA model.
The theoretical foundations of the ε-machines

modeling that are laid down in this paper should
also serve to the future exposition of the DSA pro-
gram capabilities and computational aspects.
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