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Abstract. We present a framework for causal model-

ing. Main objective is to define models augmented with

graphs and present relevant results and important con-

cepts in the theory of structural causal models. Causal

models assume autonomy of mechanisms involved.

This feature allows us to predict their behaviour even

when some of these mechanisms break or change. We

focus our attention on Markovian and semi-Markovian

models. Causal effect is defined. We show how and

when it can be calculated.
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1 Introduction

Are random variables functionally (causally) related,

dependent? Can we learn more about relations in the

system? Can we make predictions about the system

even when it malfunctions? Can we infer what would be

systems new probability distribution after such change?

These are high-level questions that transcend ordi-

nary probabilistic modeling. Answers require deep

knowledge and understanding of the system. Such

knowledge can not be acquired by observation alone.

Here, we would like to probabilistically1 model a

system with a finite set V of relevant random variables

X1, . . . , Xn. We assume that joint probability distri-

bution P for the set V is given in all our models and

examples. Also, we also that we have all conditional

1We adhere to Bayesian interpretation of probability. Conditional

probabilities are not defined through joint probabilities as they are

fundamental in Bayesian interpretation of probability where terms

P (X | Y ) represent our degree of belief in X once we know Y .

probabilities P (X | Y ) where X and Y are sets of vari-

ables in V .

We start with a brief description of probabilistic

graphical models known as Bayesian Networks (or

belief networks) which can efficiently represent joint

probability distributions. Later we build on them and

describe a type of Bayesian network we call causal

Bayesian network.

After introducing causal Bayesian networks, we

present another more powerful formal causal model

called structural model and present some interesting re-

lated concepts such as calculation of causal effect and

whether causal effect can be estimated from observa-

tional probabilities.

2 Bayesian Networks

Bayesian networks are graphical probabilistic models.

Joint probability is augmented with a DAG (directed

acyclic graph) G. Nodes of G represent variables in V .

Edges (arrows) reflect conditional dependence relations

between variables of the model.

Before we give definition of Bayesian network we

shall introduce a few concepts.

Let X , Y and Z be disjoint subsets of the set of vari-

ables V . We would like to know if X and Y are inde-

pendent conditionally on Z. If they are then the follow-

ing equation holds:

P (X,Y | Z) = P (X | Z) · P (Y | Z) (1)

for all values of X,Y, Z. Equation (1) can be trans-

formed to:

P (X | Z) = P (X | Y,Z).

Informal reading would be:



Once we know Z,

learning Y tells nothing new about X .

This ternary relation is called a relation of conditional

independence and is usually denoted

X ⊥⊥Y | Z ,

or sometimes (X ⊥⊥Y | Z)P if we have to specify the

related distribution P .

2.1 Graph construction

To construct a graph one must find sets of parents PAi

for each variable Xi. First, we have to fix some or-

dering of variables, let it be X1, . . . Xn. Then for each

variable Xi we have to find a minimal set of predeces-

sors (X1, . . . , Xi−1) that renders all other predecessors

irrelevant.

Once we have sets PAi we can draw arrows from

each PAi-variable to its child Xi. Finally, we have a

DAG G.

We call PAi a set of Markovian parents of Xi. Set

PAi renders all other predecessors irrelevant for Xi:

P (Xi | PAi) = P (Xi | X1, . . . , Xi−1) .

We also say that set PAi screens off all other predeces-

sors (by making them irrelevant).

Example 1. Suppose we know that variable X1 affects

X3, but not if we know the value of X2. Therefore X2

screens off X1 from X3. X2 in PAi but not X1. Here

is a graph that illustrates it:

X1 X2 X3

Effect of X1 on X3 is mediated through X2.

2.2 Factorization of PPP

Let P be a joint distribution on a set V =
{X1, . . . , Xn}.

Bayes theorem for joint probabilities gives:

P (X1, X2) = P (X1) · P (X2 | X1) .

A few simple iterations yield the following factoriza-

tion:

P (X1, . . . , Xn) =
n
∏

i=1

P (Xi | X1, . . . , Xi−1) . (2)

Equation (2) holds for any distribution P in any order-

ing of variables.

Suppose now we have a graph G for P such that P

and G form a Bayesian network. We can read PAi from

G as parent nodes. Now we can state reduced factoriza-

tion that holds in Bayesian network:

P (X1, . . . , Xn) =
n
∏

i=1

P (Xi | PAi) (3)

So if we have a graph, we have a factorization (and vice

versa).

For graphs constructed as previously the following

condition holds

Markov condition. Every node is independent of all

its non-descendants conditionally on its parents.

Definition. Bayesian networks are pairs (G,P ) such

that Markov condition holds.

2.3 ddd-separation

Conditional independence has a graphical counterpart

– a criterion of d-separation between nodes in a graph.

d-separation is a ternary relation between (three) sets of

edges on a graph. We carry this definition in three steps:

Step 1: Let p be a trail (a series of adjacent edges, ar-

row direction disregarded) in a graph between

nodes X and Y . We say that p is d-separated

by a set of nodes Z if (at least) one of the fol-

lowing holds:

(i) p contains a chain i → m → j or a fork

i ← m → j such that middle node m is

in Z;

(ii) p contains an inverted fork i → m ← j

such that m or any of its descendants are

in Z.

Step 2: Nodes X and Y are d-separated by set Z if all

trails between X and Y are d-separated.



Step 3: Let X , Y and Z be disjoint sets of nodes. We

say that sets X and Y are d-separated by Z

if all trails between nodes in X and Y are d-

separated.

We write

(X ⊥⊥Y | Z)G ,

where G is a graph we’re working with.

Theorem 1. In Bayesian network d-separation implies

conditional independence. If sets of nodes X , Y are

d-separated by set Z, then X and Y are independent

conditionally on Z.

It is possible to have a graph that is too big, i.e. a

graph with unnecessary edges. For example, a complete

graph on V always forms If this is the case, then there

are instances where conditional dependence holds but

can not be deduced from d-separation. It is desirable to

close this gap, i.e. to have a minimal graph.

2.4 Structure learning

Learning the structure (graph) of Bayesian networks is

not in the focus of this paper and so I would like to note

just a few points. Certain features of the graph structure

can be deduced from the data alone, i.e. observational

distribution of the system.

We are concerned here with graphs whose structure

is at least partially derived from outside (expert) knowl-

edge – knowledge of prior causal relations or physical

laws, time order etc.

While it is attractive/tempting to think about arrows

and paths as some causal/functional relations between

nodes. Their meaning in the model is a bit more com-

plicated. Direct link A → B does mean that A affects

B, as expected. But, any undirected path of at least two

steps between nodes A and B doesn’t signify anything

without additional information. With d-separation we

can see that A and B can be dependent or independent

dependent on the context (what is Z).

3 Causal Bayesian Networks

How is causal knowledge acquired? How does a child

come to understand systems before learning language?

To acquire deep knowledge of an unknown system

agents have to resort to experimentation. Observation

alone is not enough: no amount of observation can sub-

stitute for experimentation. This reduces to well known

mantra "correlation does not imply causation".

On the other hand, once we have a deep understand-

ing of a system, we should know how it behaves even

in unusual situations – when some of its mechanisms

are replaced or broken. For example, we have an idea

of what to expect if someone replaces car’s wheels with

bicycle wheels or pours water instead of gasoline in its

tank. Notice how knowledge doesn’t have to come from

past experience.

3.1 Stability and Intervention

Suppose we have a Bayesian network whose edges rep-

resent stable mechanisms. Let’s illustrate our point with

an example Bayesian network:

X1

X2 X3 X4

X5

We would like to intervene in this model and force a

variable X3 to take on a value x3. This action will be

written as

do(X3 = x3) ,

or just do(x3) for short.

Can we calculate the effects on other variables in the

model, i.e. what is the probability of P (X5 = x5) after

do(x3) intervention, written as

P (x5 | do(x3)) = ?

Definition. Given two disjoint sets of variables X and

Y , causal effect of X on Y is

P (y | do(x)) .

To calculate P (x5 | do(x3)) we must build a new

Bayesian network that reflects the effects of our action.

All mechanisms affecting X3 (represented by incoming

arrows) are invalidated. Therefore we can delete X3-

incoming arrows from the graph. We get a new graph

G′:



X1

X2 X3 X4

X5

Now we need a new probability distribution P ′ to fit

G′. We get P ′ as "truncated factorization" of P with

appropriate substitutions of P ′(x′

3) for P (x′

3 | x1, x2):

P ′(x′

3) =

{

1, x′

3 = x3

0, else
(4)

Other occurrences of x3 in factored terms should be

similarly substituted and adjusted.

Since we get fully specified P ′ we can calculate

P (x5 | do(x3)) = P ′(x3) .

P ′ is interventional distribution of action do(x3).
Common shorthand for P ′ is Px3

(or Pdo(x3)). We can

extend simple actions to actions on sets of variables.

Two conditions hold

Theorem 2.

P (vi | pai) = Ppai
(vi) .

Seeing and doing is equal for Vi if done to its Markov

parents.

Theorem 3.

Ppai,s(vi) = Ppai
(vi)

Once we control Markovian parents of Vi, no other

intervention will affect probability of Vi.

Remark. "Seeing" and "doing" should not be con-

fused. Under certain conditions we can exchange ac-

tion for observation but we have to be careful about it

(see later).

P (x5 | do(x3)) 6= P (x5 | x3)

Now we can give a formal definition of a causal

Bayesian network.:

Definition. Causal Bayesian Network (CBN) is a

Bayesian network together with a set of interventional

distributions P∗ .

Since post-interventional probability distributions

are completely specified in CBN’s, we can calculate

causal effects.

4 Functional causal model

We now introduce a new formalism as an alternative to

causal Bayesian networks.

A functional causal model consists of a set of equa-

tions:

xi = fi(pai, ui), i = 1, . . . , n .

fi are unspecified functions, pai represent relevant se-

lection of x1, . . . , xi−1, and ui are errors or distur-

bances due to omitted factors.

A set of equations where each equation is au-

tonomous is called structural model.

With every functional model M we can construct a

DAG as follows: if a variable xj appears on the right

hand side of i-th equation we draw an arrow from node

Xj to node Xi. Resulting graph is called a causal dia-

gram of M .

Example 2. Let M be a model given by

x1 = f1(u1)

x2 = f2(x2, u2)

x3 = f3(x2, u3)

x4 = f4(x1, x3, u4)

M ’s associated causal diagram is:

X0

X1 X2 X3

Disturbances ui are taken to be values of random

variables Ui which we call unobserved variables. Dis-

turbance variables are normally not included (drawn) in

the graph.



If the associated causal diagram is a acyclic

(DAG), then the corresponding model is called semi-

Markovian. From now on we will only consider semi-

Markovian models.

We can take xi to be values of variables Xi. We call

V = {Xi} a set of observed variables. Probability

distribution P0 on unobserved variables {Ui} induces a

probability distribution P on a set V .

Remark. Somewhat surprising might be the fact that

functions fi and distribution of unobserved variables Ui

remain unspecified. But what we are looking for here

is the structure of the model, i.e. its causal diagram.

Specification of fi and ui is not needed for structure.

4.1 Markovian models

We’ll discuss a special type of semi-Markovian model

first. If the unobserved variables Ui are independent,

we have a Markovian model. In Markovian models

induced distribution P along with associated causal di-

agram G satisfies Markov condition (hence the name).

Also, factorization (3) for P holds on V .

Associated diagram G and induced distribution P

form a causal Bayesian network, and it is just as easy

to convert a CBN to a Markovian structured model.

Every Markovian model is as descriptive2 as a CBN.

Also, all causal effects can be calculated from pre-

intervention distribution.

5 Semi-Markovian models

If we relax the condition of independence of unob-

served variables which defines Markovian models we

lose Markov condition (and factorization etc.)

If some Ui’s are dependent, then this assumption

must enter the model. We model this with latent vari-

ables. Latent variables are unmeasured variables that

have exactly two observed children. We also say that

affected observed variables are confounded.

U1 U2

X1 X2

U

X1 X2

As with Markovian models we exclude unobserved

variables from the graph, but we mark confounding

2It turns out that structural models unlike causal Bayesian net-

works allow counterfactual analysis (see [1]).

(background dependencies) with bi-directional arcs.

Latent variables are not drawn (they hide behind the

arcs).

X1 X2

As before, we would like to express causal effect in

terms of pre-interventional probability distribution. In

semi-Markovian models this is not always possible. If

causal effect of X on Y can be calculated, we say that

it is identifiable.

5.1 Calculus of Intervention

Let GX denote graph in which all X-incoming arrows

are deleted and similarly let GX denote graph in which

all X-outgoing arrows are deleted.

P (y | do(x), z) denotes "probability that Y = y after

we see Z = z when we do(X = x)".

Theorem 4 (Rules of do Calculus). Let G be a DAG

associated to a causal model, and let P (·) be a proba-

bility distribution induced by that model.

For disjoint sets of variables X,Y, Z,W we have the

following rules:

Rule 1 (Insertion/deletion of observations)

P (y | do(x), z, w) = P (y | do(x), w)

if (Y ⊥⊥Z | X,W )G
X
.

Rule 2 (Action/observation exchange)

P (y | do(x), do(z), w) = P (y | do(x), z, w)

if (Y ⊥⊥Z | X,W )G
XZ

.

Rule 3 (Insertion/deletion of actions)

P (y | do(x), do(z), w) = P (y | do(x), w)

if (Y ⊥⊥Z | X,W )G
X,Z(W )

, where Z(W ) is

the set of Z-nodes that are not ancestors of any

W -node in GX .



Right hand sides of rules 1–3 simplify P (·) expres-

sions as they eliminate do operator. d-separation on

modified graphs dictate when a rule applies. Explana-

tion and proofs can be found in [1].

Theorem 5 (Completeness). Calculus of intervention

is complete. It is sufficient for deriving all identifiable

causal effects.

5.2 Identifiability Criterion

Now that we know which syntactic transformations are

sufficient, we should answer when such transformations

yield an answer. We want to know when causal effect

can be identified.

Here we present one simple criterion for identifiabil-

ity.

Theorem 6 (Tian and Pearl, [3]). A sufficient condition

for identifying the causal effect P (y | do(x)) is that

there exists no bi-directed path between X and any of

its children.

So, whenever there exist no bi-directed paths be-

tween X and any of its children we know that causal

effect can be identified. Otherwise, when such a path

exists, we don’t know.

A complete criterion (called hedge criterion) is pre-

sented in [5]. As the statement of this result is signifi-

cantly more complex, we omit it here.

6 Conclusion

I’d like to share a few notes on the metaphysics of cau-

sation. A question "What does it mean for (an event)

A to cause B?" has taunted philosophers from ancient

times. A satisfying answer has not been found yet. Con-

temporary philosophers nowadays increasingly believe

that we must be pluralists about causality – that it means

many different things to us. Therefore, there are several

explanations.

Structural models don’t define causality and don’t

rely on any particular definition of causality. We can

drop the word "causal" from the terminology. A crucial

point is: structural models consist of stable mechanisms

between variables; changes are local, not widespread

(replacing one mechanism leaves other mechanisms in-

tact).

On the other hand, if we wish to reason about such

systems and describe how they respond to change – we

might as well use causal language because it fits well

and we are accustomed to it.
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