
Cross Validation Method in Frequent Itemset Mining

Savo Tomovi¢, Predrag Stani²i¢

Faculty of Science

University of Montenegro

Cetinjski put bb, 81000 Podgorica, Montenegro

{savotom@rc.pmf, pedjas}@ac.me

Abstract. We suggest a new method for frequent

itemset mining which is based on well known cross

validation method from arti�cial intelligence and

machine learning. In non optimized version we

partition the database into two subsets. First, we

choose one of the subsets for training, and the

other for testing. From the training subset we

mine frequent itemsets and use testing subset to

calculate itemsets' support in whole database. We

then swap the roles of the subsets, so that the

previous training set becomes the test set and vice

versa. Again we mine all frequent itemsets from

training subset and use the other set to calculate

supports in whole database. In this approach each

record is used exactly once for training and once

for testing, which means that the database is read

just twice. Optimized version is based on the idea

to use all known information about itemsets from

the �rst step when we run the second step. This

will reduce the number of itemsets to be considered.

Keywords. itemset mining, association analysis,
Apriori algorithm

1 Introduction

Finding frequent itemsets in databases is the fun-
damental operation behind association rule mining.
The problem of mining association rules over trans-
actional databases was introduced in [1]. An exam-
ple of such rule might be that "85% of customers
who bought milk also bought bread". Discover-
ing all such rules is important for planning mar-
keting campaigns, designing catalogues, managing
prices and stocks, customer relationships manage-
ment etc. For example, a shop may decide to place

bread close to milk because they are often bought
together, to help shoppers �nish their task faster.
Or the shop may place them at opposite ends of a
row, and place other associated items in between to
tempt people to buy those items as well, as shop-
pers walk from one end of the row to the other.
The problem of association rules mining can be

decomposed into two sub-problems [1]:

1. Mining frequent itemsets. Frequent itemsets
have support greater than the minimal support
threshold;

2. Generating rules. The aim of this step is to de-
rive rules with high con�dence from large item-
sets (con�dence of association rule is de�ned
in the next section). For each large itemset l
one �nds all not empty subsets of l; for each
a ⊂ l∧a 6= � one generates the rule a→ l−a,
if conf(a→ l − a) ≥ minimalconfidence.

We do not consider the second sub-problem in this
paper, because the overall performances of min-
ing association rules are determined by the �rst
step. E�cient algorithms for solving the second
sub-problem are presented in [2].
Many algorithms were proposed to solve frequent

itemset mining but the most important is Apriori
algorithm [1].
In this paper we propose Apriori based algorithm

for frequent itemset mining which uses cross vali-
dation approach from machine learning. New algo-
rithm is scalable and comparable to existing algo-
rithms.
The paper is organized as follows. Section 2

provides formalization of frequent itemsets mining
problem. Section 3 presents the new algorithm.
Section 4 is conclusion.

2 Preliminaries

This section contains de�nitions that are necessary
for further text. We primarily use notions from [3].
Suppose that I is a �nite set; we refer to the el-

ements of I as items.
De�nition 1. A transaction data set on I is a

function T : {1, ..., n} → P (I). The set T (k) is the
kth transaction of T . The numbers 1, ..., n are the
transaction identi�ers (TIDs).
Given a transaction data set T on the set I, we

would like to determine those subsets of I that oc-
cur often enough as values of T .
De�nition 2. Let T : {1, ..., n} → P (I)

be a transaction data set on a set of items I.
The support count of a subset K of the set of
items I in T is the number suppcountT (K) given
by: suppcountT (K) = | {t|1 ≤ t ≤ n ∧K ⊂ T (t)} |.
The support of an itemset K is the number:

supportT (K) = suppcountT (K)
n .

De�nition 3. An itemset K is µ-frequent rela-
tive to the transaction data set T if supportT (K) ≥
µ. We denote by FµT the collection of all µ-frequent
itemsets relative to the transaction data set T and
by FµT,r the collection of all µ-frequent itemsets that
contain r items for r ≥ 1.
Note that FµT =

⋃
r≥1 F

µ
T,r.

De�nition 4. Frequent itemset mining problem
consists of �nding the set FµT for given minimal sup-
port µ and transaction data set T .
The following rather straightforward statement

is fundamental for the study of frequent itemsets.
It is known as Apriori principle.
Theorem 1. Let T : {1, ..., n} → P (I) be a

transaction data set on a set of items I. If K
and K1 are two itemsets, then K1 ⊂ K implies
supportT (K1) ≥ supportT (K).
De�nition 5. An association rule on an itemset

I is a pair of nonempty disjoint itemsets (X,Y). An
association rule (X,Y) is denoted by X → Y . The
con�dence of X → Y is the number confT (X →
Y) = supportT (XY)

supportT (X) .

3 Cross Validation Approach

in Frequent Itemset Mining

3.1 Cross Validation

Cross validation method is developed in machine
learning. In this approach each record from the
input data set is used the same number of times
for training and exactly once for testing. To illus-
trate this method, suppose we partition the data
into two equal sized subsets. First, we choose one
of the subsets for training and the other for testing.
We then swap the roles of the subsets so that the
previous training set becomes the test set and vice
versa. This approach is called two-fold cross vali-
dation. In this example, each record is used exactly
once for training and once for testing.
The k -fold cross validation method generalizes

this approach by segmenting the data into k equal
sized partitions. During each run, one of the par-
tition is chosen for testing, while the rest of them
are used for training. This procedure is repeated
k times so that each partition is used for testing
exactly once.
A special case of the k -fold cross validation

method sets k = n, the size of the input data set.
In this so-called leave-one-out approach each test
set contains only one record. This approach has the
advantage of utilizing as much as possible for train-
ing. In addition the test sets are mutually exclusive
and they e�ectively cover the entire database. The
drawback of this approach is that it is computa-
tionally expensive to repeat the procedure n times.

3.1.1 Apriori Two-Fold Cross Validation

We implemented the idea of two-fold cross valida-
tion for frequent itemset mining. Apriori Two-Fold
Cross Validation algorithm is presented in Figure
1.
The �rst step is partitioning transaction data

set T : {1, ..., n} → P (I) on a set of items I. Let
π be a partition of the set {1, ..., n} of transaction
identi�ers, π = {B1, ..., Bp}. Let ni = |Bi| for
1 ≤ p ≤ n.

De�nition 6. A partitioning of T is a sequence
T1, T2, ..., Tp of transaction data sets on I such that
Ti : {1, ..., ni} → P (I) is de�ned by Ti(l) = T (kl),
where Bi = {k1, ..., kni

} for 1 ≤ p ≤ n.
Intuitively, this corresponds to splitting hori-

Apriori Two-Fold Cross Validation
(database T, minimal support µ)
1: divide database into two partitions T1 and
T2, T1 ∪ T2 = T, T1 ∩ T2 = �
2: FµT1

= Apriori (T1, µ)
3: FµT1,T2

=validate FµT1
with T2

4: FµT2,T1
=validate FµT1

with T1
5: FµT2,T1

= validateFµT2
withT1

6: FµT = FµT1,T2
∪ FµT2,T1

Figure 1: Apriori Two-Fold Cross Validation Algo-
rithm

zontally the table T into p tables that contain
n1, ..., np consecutive rows.
We choose p = 2 which means that we have

two partitions of approximately the same size, n
2

transactions. Because of that we have two-fold
cross validation.
In the second step Apriori algorithm [1] is used

to �nd the set FµT1
. It contains all µ-frequent item-

sets relative to T1. It is possible that some of them
are not µ-frequent relative to the whole transaction
data set T. Itemsets that are µ-frequent in T1, but
not µ-frequent in T are eliminated in step three. In
this step partition T2 is used to calculate support
of each itemset from FµT1

relative to T. Those
itemsets from FµT1

that have suppcountT ≥ µ are
µ-frequent relative to T. They are stored in FµT1,T2

.

The set FµT1,T2
contains all µ-frequent itemsets

relative to T that appear and are also µ-frequent
in T1. Itemsets that are µ-frequent relative to T,
but appear in T2 will be found next.
In the step four Apriori algorithm is used to �nd

µ-frequent itemsets in T2. Result is the set F
µ
T2
.

In the step �ve all itemsets that are µ-frequent in
T2, but not µ-frequent relative to T are eliminated.
It this step T1 is used to calculate support relative
to T for each itemset from FµT2

. After this step
itemsets from FµT2

that are also µ-frequent relative
to T are stored in the set FµT2,T1

.
Finally, in the step six we obtain the set

FµT = FµT1,T2

⋃
FµT2,T1

with µ-frequent itemsets

in T. Generally, sets FµT1,T2
and FµT2,T1

are not
disjoint.
Apriori Two-Fold Cross Validation �nds µ-

frequent itemsets in T in two steps; it �nds
µ-frequent itemsets that appear in T1 and after
that µ-frequent itemsets in T2. The following

theorem states that algorithm is complete. It
is easy to extend theorem to more general case
when data set T is partitioned into p data sets
T1, T2, ..., Tp.
Theorem 2. Let transaction data sets T1, T2

on I be a partitioning of transaction data set
T : {1, ..., n} → P (I) as in de�nition 6. For
any itemset K we have supportT (K) ≥ µ ⇒
supportT1(K) ≥ µ ∨ supportT2(K) ≥ µ.
Proof. Seeking a contradiction suppose

that supportT1
(K) < µ ∧ supportT2

(K) <
µ. According to de�nition 2 we have
supportT1(K) = suppcountT1(K)/ |T1| and
supportT2(K) = suppcountT2(K)/ |T2|. It follows
suppcountT1

(K) = supportT1
(K) |T1| < µ |T1| and

suppcountT2
(K) = supportT2

(K) |T2| < µ |T2|.
Adding two previous inequalities we get
suppcountT1

(K) + suppcountT2
(K) =

suppcountT (K) < µ (|T1|+ |T2|) = µn. We con-

clude that supportT (K) = suppcountT (K)
n < µ con-

tradicting our assumption that supportT (K) ≥ µ.
∇

We will now explain main steps in Apriori

Figure 2: Transaction data set T

Two-Fold Cross Validation algorithm on simple
example. Consider transaction data set T from
�gure 2. It contains nine transactions. We parti-
tion T into two transaction data sets T1 and T2; T1
contains transaction 1-4; T2 contains transactions
5-9. Let µ = 2

9 ≈ 0.22.
The set FµT1

is generated by calling Apriori
algorithm. The procedure is presented in �gure
3. We did not explain Apriori algorithm in this
paper; details are presented in [1]. Set of candidate
k -itemsets (potentially µ-frequent itemsets) is
denoted by Ck. Set of µ-frequent k -itemsets (those

with minimum support) is denoted by Fk. It holds
that FµT1

= F1 ∪ F2 ∪ F3. With µ = 2
9 ≈ 0.22

itemset K is µ-frequent in T1 if it appears in
at least dµ · |T1|e = d0.22... · 4e = 1 transaction
(de�nition 2). Itemsets that are pruned according
to Apriori principle (theorem 2) are denoted by
red line.

The next step is to calculate support relative to

Figure 3: The second step of Apriori Two-Fold
Cross Validation

T for each µ-frequent itemset in T1 (the set FµT1
)

and eliminate those that are not µ-frequent relative
to T. In other words the algorithm generates the
set FµT1,T2

which contains µ-frequent itemsets in
T1 that are also µ-frequent relative to T. In this
step algorithm reads T2 and updates support for
each itemset from FµT1

that also appears in T2.

With µ = 2
9 ≈ 0.22 itemset K is µ-frequent in T

if it appears in at least dµ · ne = d0.22... · 9e = 2
transactions (de�nition 2). Values for suppcount
from FµT1

that are changed in this step are pre-
sented with red color in �gure 4. Generation
of FµT1,T2

in the third step of Apriori Two-Fold
Cross Validation is presented in �gure 4. Note
that itemsets {1, 2, 4} and {1, 4} did not survive
validation step.

Now we change roles for T1 and T2.
In the forth step Apriori Two-Fold Cross Val-

Figure 4: The third step of Apriori Two-Fold Cross
Validation

idation generates the set FµT2
. It contains all

µ = 2
9 -frequent itemsets in T2. An itemset K

is µ = 2
9 -frequent in T2 if it appears in at least

dµ · |T2|e = d0.22... · 5e = 2 transactions. The
procedure is presented in �gure 5.

In the sixth step Apriori Two-Fold Cross
Validation generates the set FµT2,T1

which contains
µ-frequent itemsets in T2 that are also µ-frequent
relative to T. The set FµT2,T1

is calculated from

the set FµT2
by eliminating those itemsets that are

not µ-frequent relative to T (although they are
µ-frequent relative to T2). In this step algorithm
reads T1 transaction by transaction and updates
suppcount for each itemset in FµT2

that appears

in transactions from T1. With µ = 2
9 ≈ 0.22

itemset K is µ-frequent in T if it appears in
at least dµ · ne = d0.22... · 9e = 2 transactions
(de�nition 2). Values for suppcount from FµT2

that
are changed in this step are presented with red
color in �gure 6. Generation of FµT2,T1

is presented
in �gure 6.

Final result is FµT = FµT1,T2
∪ FµT2,T1

.
Note that Apriori Two-Fold Cross Validation cal-

culates twice suppcount for some itemsets. In the
previous example suppcount is calculated twice for
itemsets: {1} , {2} , {3} , {5} , {1, 2} , {1, 3} , {2, 3}.

Figure 5: The forth step of Apriori Two-Fold Cross
Validation

Figure 6: The sixth step of Apriori Two-Fold Cross
Validation

The next section presents optimized version
of Apriori Two-Fold Cross Validation in which
suppcount for each itemset is calculated once.

3.2 Apriori Cross Validation Opti-

mized

Apriori Cross Validation Optimized is based on spe-
cial tree structure that is called TS-tree. TS-tree
is presented in details in [4], [5], [6]. This paper
contains just basic de�nitions.
De�nition 6. Let S be a set and let d : S → N

be an injective function. The number d(x) is the
index of x ∈ S. If P ⊂ S, the view(P, d) is the
subset view(P, d) = {s ∈ S|d(s) > maxp∈P d(p)}.

De�nition 7. Let T : 1, ..., n→ P (I) be a trans-
action data set on a set of items I. TS-tree for
database T is special tree structure with the fol-
lowing properties:

• the root of TS-tree is labeled with NULL. It
represents the empty set.

• every node N in TS-tree contains four �elds:
label, support, children and parent. The �eld
label registers which item this node repre-
sents. Path from the root to the node N

is unique in TS-tree and the node N rep-
resents one candidate. If path NULL →
Ni1 → Ni2 → ... → N reaches the node
N then the node N represents candidate set
A = {Ni1 .label, ..., N.label}. The �eld sup-

port registers the number of transactions in
database T that contains the portion of the
path reaching the node N. In other words, �eld
support is suppcountT (A). The �eld children

is array of pointers to TS-subtrees of the node
N. Roots of these subtrees are labeled from
the set view(N). It implies that all paths in
the TS-tree are lexicographically sorted. For
leaves all pointers in array children are null.
The �eld parent is pointer to the parent node.
For the root this �eld is null.

• the root is at level 0. Nodes that represent
candidate k -itemsets are at level k.

Consider candidate set C3 = {145, 124, 457,
125, 458, 159, 136, 234, 567, 345, 356, 357, 689, 367,

368}. TS-tree for C3 is shown in �gure 7. Null
pointers, pointers to the parent nodes and values
for support are not presented. The leaves of the
tree represents candidate 3-itemsets. For example,
the leave 4 from the path NULL → 1 → 2 → 4
represents 124 ∈ C3. Support for each candidate
will be calculated in support counting phase by
"mapping" each transaction on the tree. In this
phase every transaction is mapped on paths in the
tree which reaches the leaves representing candi-
dates contained in that transaction. At the end,
candidate suppcount is stored in the �eld support

in the leave that coresponds to that candidate. For
example, suppcount for 124 is stored in the leave 4
from path NULL→ 1→ 2→ 4.

In [4], [5] and [6] TS-tree is used for:

Figure 7: TS-tree example

• generating and storing candidate itemsets in
candidate generation phase

• candidate pruning according to Apriori princi-
ple [1] in candidate generation phase

• calculating candidate supports in support
counting phase

In addition, Apriori Cross Validation Optimized
uses TS-tree for e�cient implementation of val-

idation steps (steps 3 and 5 in �gure 1). The
algorithm is presented in �gure 8.

In the step 3, algorithm calls AprioriTS-tree

AprioriTS-tree Two-Fold Cross Validation
(database T, minimal support µ)
1: divide database into two partitions T1 and
T2, T1 ∪ T2 = T, T1 ∩ T2 = �
2: TS-tree root = NULL
3: FµT1

= AprioriTS − tree (T1, µ, root)
4: FµT1,T2

=prune root with T2
5: FµT2

= AprioriTS − tree (T2, µ, root)
6: FµT2,T1

=prune root with T1
7: FµT = FµT1,T2

∪ FµT2,T1

Figure 8: AprioriTS-tree Cross Validation Opti-
mized Algorithm

procedure from [4]. It creates TS-tree for parti-
tion T1. The tree contains the set FµT1

, i.e. all
µ-frequent itemsets in partition T1. The next,
forth step corresponds to the validation step 3 of
the algorithm in �gure 1. In this step itemsets
that are in FµT1

, but not µ-frequent in the whole
database T are eliminated. We implemented this
step as follows. In the previous step algorithm
generates TS-tree that contains all µ-frequent
itemsets in partition T1. Each itemset is presented
with one leave in the TS-tree. We use partiton
T2 to calculate support with respect to the whole
database. After that we delete all leaves that
corresponds to itemsets that are not µ-frequent in
T . In other words, TS-tree will contain µ-frequent
itemsets in T that appear in T1, i.e. the set F

µ
T1T2

.
The same TS-tree is used in the following steps.

In the step 5 AprioriTS-tree procedure [4] is called
to produce the set FµT2

, i.e. all µ-frequent itemsets
in partition T2. Using TS-tree from the previous
phase allows to make this phase more e�cient: it
is necessary to generate and calculate support just
for itemsets that are not contained in the tree but
are present in T2. In this way we eliminate many
candidates that are generated in the algorithm
from �gure 1. After this step TS-tree will contain:

• the set FµT1T2
, i.e. all µ-frequent itemsets in T1

that are also µ-frequent in T

• the set FµT2
, i.e. all µ-frequent itemsets in T2

It remains to validate the set FµT2
. We use the

partition T1. Transactions from T1 are mapped
onto paths in TS-tree that are created in step 5.
These paths represent µ-frequent itemsets in T2.
All other paths are not visited because they are
processed in the step 4 and represent the set FµT1T2

.
Finally, the tree contain the set FµT = FµT1T2

∪
FµT2T1

. Actually, all µ-frequent itemsets are rep-
resented by leaves in the TS-tree along with their
suppcountT . With respect to memory usage previ-
ously described procedure can be characetrized as
mining at place, because no additional space is nec-
essary for storing frequent itemsets.
We will illustrate the previous explanations

by the following example. Consider transaction
dataset from �gure 2. Partitions T1 and T2 are
indicated on the same �gure. Let µ = 2

9 ≈ 0.22.
In step 3 algorithm creates TS-tree with µ-

frequent itemsets in T1. The tree is presented
in �gure 9. For each itemset X the number
suppcountT1(X) is shown above the node in the
tree that represents that itemset. For example,
itemset {1, 2, 5} is represented by the last node in
the path NULL→ 1→ 2→ 5 and its suppcountT1

is 1.
The step 4 is to validate µ-frequent itemsets in

Figure 9: TS-tree for the �rst partition

T1. The partition T2 is used. Each transaction from
T2 is mapped onto paths from TS-tree. Procedure
for mapping transaction onto paths in TS-tree is
presented in [4]. The main idea is to extract those
itemsets from transaction that are also contained
in the tree. In this way just paths that represents
itemsets contained in the transactions are visited,
not all paths in the tree. The TS-tree after val-
idation step is presented in �gure 10. With red
font we indicate suppcountT2 for µ-frequent item-
sets in T1. For example, suppcountT ({1, 2, 5}) =
suppcountT1

({1, 2, 5}) + suppcountT2
({1, 2, 5}) =

1 + 1. Itemsets that are not µ-frequent in
T (although they are in T1) are pruned from
the tree. For example, suppcountT ({1, 2, 4}) =
suppcountT1({1, 2, 4}) + suppcountT2({1, 2, 4}) =
1 + 0 < 2. Pruning is indicated in �gure 10 by
red cross on incoming edge for the node which is
pruned.

In the step 5 AprioriTS-tree procedure is called

Figure 10: TS-tree after validation

for partition T2. It is to �nd µ-frequent itemsets
in T2. The previous TS-tree is used. We remind
that this tree contains the set FµT1T2

, i.e. µ-frequent
itemsets in T1 that are also µ-frequent in T . The
tree also contains suppcountT for each itemset from
FµT1T2

.
The main bene�t from using the same TS-tree is

in that it allows less candidate to be generated.
Let us explain in more details. In �gure 5

presented is the corresponding step of Apriori
Cross Validation algorithm. The algorithm gen-
erates and counts support for the following can-
didate itemsets: C1 = {{1}, {2}, {3}, {5}}, C2 =
{{1, 2}, {1, 3}, {2, 3}} and C3 = {{1, 2, 3}}. Note
that, except {1, 2, 3} all other candidates are al-
ready generated and their support is known (see
�gure 4). On the contrary, this algorithm uses all
information obtained so far and contained in the
tree. It generates candidate itemset X only if X
is not present in the tree and only in that case
suppcountT2

(X) is calculated.
In our example, all candidates from C1 are con-

tained in the tree (level 1) as well as suppcountT2

and suppcountT for each of them (�gure 10). An
itemset X is µ = 2

9 -frequent in T2 if it appears
in at least dµ · |T2|e = d0.22... · 5e = 2 transac-
tions. It means that µ-frequent 1-itemsets in T2
are F1 = {{1}, {2}, {3}}. The only candidate in
C2 = F1 × F1 that is not present in the tree is
{1, 3}. For it new path NULL → 1 → 3 is cre-
ated and suppcountT2

is calculated. The set F2 =
{{1, 2}, {1, 3}, {2, 3}} is obtained. The set C3 =
F2 × F2 = {{1, 2, 3}} consists of one candidate for
which new path NULL → 1 → 2 → 3 is created.
The algorithm counts suppcountT2({1, 2, 3}) = 2
and generates F3 = {{1, 2, 3}}. This is additionally
illustrated in �gure 11. With dash line presented
are nodes that represent candidates created in this
step. Above is indicated suppcountT2

.
Note that Apriori Cross Validation Optimized

generates and counts support for just two candi-
dates while Apriori Two-Fold Cross Validation gen-
erates and counts support for eight candidates.
In the step 6, algorithm validates µ-frequent

itemsets in T2. The partition T1 is used to cal-
culate suppcountT = suppcountT2 + suppcountT1 .
Note that suppcountT1 is calculated just for can-
didates generated in the previous step (they are
presented with dash line in �gure 11). This step is
presented in �gure 12; suppcountT1

is written with
red font. Because both itemsets {1, 3} and {1, 2, 3}
have su�cient suppcountT there is no pruning of
the tree.

Finally, all µ-frequent itemsets in T are con-
tained in the tree from �gure 12: µ-frequent k-
itemsets are represented by nodes at level k.

Figure 11: TS-tree for the second partition

Figure 12: TS-tree with all frequent itemsets

4 Conclusion

In this paper we present new approach for mining
frequent itemsets from database of transactions. It
is based on modi�cation of well-known Apriori al-
gorithm from [4] and cross validation method.
We have implemented Apriori Cross Validation

Optimized and one of the best modi�cations of the
original Apriori algorithm from [7] (to the best of
our knowledge). For experiments we used datasets
T10I4D100K and T20I6D100K. Datasets contain
100000 transactions with 1000 items. Average size
of transactions is 10 for T10I4D100K and 20 for
T20I6D100K. Average size of the maximal poten-
tially frequent itemset is 4 for T10I4D100K and 6
for T20I6D100K. We measured total execution time
in seconds. The experiments showed that these al-
gorithms are comparable. Actually, Apriori Cross
Validation Optimized is better for higher values for
minsup, while original Apriori is better for lower
values, which can be seen from �gure 13 and �gure
14. On x-axis values for minsup (in percentages)
are displayed. Execution time (in seconds) is dis-
played on y-axis.

As future work we plan to incorporate the fol-

Figure 13: Execution time for Apriori Cross Vali-
dation and Apriori, dataset T10I4D100K

lowing theorems in Apriori Cross Validation Opti-

Figure 14: Execution time for Apriori Cross Vali-
dation and Apriori, dataset T20I6D100K

mal.
Theorem 3. Let transaction data sets T1, T2

on I be a partitioning of transaction data set T :
{1, ..., n} → P (I) as in de�nition 6. It is possi-
ble that an infrequent itemset X in partition T1
(supportT1

(X) < µ) will become a frequent item-
set in T only if supportT2(X) > µ.
Proof. If an infrequent itemset X in partition T1

is to become frequent in the whole database, the
following formula must hold:

suppcountT1
(X) + suppcountT2

(X)

|T1|+ |T2|
≥ µ (1)

. That is,
|T1|·supportT1

(X)+|T2|·supportT2
(X)

|T1|+|T2| ≥ µ.

So, |T2| · supportT2
(X) ≥ |T1| · µ + |T2| · µ − |T1| ·

supportT1
(X). Or, |T2| · (supportT2

(X)− µ) ≥
|T1| · (µ− supportT1

(X)). Because, |T2| > 0, and
supportT1(X) < µ or µ−supportT1(X) > 0, the fol-
lowing condition must hold: supportT2(X) − µ >
0⇐⇒ supportT2

(X) > µ. ∇
Theorem 4. An infrequent itemset X is kept

if supportT1
(X) ≥ µ+ |T2|

|T1| · (µ− 1).

Proof. According to the previous theorem, an in-
frequent itemset in T1 will become frequent in the
whole database T if equation (1) hold. The mini-

mum condition is:

|T1| · supportT1(X) + |T2| · supportT2(X)

|T1|+ |T2|
= µ

(2)
So, |T1| · supportT1(X) = |T1| · µ + |T2| · µ − |T2| ·
supportT2(X). Or, supportT1(X) = µ + |T2|

|T1| ·
(µ− supportT2

(X)) > µ+ |T2|
|T1| · (µ− 1).∇

The main idea we want to implement is in the
following. Consider itemset X that is infrequent
in T1 but frequent in the whole database. Accord-
ing to theorem 3 we have supportT2

(X) > µ. Af-
ter counting supportT1(X) in the step 3, algorithm
from �gure 8 will remove this itemset. Because
X is frequent in T , it will be generated again and
supportT2

(X) will be counted in the step 5 (�g-
ure 8). Additionally, in the step 6 supportT1

(X) is
counted again, although it has been counted in the
step 3.
Instead of removing itemset X in the step 3 if

supportT1
(X) < µ, the condition from theorem 4

should be checked. If it is not satis�ed, itemset X
can be removed because it can not be frequent in
T . On the other hand, if condition from theorem 4
is satis�ed, itemset X is kept because it is "promis-
ing" itemset. It remains to validate X in the step
4, after which this itemset is not considered. We
consider that it is possible to signi�cantly reduce
number of candidates and execution time in Apri-
ori Cross Validation Optimized algorithm using this
idea.

References

[1] R. Agrawal, T. Imielinski, A. N. Swami, Min-
ing association rules between sets of items in
large databases, Proceedings of the ACM Inter-
national Conference on Management of Data,
pp. 207-216, 1993.

[2] P. Tan, M. Steinbach, V. Kumar, Intorduction
to Data Mining, Addison Wesley, 2006.

[3] D. A. Simovici, C. Djeraba, Mathematical Tools
for Data Mining - Set Theory, Partial Orders,
Combinatorics, London, Springer, 2008.

[4] P. Stani²i¢, S. Tomovi¢, A New Data Structure
for Frequent Itemsets Mining: TS-tree, Pro-
ceedings of the 4th South East European Doc-
toral Student Conference, 2009.

[5] P. Stani²i¢, S. Tomovi¢, A New Rymon Tree
Based Procedure for Mining Statistically Signif-
icant Frequent Itemsets, International Journal
of Computers Communications & Control, Vol.
5(4), pp. 567-577, 2010.

[6] S. Tomovi¢, P. Stani²i¢, Mining the Most
k-Frequent Itemsets with TS-tree, Proceed-
ings of the IADIS International Conference
WWW/Internet 2009, 2009.

[7] F. Bodon, A Fast Apriori Implementation,
IEEE ICDM Workshop on Frequent Item-
set Mining Implementations (FIMI'03), Mel-
bourne, Florida, USA, 2003.

