
Evaluation of similarity metrics for

programming code plagiarism detection method

Vedran Juričić

Department of Information Sciences

Faculty of humanities and social sciences

University of Zagreb

I. Lučića 3, 10000 Zagreb, Croatia

{ vedran.juricic@gmail.com }

Abstract. This paper shortly presents source code

plagiarism detection method based on the low-level

language. The similarity or distance metric that is

used to calculate similarity coefficient between two

source files has great impact on method's

performance and results. This paper analyzes

precision and recall of four most commonly used

metrics, Levenstein distance, Cosine similarity, N-

Gram similarity and Greedy String Tilling. Testing is

based on various test cases that represent the most

frequent code modification techniques.

Keywords. Plagiarism detection, similarity,

source code, similarity metric

1 Code similarity method

This paper presents a method for detecting code

similarity for .Net programming languages. Instead of

comparing original, source code, method compares

projects and source files, based on their Intermediate

Language code.

All .Net languages are generally compiled twice

before finally executed on the target platform. First

compiler is language specific and compiles source

code to low-level language called Common

Intermediate Language. CIL code is language,

processor and platform independent, and in order to

execute it, code must be compiled once again, to the

target machine code. This is done by using Just-In-

Time compiler, which is a component of .Net

Framework software package.

Method that analyzes similarity is based on above

mentioned CIL code, not the original source code.

That way, presented method can be used to compare

any language that can be compiled into Common

Intermediate Language. In other words, any language

that has a .Net compiler can be analyzed and

compared. Also, proposed method can be used to

compare source files that are written in different .Net

languages. For example, it can compare two classes or

entire applications, one written in C# and other

written in Visual Basic .Net. The only requirement is

that source code must not have syntax errors, that is,

source code must be able to compile.

In general, all existing source code similarity

methods and algorithms have two passes in their

comparison. First phase is preprocessing phase, in

which comments are removed, letters are converted to

lower case, procedure and function blocks are

identified, etc. Because some of these are language

specific, method must have separate and different first

phase for each programming language it supports.

None of this is necessary to perform in proposed

method: comments do not appear in compiled

assembly, identifiers are reduced to local variables,

and function blocks to list of intermediate language

instructions.

1.1 Method phases

Method has two phases, compilation and comparison

phase. Compilation phase uses appropriate compiler

to generate one assembly file for each folder specified

in the list of input folders. The language of generated

assembly is intermediate language, but its format is

not readable and suitable for analysis, so it must be

converted into text format. This is done by using

disassembler, which loads an assembly containing

intermediate language code and generates a text file.

This text file is the actual input file for

comparison. It contains certain lines of code that are

not relevant for analysis: metadata and module

information, comments (generated by disassembler,

not developer), stack related data, etc. Those lines are

removed and not included in further analysis. Text file

containing disassembler code is parsed line by line

and lines are verified if they satisfy predefined

patterns, so that only important lines are preserved for

the second phase. Additionally, every line is

transformed, so that it contains only the CIL

instruction.

Second phase takes two text files with filtered and

parsed lines, and compares them by using one of the

existing string comparison methods. Comparison

methods are changed so that they can be used with

CIL instructions. Instead of analyzing a string (as a

sequence of characters), methods are modified so that

they analyze a sequence of CIL instructions. The

example is shown in the Table 1.

Table 1. Sequence of CIL instructions

A B C B C D E

nop ldc stloc Ldc stloc ret ldarg

Each instruction is taken as one character, so that

their sequence form a string, so the string

representation of the above example is: ABCBCDE.

By using one of the similarity metrics, method

calculates the similarity of two input strings that

correspond to the source file similarity. Used metrics

are described in the following paragraph.

2 Distance and similarity metrics

Author's initial similarity detection algorithm used

Levenstein method for its similarity metrics.

Approach deals effectively with single string

differences by signaling insertion or deletion.

However, algorithm is order preserving, so

transformed substrings generate numerous single line

differences rather than being seen as a block move

Direct consequence of this limitation is the

sensibility to intentional insertions of source code that

could be made to conceal original source code and

affect plagiarism detection mechanisms. Rearranging

blocks of source code, like changing the order of

methods and method contents, also have an effect to

similarity score.

Proposed method could show better results if it

used other similarity measure, that is, distance metric.

This chapter describes above mentioned, Levenstein

method, and introduces three most common similarity

metrics: cosine similarity, n-gram similarity and

greedy string tilling.

2.1 Levenstein distance

Levenstein distance is the edit distance function,

where the distance is given simply as the minimum

edit distance which transforms one string to another.

Distance between strings is based on the cost of all

transformations necessary to generate one string from

another. Possible transformations include copying

character from one string to another, deletion,

insertion and substitution. Copying transformation

actually means that the characters are equal at the

observed position, and cost for such transformation is

0. Cost of all other transformations is 1, because

characters are not equal at the observed position, so in

order to make input strings equal at that position, the

character is either deleted, inserted or replaced with

suitable character.

Strings are written in form of a table, or matrix,

where one string is written horizontally, and other

vertically. Cost that is written in a table cell is the

minimum cost of its left, top or diagonal neighbors

increased by the cost of observed cell transformation.

When cost for each necessary transformation has

been identified, distance between two strings is

determined as the number in the last row and last

column in the matrix.

Table 2. Levenstein distance example

 C O D E

C 0 1 2 3

O 1 0 1 2

D 2 1 0 1

I 3 2 1 1

N 4 3 2 2

G 5 4 3 3

Table above shows the calculation of a

Levenstein distance for the example strings, code and

coding. Result distance is three, as it is the number in

the 7th row and 5th column. It means that three

transformations are necessary to transform string code

to string coding, one substitution and two insertions or

deletions.

Similarity between strings is based on the

calculated distance, by the following equations:

 (1)

In eq. 1, S1 is the similarity calculated using

Levenstein distance D and the length of the first

string, N1. This is also calculated for similarity S2 by

using length of the second string N2. Finally,

similarity of observed strings is the greater of those

two values. In the example given in Table 1,

similarity has value of 0.5.

2.2 Cosine similarity

Cosine similarity is a vector based similarity measure,

which requires the input string to be transformed into

vector space so that the Euclidean cosine rule can be

used to determine similarity. The dimension of vector

space corresponds to the number of different string

elements, that is the number of characters.

First step in forming a vector for observed strings

is the identification of possible dimensions. All

observed vectors have the equal number of

dimensions, and dimension corresponds to the

character. If string does not contain a character, its

vector has value 0 at the corresponding dimension. If

string contains a character, the number of matching

characters is associated to the corresponding

dimension.

Table 2 shows the example of forming vector for

string code and coding.

Table 3. Cosine similarity example

 C O D E I N G

a 1 1 1 1 0 0 0

b 1 1 1 0 1 1 1

Cosine value for the observed vectors is

calculated by dividing their scalar product with

norms.

 ⃗⃗⃗ ⃗⃗⃗

| ⃗⃗⃗ || ⃗⃗⃗ |
 (2)

Cosine for example shown in Table 2, for strings

code and coding, is 0.61. Although this value can be

used as a similarity value, better results are achieved

when using normalized vector projection. Using eq. 3,

the calculated similarity for string code and coding is

0.75.

 | ⃗⃗⃗ |

| ⃗⃗⃗ |

 | ⃗⃗⃗ |

| ⃗⃗⃗ |
 (3)

2.3 N-Gram similarity

N-Gram similarity method is based on converting the

input document or text to sequence of n words (n-

grams). It assumes that documents that are written

separately have small number of overlapping n-grams.

Method has many variants that differ in calculating

similarity and forming n-grams. One of the known

models based on n-gram similarity is Ferret's model

that uses trigrams to calculate similarity.

Following example demonstrates forming

trigrams for given two sentences:

This is my first sentence. This is my second

sentence.

Table 4. N-Gram similarity example

Trigrams #1 Trigrams #2

This is an This is an

Is my first Is my second

My first sentence My second sentence

The similarity is calculated by dividing the

number of n-grams that appear in both documents

with average number of formed n-grams.

 (4)

2.4 Greedy String Tilling

Greedy String Tilling is an algorithm that takes two

strings and finds the longest match. It is commonly

used to compare DNA sequences and protein chains,

but has been modified to support comparison of

textual data. The algorithm has worst case complexity

O(n
3
), but with running Karp-Rabin matching has an

experimentally derived average complexity close to

linear.

Author used simplified variant of this algorithm,

because performance will not be taken into

evaluation, only the similarity values. The most

important definitions and code fragments are

presented in the following paragraphs.

A maximal-match is where a substring Pp of the

pattern string starting at p, matches, element by

element, a substring Tt of the text string starting at t.

The match is assumed to be as long as possible, i.e.

until a non-match or end-of-string are encountered, or

until one of the elements is found to be marked.

A tile is a permanent and unique (one-to-one)

association of a substring from P with a matching

substring from T. In the process of forming a tile from

a maximal-match, tokens of the two substrings are

marked, and thereby become unavailable for further

matches.

A minimum-match-length is defined such that

maximal-matches (and hence tiles) below this length

are ignored. The minimum-match-length can be 1, but

in general has greater value. Minimum match length

that author used for calculation was 5.

search-length s = initial-search-length

repeat

 Lmax = scanpattern(s)

 if Lmax > 2 x s then

 s = Lmax

 else

 markstrings(s)

 if s > 2 x minimum_match_length then

 s = s div 2

 else if s > minimum_match_length then

 s = minimum_match_length

 else stop = true

until stop

Above code presents the original algorithm that finds

the longest match between two strings. For the

purpose of this paper, it has been modified so that it

finds all the possible matches that are longer than

parameter minimum_match_length. That way it is

possible to find all overlaps, and calculate string

similarity, by the following equation.

∑

 (5)

Eq. 5. shows that similarity is calculated by dividing

the length of all matches with the minimum length of

observed matches.

3 Test method and results

The goal of testing is demonstration of algorithms'

sensitivity and behavior on different code

modification techniques. One of the most popular

modification techniques is delocalization, which

means reorganization of independent code statements.

For example, it is possible to change the order of class

members, variable declaration or branch statements.

Unnecessary code insertions comprise statements

that do not affect the relevant behavior of a code

fragment. It includes insertions of unnecessary

variables, class members and other statements, and

adding unnecessary method parameters.

Replacing existing code statements with their

equivalents does not affect their behavior or work but

can have significant impact of visual appearance and

some code plagiarism detection techniques. This

includes replacing if-then-else block with case block,

replacing for loop with while loop, changing values of

constants and variable types.

Generalization comprises differences in the level

of generalization of source code; variable types are

replaced (where possible) with more abstract types.

For example, replacing List<int> with

ArrayList<int>.

3.1 Test cases and evaluation measures

Author defined 50 test cases that cover all scenarios

mentioned in above paragraph, but they are

categorized differently, to facilitate and speed up

testing.

Variable test category includes tests that check

algorithm’s behavior when changing the variable

names, types, assigned constant values and location of

their declaration. Property category tests various

property definition styles, changing their type, name

and returning values.

Syntax contains small number of test cases, but

tests some of the most common variations with

variables, including usage of various existing methods

for converting one variable type to another. Method

contains cases that test changing method name,

returning type and various parameter reordering,

insertions and deletions.

Loops category contains test cases that check

various loop replacements and definitions. Class

category includes cases that test changing class name,

namespace, and reordering and renaming of class

members.

Table 5. Test cases

Category Test cases

Variable 8

Property 8

Syntax 3

Method 12

Loops 12

Class 7

Total 50

Test cases were inspected manually by author,

and results of manual comparison were written in a

50x50 matrix whose rows and columns correspond to

test cases. Value in every cell is the similarity

between two test cases (row represents one test case,

and column other test case). Value can be zero, which

means that algorithm should not mark observed test

cases as equal, and one, which means test cases

should be treated as similar or equal. This matrix is a

reference matrix; it is used to compare values to those

obtained by algorithms, and that is used to evaluate

algorithms’ behavior.

In order to evaluate algorithms’ behavior and

sensitivity to different types of code modification

techniques, author used common evaluation measures:

precision and recall. Precision is also called a measure

of exactness or fidelity, and recall is a measure of

completeness.

Precision is defined as a fraction of correctly

categorized test cases divided by the number of test

cases claimed to be similar. Recall is defined as

fraction of correctly categorized test cases divided by

the number of test cases manually categorized as

similar.

Because algorithms can be easily configured so

that they show very good precision or good recall,

those two measures cannot be considered separately.

F measure is defined as a harmonic mean of precision

and recall, so that both measures are equally

represented. We will analyze algorithms’ precision

and recall separately, and then, their F measures.

3.2 Results

Analysis was made so that every test case was

compared to all other test cases. Similarity values

were written in a 50x50 matrix, in a similar way they

were written when comparing test cases manually.

The only difference is that the cells do not have values

zero and one only, but they contain exact similarity

values calculated by an algorithm. Values are in the

range from zero to one.

In order to compare similarity matrix obtained by

algorithm to the reference matrix, values obtained by

the algorithm must be converted to zero or one. Zero

value means that algorithm has not detected

similarity, and value one means that it has. All

obtained values above certain threshold are converted

to one; otherwise they are converter to zero.

Author tested the relation between threshold

value and evaluation measures that it affects. This

enabled the author to identify the best values for

precision, recall and F measure. Results for each

algorithm are presented in the graphs below. Graphs

display precision (p), recall (r) and F measure (F) in

relation to threshold which is displayed in horizontal

axis.

Figure 1. Evaluating Levenstein distance

Figure 2. Evaluating Cosine similarity

Figure 3. Evaluating N-Gram similarity

Figure 4. Evaluating Greedy string tilling

As it can be read from graphs, Levenstein

distance shows the worst results, it has the lowest F

measure of all algorithms regardless of the observed

threshold and the recall rapidly falls as the threshold

rises. The best value for F measure is 0.59, when

threshold is 0.1.

Cosine similarity has very good recall that is

greater or equal to 0.9, but has very low precision.

Threshold has no effect on precision and recall when

lower than 0.7. The best F measure is 0.64, when

threshold has value 0.9.

N-Gram similarity has the best precision of all

algorithms, reaching 1 when threshold is greater or

equal to 0.9. But its recall is very low which results in

very low F measure. The best F measure is 0.6 and is

reached when threshold is 0.3.

Greedy string tilling shows the best results. It has

very high recall, and precision that rises when

threshold is greater than 0.8. The best F measure

value is 0.84 when threshold is 0.9.

Algorithms' best F measures are shown in fig. 5.

0

0,2

0,4

0,6

0,8

1

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

p r F

0

0,2

0,4

0,6

0,8

1

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

p r F

0

0,2

0,4

0,6

0,8

1

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

p r f

0

0,2

0,4

0,6

0,8

1

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

p r F

Figure 5. Identified F measures

Levenstein distance and N-Gram similarity are

order preserving algorithms and because they are

based on the sequences of CIL instructions, have very

low recall. As a consequence, both are very sensitive

to insertions and rearrangements of code, and are

unable to find all the relevant matches.

Cosine similarity is not ordered preserving, and is

immune to various types of code transformations,

including intentional insertions and rearrangements of

code. On the other hand, because the order has

absolutely no impact on results and the small number

of different CIL instructions that appear in input files,

the algorithm has very low precision.

The algorithm that showed the best results is

greedy string tilling that combines the best of other

observed algorithms. It is ordered preserving, but

locally. That means that it searches for longest

substring in each pass, but because passes are

independent, algorithm is able to find common parts

regardless of their location.

4 Conclusion

This paper has presented a method for detecting

similarity and potential plagiarisms in programming

code by converting it to the low level language. In

order to find the most suitable algorithm for

calculating similarity, author tested four similarity

metrics: Levenstein distance, Cosine similarity, N-

gram similarity and Greedy string tilling.

As it is determined by analyzing their behavior on

50 predefined test cases, the best method for

similarity detection is Greedy string tilling, as it

showed the highest F measure, which means that this

algorithm has the best ratio of precision and recall.

References

[1.] Chapman S. SimMetrics, Open source library of

Similarity Metrics. 2006.

http://staffwww.dcs.shef.ac.uk/people/S.Chapma

n/stringmetrics.html

[2.] Clough P, Plagiarism in natural and programming

languages: an overview of current tools and

technologies. 2000. ftp://www.dlsi.ua.es/people

/armando/maria/Plagiarism.rtf

[3.] Cohen W.W, Ravikumar P, Fienberg S.E. A

Comparison of String Distance Metrics for

Name-Matching Tasks. http://www.cs.cmu.edu/

~wcohen/postscript/ijcai-ws-2003.pdf

[4.] Common Intermediate Language. 17.12.2010.

http://en.wikipedia.org/wiki/

Common_Intermediate_Language

[5.] Hage J, Rademaker P, Vugt N. A comparison of

plagiarism detection tools. 2010.

http://www.cs.uu.nl/ research/techreps/repo/CS-

2010/2010-015.pdf

[6.] Juergens E, Deissenboeck F, Hummel B. Code

Similarities Beyond Copy & Paste. 2010.

https://wwwbroy.in.tum.de/~deissenb/

publications/2010_juergens_beyond_clones.pdf

[7.] Kang N, Gelbukh A, Han S. PPChecker:

Plagiarism Pattern Checker in Document Copy

Detection. 2006.

http://citeseerx.ist.psu.edu/viewdoc/download?do

i=10.1.1.107.8122&rep=rep1&type=pdf

[8.] Kondrak G. N-gram similarity and distance. 2005.

http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.67.9369&rep=rep1&type=

pdf

[9.] Sembok T, Bakar Z.A. Characteristics and

Retrieval Effectiveness of n-gram String

Similarity Matching on Malay Documents. 2011.

http://www.wseas.us/ elibrary/conferences/2011/

Venice/ACACOS/ACACOS-28.pdf

[10.] Wise M.J. String Similarity via Greedy String

Tiling and Running Karp−Rabin Matching. 1993.

http://vernix.org/marcel /share/RKR_GST.ps

0,59 0,64 0,6

0,84

0

0,2

0,4

0,6

0,8

1

Levenstein

distance

Cosinus

similarity

N-Gram

similarity

Greedy

string

tilling

