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Abstract. This paper shortly presents source code 

plagiarism detection method based on the low-level 

language. The similarity or distance metric that is 

used to calculate similarity coefficient between two 

source files has great impact on method's 

performance and results. This paper analyzes 

precision and recall of four most commonly used 

metrics, Levenstein distance, Cosine similarity, N-

Gram similarity and Greedy String Tilling. Testing is 

based on various test cases that represent the most 

frequent code modification techniques. 
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1 Code similarity method 
 

This paper presents a method for detecting code 

similarity for .Net programming languages. Instead of 

comparing original, source code, method compares 

projects and source files, based on their Intermediate 

Language code. 

All .Net languages are generally compiled twice 

before finally executed on the target platform. First 

compiler is language specific and compiles source 

code to low-level language called Common 

Intermediate Language. CIL code is language, 

processor and platform independent, and in order to 

execute it, code must be compiled once again, to the 

target machine code. This is done by using Just-In-

Time compiler, which is a component of .Net 

Framework software package. 

Method that analyzes similarity is based on above 

mentioned CIL code, not the original source code. 

That way, presented method can be used to compare 

any language that can be compiled into Common 

Intermediate Language. In other words, any language 

that has a .Net compiler can be analyzed and 

compared. Also, proposed method can be used to 

compare source files that are written in different .Net 

languages. For example, it can compare two classes or 

entire applications, one written in C# and other 

written in Visual Basic .Net. The only requirement is 

that source code must not have syntax errors, that is, 

source code must be able to compile. 

In general, all existing source code similarity 

methods and algorithms have two passes in their 

comparison. First phase is preprocessing phase, in 

which comments are removed, letters are converted to 

lower case, procedure and function blocks are 

identified, etc. Because some of these are language 

specific, method must have separate and different first 

phase for each programming language it supports.  

None of this is necessary to perform in proposed 

method: comments do not appear in compiled 

assembly, identifiers are reduced to local variables, 

and function blocks to list of intermediate language 

instructions. 

 

1.1 Method phases 
 

Method has two phases, compilation and comparison 

phase. Compilation phase uses appropriate compiler 

to generate one assembly file for each folder specified 

in the list of input folders. The language of generated 

assembly is intermediate language, but its format is 

not readable and suitable for analysis, so it must be 

converted into text format. This is done by using 

disassembler, which loads an assembly containing 

intermediate language code and generates a text file. 

This text file is the actual input file for 

comparison. It contains certain lines of code that are 

not relevant for analysis: metadata and module 

information, comments (generated by disassembler, 



not developer), stack related data, etc. Those lines are 

removed and not included in further analysis. Text file 

containing disassembler code is parsed line by line 

and lines are verified if they satisfy predefined 

patterns, so that only important lines are preserved for 

the second phase. Additionally, every line is 

transformed, so that it contains only the CIL 

instruction.  

Second phase takes two text files with filtered and 

parsed lines, and compares them by using one of the 

existing string comparison methods. Comparison 

methods are changed so that they can be used with 

CIL instructions. Instead of analyzing a string (as a 

sequence of characters), methods are modified so that 

they analyze a sequence of CIL instructions. The 

example is shown in the Table 1. 

Table 1. Sequence of CIL instructions 

A B C B C D E 

nop ldc stloc Ldc stloc ret ldarg 

 

Each instruction is taken as one character, so that 

their sequence form a string, so the string 

representation of the above example is: ABCBCDE. 

By using one of the similarity metrics, method 

calculates the similarity of two input strings that 

correspond to the source file similarity. Used metrics 

are described in the following paragraph. 

 

2 Distance and similarity metrics 
 

Author's initial similarity detection algorithm used 

Levenstein method for its similarity metrics. 

Approach deals effectively with single string 

differences by signaling insertion or deletion. 

However, algorithm is order preserving, so 

transformed substrings generate numerous single line 

differences rather than being seen as a block move  

Direct consequence of this limitation is the 

sensibility to intentional insertions of source code that 

could be made to conceal original source code and 

affect plagiarism detection mechanisms. Rearranging 

blocks of source code, like changing the order of 

methods and method contents, also have an effect to 

similarity score. 

Proposed method could show better results if it 

used other similarity measure, that is, distance metric. 

This chapter describes above mentioned, Levenstein 

method, and introduces three most common similarity 

metrics: cosine similarity, n-gram similarity and 

greedy string tilling. 

 

2.1 Levenstein distance 
 

Levenstein distance is the edit distance function, 

where the distance is given simply as the minimum 

edit distance which transforms one string to another. 

Distance between strings is based on the cost of all 

transformations necessary to generate one string from 

another. Possible transformations include copying 

character from one string to another, deletion, 

insertion and substitution. Copying transformation 

actually means that the characters are equal at the 

observed position, and cost for such transformation is 

0. Cost of all other transformations is 1, because 

characters are not equal at the observed position, so in 

order to make input strings equal at that position, the 

character is either deleted, inserted or replaced with 

suitable character.  

Strings are written in form of a table, or matrix, 

where one string is written horizontally, and other 

vertically. Cost that is written in a table cell is the 

minimum cost of its left, top or diagonal neighbors 

increased by the cost of observed cell transformation. 

When cost for each necessary transformation has 

been identified, distance between two strings is 

determined as the number in the last row and last 

column in the matrix. 

Table 2. Levenstein distance example 

 C O D E 

C 0 1 2 3 

O 1 0 1 2 

D 2 1 0 1 

I 3 2 1 1 

N 4 3 2 2 

G 5 4 3 3 

 

Table above shows the calculation of a 

Levenstein distance for the example strings, code and 

coding. Result distance is three, as it is the number in 

the 7th row and 5th column. It means that three 

transformations are necessary to transform string code 

to string coding, one substitution and two insertions or 

deletions.  

Similarity between strings is based on the 

calculated distance, by the following equations: 
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In eq. 1, S1 is the similarity calculated using 

Levenstein distance D and the length of the first 

string, N1. This is also calculated for similarity S2 by 

using length of the second string N2. Finally, 

similarity of observed strings is the greater of those 

two values. In the example given in Table 1, 

similarity has value of 0.5. 

 

2.2 Cosine similarity 
 

Cosine similarity is a vector based similarity measure, 

which requires the input string to be transformed into 

vector space so that the Euclidean cosine rule can be 

used to determine similarity. The dimension of vector 



space corresponds to the number of different string 

elements, that is the number of characters.  

First step in forming a vector for observed strings 

is the identification of possible dimensions. All 

observed vectors have the equal number of 

dimensions, and dimension corresponds to the 

character. If string does not contain a character, its 

vector has value 0 at the corresponding dimension. If 

string contains a character, the number of matching 

characters is associated to the corresponding 

dimension. 

Table 2 shows the example of forming vector for 

string code and coding. 

Table 3. Cosine similarity example 

 C O D E I N G 

a 1 1 1 1 0 0 0 

b 1 1 1 0 1 1 1 

 

Cosine value for the observed vectors is 

calculated by dividing their scalar product with 

norms. 
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Cosine for example shown in Table 2, for strings 

code and coding, is 0.61. Although this value can be 

used as a similarity value, better results are achieved 

when using normalized vector projection. Using eq. 3, 

the calculated similarity for string code and coding is 

0.75. 
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2.3 N-Gram similarity 
 

N-Gram similarity method is based on converting the 

input document or text to sequence of n words (n-

grams). It assumes that documents that are written 

separately have small number of overlapping n-grams. 

Method has many variants that differ in calculating 

similarity and forming n-grams. One of the known 

models based on n-gram similarity is Ferret's model 

that uses trigrams to calculate similarity. 

Following example demonstrates forming 

trigrams for given two sentences: 

 

This is my first sentence. This is my second 

sentence. 

Table 4. N-Gram similarity example 

Trigrams #1 Trigrams #2 

This is an This is an 

Is my first Is my second 

My first sentence My second sentence 

 

The similarity is calculated by dividing the 

number of n-grams that appear in both documents 

with average number of formed n-grams. 

 

   
                          

     

 (4) 

 

2.4 Greedy String Tilling 
 

Greedy String Tilling is an algorithm that takes two 

strings and finds the longest match. It is commonly 

used to compare DNA sequences and protein chains, 

but has been modified to support comparison of 

textual data. The algorithm has worst case complexity 

O(n
3
), but with running Karp-Rabin matching has an 

experimentally derived average complexity close to 

linear.  

Author used simplified variant of this algorithm, 

because performance will not be taken into 

evaluation, only the similarity values. The most 

important definitions and code fragments are 

presented in the following paragraphs. 

A maximal-match is where a substring Pp of the 

pattern string starting at p, matches, element by 

element, a substring Tt of the text string starting at t. 

The match is assumed to be as long as possible, i.e. 

until a non-match or end-of-string are encountered, or 

until one of the elements is found to be marked.  

A tile is a permanent and unique (one-to-one) 

association of a substring from P with a matching 

substring from T. In the process of forming a tile from 

a maximal-match, tokens of the two substrings are 

marked, and thereby become unavailable for further 

matches. 

A minimum-match-length is defined such that 

maximal-matches (and hence tiles) below this length 

are ignored. The minimum-match-length can be 1, but 

in general has greater value. Minimum match length 

that author used for calculation was 5. 

 

search-length s = initial-search-length  

repeat 

   Lmax = scanpattern(s)  

       if Lmax > 2 x s then  

         s = Lmax 

      else 

        markstrings(s)  

   if s > 2 x minimum_match_length then  

        s = s div 2 

   else if s > minimum_match_length then  

        s = minimum_match_length 

   else stop = true 

until stop 



Above code presents the original algorithm that finds 

the longest match between two strings. For the 

purpose of this paper, it has been modified so that it 

finds all the possible matches that are longer than 

parameter minimum_match_length. That way it is 

possible to find all overlaps, and calculate string 

similarity, by the following equation. 
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Eq. 5. shows that similarity is calculated by dividing 

the length of all matches with the minimum length of 

observed matches. 

 

3 Test method and results 
 

The goal of testing is demonstration of algorithms' 

sensitivity and behavior on different code 

modification techniques. One of the most popular 

modification techniques is delocalization, which 

means reorganization of independent code statements. 

For example, it is possible to change the order of class 

members, variable declaration or branch statements.  

Unnecessary code insertions comprise statements 

that do not affect the relevant behavior of a code 

fragment. It includes insertions of unnecessary 

variables, class members and other statements, and 

adding unnecessary method parameters.  

Replacing existing code statements with their 

equivalents does not affect their behavior or work but 

can have significant impact of visual appearance and 

some code plagiarism detection techniques. This 

includes replacing if-then-else block with case block, 

replacing for loop with while loop, changing values of 

constants and variable types. 

Generalization comprises differences in the level 

of generalization of source code; variable types are 

replaced (where possible) with more abstract types. 

For example, replacing List<int> with 

ArrayList<int>. 

 

3.1 Test cases and evaluation measures 
 

Author defined 50 test cases that cover all scenarios 

mentioned in above paragraph, but they are 

categorized differently, to facilitate and speed up 

testing.  

Variable test category includes tests that check 

algorithm’s behavior when changing the variable 

names, types, assigned constant values and location of 

their declaration. Property category tests various 

property definition styles, changing their type, name 

and returning values. 

Syntax contains small number of test cases, but 

tests some of the most common variations with 

variables, including usage of various existing methods 

for converting one variable type to another. Method 

contains cases that test changing method name, 

returning type and various parameter reordering, 

insertions and deletions.  

Loops category contains test cases that check 

various loop replacements and definitions. Class 

category includes cases that test changing class name, 

namespace, and reordering and renaming of class 

members. 

Table 5. Test cases 

Category Test cases 

Variable 8 

Property 8 

Syntax 3 

Method 12 

Loops 12 

Class 7 

Total 50 

 

Test cases were inspected manually by author, 

and results of manual comparison were written in a 

50x50 matrix whose rows and columns correspond to 

test cases. Value in every cell is the similarity 

between two test cases (row represents one test case, 

and column other test case). Value can be zero, which 

means that algorithm should not mark observed test 

cases as equal, and one, which means test cases 

should be treated as similar or equal. This matrix is a 

reference matrix; it is used to compare values to those 

obtained by algorithms, and that is used to evaluate 

algorithms’ behavior. 

In order to evaluate algorithms’ behavior and 

sensitivity to different types of code modification 

techniques, author used common evaluation measures: 

precision and recall. Precision is also called a measure 

of exactness or fidelity, and recall is a measure of 

completeness. 

Precision is defined as a fraction of correctly 

categorized test cases divided by the number of test 

cases claimed to be similar. Recall is defined as 

fraction of correctly categorized test cases divided by 

the number of test cases manually categorized as 

similar. 

Because algorithms can be easily configured so 

that they show very good precision or good recall, 

those two measures cannot be considered separately. 

F measure is defined as a harmonic mean of precision 

and recall, so that both measures are equally 

represented. We will analyze algorithms’ precision 

and recall separately, and then, their F measures. 

  

3.2 Results 
 

Analysis was made so that every test case was 

compared to all other test cases. Similarity values 

were written in a 50x50 matrix, in a similar way they 

were written when comparing test cases manually. 

The only difference is that the cells do not have values 

zero and one only, but they contain exact similarity 

values calculated by an algorithm. Values are in the 

range from zero to one. 



In order to compare similarity matrix obtained by 

algorithm to the reference matrix, values obtained by 

the algorithm must be converted to zero or one. Zero 

value means that algorithm has not detected 

similarity, and value one means that it has. All 

obtained values above certain threshold are converted 

to one; otherwise they are converter to zero.  

Author tested the relation between threshold 

value and evaluation measures that it affects. This 

enabled the author to identify the best values for 

precision, recall and F measure. Results for each 

algorithm are presented in the graphs below. Graphs 

display precision (p), recall (r) and F measure (F) in 

relation to threshold which is displayed in horizontal 

axis. 

 

 

Figure 1. Evaluating Levenstein distance 

 

Figure 2. Evaluating Cosine similarity 

 

 

Figure 3. Evaluating N-Gram similarity 

 

 

Figure 4. Evaluating Greedy string tilling 

 

As it can be read from graphs, Levenstein 

distance shows the worst results, it has the lowest F 

measure of all algorithms regardless of the observed 

threshold and the recall rapidly falls as the threshold 

rises. The best value for F measure is 0.59, when 

threshold is 0.1.  

Cosine similarity has very good recall that is 

greater or equal to 0.9, but has very low precision. 

Threshold has no effect on precision and recall when 

lower than 0.7. The best F measure is 0.64, when 

threshold has value 0.9. 

N-Gram similarity has the best precision of all 

algorithms, reaching 1 when threshold is greater or 

equal to 0.9. But its recall is very low which results in 

very low F measure. The best F measure is 0.6 and is 

reached when threshold is 0.3. 

Greedy string tilling shows the best results. It has 

very high recall, and precision that rises when 

threshold is greater than 0.8. The best F measure 

value is 0.84 when threshold is 0.9. 

Algorithms' best F measures are shown in fig. 5. 
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Figure 5. Identified F measures 

 

Levenstein distance and N-Gram similarity are 

order preserving algorithms and because they are 

based on the sequences of CIL instructions, have very 

low recall. As a consequence, both are very sensitive 

to insertions and rearrangements of code, and are 

unable to find all the relevant matches. 

Cosine similarity is not ordered preserving, and is 

immune to various types of code transformations, 

including intentional insertions and rearrangements of 

code. On the other hand, because the order has 

absolutely no impact on results and the small number 

of different CIL instructions that appear in input files, 

the algorithm has very low precision. 

The algorithm that showed the best results is 

greedy string tilling that combines the best of other 

observed algorithms. It is ordered preserving, but 

locally. That means that it searches for longest 

substring in each pass, but because passes are 

independent, algorithm is able to find common parts 

regardless of their location. 

 

4 Conclusion 
 

This paper has presented a method for detecting 

similarity and potential plagiarisms in programming 

code by converting it to the low level language. In 

order to find the most suitable algorithm for 

calculating similarity, author tested four similarity 

metrics: Levenstein distance, Cosine similarity, N-

gram similarity and Greedy string tilling.  

As it is determined by analyzing their behavior on 

50 predefined test cases, the best method for 

similarity detection is Greedy string tilling, as it 

showed the highest F measure, which means that this 

algorithm has the best ratio of precision and recall. 
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