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Abstract. Rough set theory has become an important 
mathematical tool for dealing with uncertainty in 
data. The data discretization is one of the main 
problems to be solved in the process of synthesis of 
decision rules from table-organized data. In this 
paper, we present a new discretization method in the 
context of supervised training. This method is based 
on the neighborhood graph. To evaluate supervised 
discretization, we used data sets obtained from the 
UCI Machine Learning Repository. We have used the 
Rosetta system and proposed SSCO system. The 
experimental results show that our method is 
effective. 
 
Keywords: Rough sets, supervised discretization, 
neighborhood graph. 
 

1 Introduction 
 
Rough set theory (RST) was introduced by 
Pawlak [14] in 1980s. The goal of the rough set 
theory is to synthesize approximation of 
concepts from the data tables. This 
approximation could be expressed in form of 
decision rules, which can be used for 
classification tasks, (so called classification 
rules). The set of rules contains the rules in the If 
Then form [5, 6, 9]. Most real life data sets 
consist of, not only discrete attribute’s values, 
but also continuous attribute’s values. To utilize 
approaches based on RST more effectively, we 
should replace continuous attribute’s values by 
discrete attribute’s values.  

The discretization step determines how 
coarsely we want to view the world. For 
instance, temperature, which is usually measured 
in real numbers, can be discretized into two, 
three or more intervals. Discretization is not 
specific to the rough set approach but is a pre-
required step and is often performed implicitly, 
behind the scene, using expert knowledge [9, 4]. 
Many traditional discretization algorithms have 
been applied to rough sets. Some new 
discretization algorithms have also been 
proposed from the viewpoint of rough sets [7, 
10, 11, 16].  

Discretization algorithms can be divided into 
two categories: unsupervised and supervised 
[10]. As in [7] some unsupervised algorithms, 
such as the equal width (EW) and equal 
frequency binning (EF), do not take advantage 
of class information to increase their 
performance, so, the resulting discretization 
schemes do not provide much efficiency when 
used in the classification process, e.g. they 
contain more intervals than necessary. Many 
different supervised algorithms have been 
proposed: statistics-based, entropy-based, naive 
scaler, seminaive scaler, etc. 

Methods, which do not consider the 
specificity of RST decision system, may yield 
inconsistency and reduce extension of 
classification rules after using discretization 
methods [7]. That is the reason for development 
of some special discretization methods for RST 
[1, 11]. 



This paper deals with a possibility of 
presenting a set of rules by a graph (decision 
tree). Presentation by the graph enables analysis 
of adjacency matrix. By the approach based on 
the matrix analysis, it is possible to observe 
single child nodes. These nodes show attributes 
which should be re-discretized in order to 
achieve a set of rules with greater classification 
capabilities. This is very important for domain 
experts because they can have  introspection to 
attribute’s importance. Unlike some existing 
rough sets based system such as Rosetta, it is 
possible to obtain a fully automated 
discretization and re-discretization algorithm 
without any user interference. The re-
discretization of selected attributes also means 
that a kind of self-learning automated process is 
achieved. 

This paper is organized as follows. The 
second section contains a brief introduction to 
the rough set theory and some preliminaries that 
are relevant to this paper. In section 3, we 
present our discretization method. Experimental 
results are given in section 4. The fifth section of 
this work contains conclusions and remarks. 
 

2 Rough sets theory 
 
The Rough sets theory as an original approach 
proved to be very useful for the analysis of data 
in various domains [13]. In Rough set 
terminology, a data table is also called an 
information system.  

Let U  be a universe (finite set of objects), 
},...,,{ 21 mqqqQ =  is a finite set of attributes, 

qV  is the domain of attribute q  and 

U Qq qVV
∈

= . [15]. 

An information system is defined as the 
quadruple 〉〈= fVQUS ,,,  where 

VQUf →×=  is a total function such that 

qVqxf ∈),(  for each UxQq ∈∈ , , called 
information function. 

If some of the attributes are interpreted as 
outcomes of classification, the information 
system 〉〈= fVQUS ,,,  can be defined as a 
decision system by fVDCUDS ,,,,= , 

where QDC =∪ , =∩ DC ∅. C is called the 
set of condition attributes and set D is called the 

set of decision attributes [15]. Usually, there is 
one decision attribute. 

Definition 2. Indiscernibility Relation. To 
every non–empty subset of attributes P  is 
associated an indiscernibility relation on U , 
denoted by PI : 

 

)},(),(
,),{(

qyfqxf
PqUUyxIP

=

∈∀×∈=
          (1) 

 
The relation (1) is an equivalence relation – 

reflexive, symmetric and transitive. The family 
of all the equivalence classes of the PI  is 
denoted by PIU  and class containing an 

element x  by )(xI P   [9]: 
 

}]{[ UxxIU IpP ∈=          (2)  
 
Where [x] PI  is the equivalence class: 
 

}),({][ pIp IyxUyx ∈∈=          (3) 
 
If PIyx ∈),( , then x and y are indiscernible 

(or indistinguishable) by attributes from P . 
Definition 3. Set approximations. Let X  

be a non–empty set of U  and QP ⊆≠∅ .  
Set X  is approximated by means of P–lower 

(4) and P–upper (5) [9] approximations of X : 
 

       })(:{)( XxIUxXP P ⊆∈=             (4) 
 

             U
Xx

P xIXP
∈

= )()(          (5) 

 
The P–boundary of X  is denoted by 

)(XBn : 

         )()()( XPXPXBn −=          (6) 

 
Example 1. In the Table 1, there is a 

universe of six objects 
},,,,,{ 654321 xxxxxxU =  and each object is 

described by means of four attributes:  
- Age 
- Body Mass 
- Fat%  
- Blood Sugar Level  



(Age, Body Mass and Fat% are conditional 
attributes, and Blood Sugar Level is decision 
attribute).  

 

Object Age 

Body 
Mass 
Index 
(BMI) 

Fat% 

Blood 
Sugar 
Level 
(BSL) 

x1 young good low low 

x2 
middle-

age medium low high 

x3 
middle-

age medium low low 

x4 old medium low high 

x5 
middle-

age good high high 

x6 young medium high low 
Table 1. Simple example of information system 

In this particular case, the object 1x  is 
described by: Age=young, BMI=good, 
Fat%=low, BSL=low and so on. If 

%},,{ FatBMIAgeP =  then, by (1), we have: 

}},{},,{},,{},,{
},,{},,{},,{},,{{

66554433

23322211

xxxxxxxx
xxxxxxxxIP =

 

}}{},{},{},,{},{{ 654321 xxxxxxIU p = . 

Let us consider a case when set X  contains 
only those elements where Blood Sugar Level is 
low: },,{ 631 xxxX = , (see Table 1). Now, we 
can approximate set X  using only the 
information contained in P by constructing the 
P–lower (4) and P–upper (5) approximations of 
X:   

},{)( 61 xxXP = ,   

},,,{)( 6321 xxxxXP = .  

The P–boundary (6) of X  is: 

  },{)( 32 xxXBn = . 
 

2.1 Data reduction 
 

One natural dimension of reducing data is to 
identify equivalence classes. This could be 
achieved by keeping only those attributes that 
preserve the indiscernibility relation and 
consequently, set approximation. The rejected 
attributes are redundant (superfluous) since their 
removal cannot worsen the classification. Let 

QP ⊆≠∅  and Pa∈ . Attribute a  is 
superfluous in P , if }{aPP II −= , otherwise it is 
indispensable attribute. The set P  is orthogonal 
if all its attributes are indispensable. The set 

}{aP −  is a reduct of P  if it is orthogonal and 

}{aPP II −=   [3, 8]. 
From Example 1, one can notice that objects 

x2 and x3 (P–boundary of X) have exactly the 
same values of condition attributes but different 
value of the decision attribute. If R={Age, 
BMI}, S={Age, Fat%}, and T={BMI, Fat%}, 
then it is obvious that IR=IP and IS=IP while 
IT≠IP. This means that R and S are reducts of P, 
while T is not. Attribute Age is indispensable, 
but attributes BMI and Fat% may be mutually 
exchanged. There are usually several subsets of 
reducts. After computing reducts the rules are 
easily constructed by overlaying the reducts over 
originating decision table and reading the values. 

 
2.2 Data discretization 
 
The reduct is direct consequent of data 
discretization. That is why it is important how to 
find the effective heuristics for discretization of 
the real values. 

Since rough set theory is a logically founded 
approach, which is based on indiscernibility, the 
discretization of continuous attributes is a key 
transformation in rough sets. Discretization is 
usually performed prior to the learning process, 
which aims to partition continuous attribute’s 
values into a finite set of adjacent intervals in 
order to generate attributes with a small number 
of distinct values. A good discretization 
algorithm can produce a concise summarization 
of continuous attributes, to help the experts and 
users to understand the data more easily, but also 
can make learning more accurate and faster  [7, 
11]. 

 
2.3 Decision rules 

 
The expression a = v, where a is attribute and v 
is attribute value, is called descriptor. Now, it is 
possible to investigate rules of the form: IF α 
THEN β. Here α (rule’s antecedent) denotes a 
conjunction (AND logical operator) of 
descriptors that only involve attributes of some 
reduct and let β (rule’s consequent) denote a 
descriptor d = v, where d is decision attribute 
and v is allowed decision value [3]. 



It is essential to notice that shorter reduct set 
means shorter decision rules in the rule set 
generated from that reduct. 

The length of generated rules is linked with 
the used reduct: all attributes from reduct are 
used in the IF part of each rule [5]. 

 

3 Supervised discretization by 
neighborhood graph 

 
Decision rules can be represented using graphs, 
see Example 2. 

Example 2. Lets define a set of rules: 
 
1. IF A=20 AND C=3 THEN D=x  
2. IF A=20 AND C=4 THEN D=x  
3. IF A=30 AND C=3 THEN D=y  
4. IF A=30 AND C=4 THEN D=z 
5. IF A=30 AND C=5 THEN D=y  
6. IF A=40 AND C=4 THEN D=w  
7. IF A=40 AND C=5 THEN D=z  
8. IF A=50 AND B=14 AND C=5 THEN D=z  
9. IF A=50 AND B=16 AND C=6 THEN D=y  

10. IF A=60 AND C=6 THEN D=w  
 

Where A, B and C are the condition attributes 
while D is the decision attribute. The If parts of 
the rules could be shown by the graph (decision 
tree), see Figure 1:  

 

 
Figure 1. Decision rules represented by the graph 

 
The initial set of rules is fragmented by 

attribute A so that each first-level node is 
associated with an attribute value. Second level 
of the graph is formed by attribute B, and finally 
third level of the graph is formed by attribute C. 
The graph from Figure 1 fully corresponds to set 
of rules from Example 2. The nodes which are 
not marked with an attribute value indicate the 
attribute which is not included in the If part of 
the corresponding rule, these nodes are only-
child nodes. 

By analyzing a set of rules shown in 
Example 2 as well as the graph shown in Figure 

1, it is noticed that the attribute B occurs rarely 
(only in rules 8 and 9), which means that it has 
less significant effect on the decision. We 
propose that influence of the attribute B should 
be checked by re-discretization (an alternative 
way of discretization). This way, an expert has a 
choice between shorter rules and rules in which 
he can observe an influence of the attribute B. 

Also, the adjacency matrix can observe the 
attribute B. By analysis of the adjacency matrix 
it is possible to observe an attributes, which 
occurs rarely (like attribute B from Example 2). 
This is the case when nodes have only one child 
(only-child). Thanks to this, it is possible to 
observe a sub matrix of adjacency matrix, which 
describes the frequency of occurrences of certain 
attributes. This makes it possible to identify 
attributes, whose frequency of occurrences in 
rules will be checked by re-discretization. The 
analysis is done by usage of the adjacency 
matrix of the graph in order to identify the only-
child nodes. 

Finally, method of discretization based on 
neighborhood graph can be formalized through 
the following steps: 

I The first step is the standard discretization 
of attributes (the discretization method is 
selected by an expert), including the reduct 
computation and rule synthesis. This can 
be done by Rosetta system, RSES or some 
other similar system. 

II The second step is the analysis of rules 
using the graph (decision tree). Based on 
the adjacency matrix of the graph we can 
find those attributes that have a higher 
number of consecutive only-child nodes. 

III Only for the attributes that have a higher 
number of consecutive nodes that are only-
child, the discretization is applied again, 
but more precise (a larger number of 
intervals is formed), the reducts are 
computed and new set of rules is 
generated. 

IV By comparing the confusion matrices 
obtained by two different sets of rules, 
which were generated in previous steps, 
expert decides which set is better. 

 
This kind of the supervised discretization is 

suitable for rough sets theory based systems for 
decision rules synthesis because it determines 
the attributes set for re-discretization. This is a 



standard step in rough sets based systems when 
supervised discretization is used [7]. 

4 Experiments and results 
 

To present our method for discretization, we use 
well-known data sets from the UCI Machine 
Learning Repository [2]: Iris data set (iris). 
“This is perhaps the best known database to be 
found in the pattern recognition literature” [2]. 
The data set contains 3 classes of 50 instances 
each, where each class refers to a type of iris 
plant. 

Number of Attributes: 4 numeric predictive 
attributes and one class attribute. 

Attribute Information: 
   a1: sepal length in cm 
   a2: sepal width in cm 
   a3: petal length in cm 
   a4: petal width in cm 
   class attribute values:  
      -- Iris Setosa (1) 
      -- Iris Versicolour (2) 
      -- Iris Virginica (3) 
This dataset is very suitable because of small 

number of objects (150) and small number of 
attributes involved, so that the discretization 
calculations can be done manually. 

To generate rules, Rosetta system [12] is 
frequently used, but, in this research, we have 
used the SSCO system [3, 4, 5]. The SSCO 
system has been developed at the Technical 
Faculty "Mihajlo Pupin" in Zrenjanin, Serbia. 
This system is used for automated decision rules 
synthesis and is based on systematic syntax state 
space search. This section presents the 
comparison of the rules obtained by the SSCO 
system when different discretization algorithms 
are used. The comparison of the rule sets is done 
by the comparison of the corresponding 
confusion matrices. 

 
4.1 The experiment with the 

discretization of the attributes 
 
At the beginning, discretization was done 
manually in order to gain better opportunities for 
observation the only-child nodes in a matrix of 
neighborhood graph (decision tree). First, we 
have used the EW algorithm in order to 
discretize the set through generating a set of 
cuts, and then rules were generated by SSCO 
system. The output of the SSCO system includes 
If Then rules led by pair [n, m] where n 

corresponds to number of objects which support 
the If part of the rule while m is the ratio s/n, s ≤ 
n where s is a number of rules with different 
Then part for corresponding If part of the rule. 
In other words, if m =1 then rule is generated by 
the objects from lower approximation of the 
rough set (exact rule), but if m < 1 then rule is 
generated by objects from boundary region of 
the rough set (inexact rule). 
 

For example the rule: [4, 1] IF  (a1,80), 
(a2,40), (a3,70) THEN (a5, Iris-virginica), 
means that if the sepal length equals 8 cm, sepal 
width equals 4 cm and petal length equals 7 cm 
then, it is Iris-virginica. There are four objects 
that support If part of the rule and there is no 
other rule with exactly the same If part but 
different Then part, so this is an exact rule. The 
previously described rule set is accompanied by 
so called confusion matrix. Confusion matrix C 
is a dd VV ×  matrix, where dV  is the set of 
possible values of decision attribute. This matrix 
with integer entries summarizes the performance 
of rule set while classifying the set of objects. 
Entry: 

})(,)(:{, jxdixdUxC ji ==∈= , 

Where )(xd  is the actual decision and )(xd  is 
the predicted decision, which counts the number 
of objects that really belong to class i, but were 
classified to class j. Obviously, it is desirable for 
the diagonal entries to be as large as possible. 

It is important to notice that confusion matrix 
was formed without any voting system so that 
one object could be classified to more than one 
class by some inexact rules. 

In the case when EW discretization algorithm 
is used for iris database, SSCO output is as 
follows: 
 
62 rules are added: 

 
IF THEN Form 
[1,1] IF (a1,80), (a2,40), (a3,70) 
THEN (a5, Iris-virginica) 
[1,1] IF (a1,80), (a2,40), (a3,60) 
THEN (a5, Iris-virginica) 
[1,1]  IF (a1,80), (a2,30), 
(a3,70), (a4,24) THEN (a5, Iris-
virginica) 
... 
[2,1] IF (a1,50), (a2,30), (a3,20), 
(a4,4) THEN (a5, Iris-setosa) 



[12,1] IF (a1,50), (a2,30), 
(a3,20), (a4,2) THEN (a5, Iris-
setosa) 
[2,1] IF (a1,50), (a2,30), (a3,10), 
(a4,4) THEN (a5, Iris-setosa) 
[7,1] IF (a1,50), (a2,30), (a3,10), 
(a4,2) THEN (a5, Iris-setosa) 
[1,1] IF (a1,50), (a2,20), (a3,40) 
THEN (a5, Iris-versicolor) 
[2,1] IF (a1,50), (a2,20), (a3,30) 
THEN (a5, Iris-versicolor) 
[1,1] IF (a1,50), (a2,20), (a3,10) 
THEN (a5, Iris-setosa) 
[4,1] IF (a1,40) THEN (a5, Iris-
setosa) 
 

Confusion matrix: 
        1       2       3        
 
1       50      0       0        
 
2       0       50      9        
 
3       0       7       50       
 

134 objects are classified by exact 
rules, 16 objects are classified by 
inexact rules, 0 objects were not 
classified. 

 
Based on the adjacency matrix the graph was 

formed. It was observed that the attribute a2: 
sepal width and attribute a4: petal width appear 
less frequently in a set of rules, and that rule IF 
(a1,40) THEN (a5, Iris-setosa) is very 
short. It is very important to notice that there is a 
frequent consecutive occurrence of the only-
child nodes for attributes a2 and a4 in the graph. 
Further step of the experiment involves re-
discretization process applied to attribute a4. 

 
4.2 The experiment with the re-

discretization based on an analysis of 
the graph adjacency matrix 

 
In this experiment the preparation of data was 
done so that the attribute a4: petal width is 
discretized again (intervals are halved). 
Furthermore, we obtained 16 more rules, and the 
difference refers mainly to the rules for just one 
type of iris (Iris-setosa). 

SSCO output is as follows: 
 

78 rules are added: 
 
IF THEN Form 

[1,1] IF (a1,80), (a2,40), (a3,70) 
THEN (a5, Iris-virginica) 
[1,1] IF (a1,80), (a2,40), (a3,60) 
THEN (a5, Iris-virginica) 
[1,1] IF (a1,80), (a2,30), (a3,70), 
(a4,23) THEN (a5, Iris-virginica) 
... 
[1,1] IF (a1,50), (a2,30), (a3,20), 
(a4,5) THEN (a5, Iris-setosa) 
[2,1] IF (a1,50), (a2,30), (a3,20), 
(a4,4) THEN (a5, Iris-setosa) 
[9,1] IF (a1,50), (a2,30), (a3,20), 
(a4,2) THEN (a5, Iris-setosa) 
[3,1] IF (a1,50), (a2,30), (a3,20), 
(a4,1) THEN (a5, Iris-setosa) 
[2,1] IF (a1,50), (a2,30), (a3,10), 
(a4,3) THEN (a5, Iris-setosa) 
[6,1] IF (a1,50), (a2,30), (a3,10), 
(a4,2) THEN (a5, Iris-setosa) 
[1,1] IF (a1,50), (a2,30), (a3,10), 
(a4,1) THEN (a5, Iris-setosa) 
[1,1] IF (a1,50), (a2,20), (a3,40) 
THEN (a5, Iris-versicolor) 
[2,1] IF (a1,50), (a2,20), (a3,30) 
THEN (a5, Iris-versicolor) 
[1,1] IF (a1,50), (a2,20), (a3,10) 
THEN (a5, Iris-setosa) 
[3,1] IF (a1,40), (a4,2) THEN (a5, 
Iris-setosa) 
[1,1] IF (a1,40), (a4,1) THEN (a5, 
Iris-setosa) 
 
Confusion matrix: 
        1       2       3        
 
1       50      0       0        
 
2       0       50 6        
 
3       0       7       50       
 
137 objects are classified by exact 
rules, 13 objects are classified by 
inexact rules, 0 objects were not 
classified. 

 
Here, class marker 1 refers to Iris Setosa, 

class marker 2 refers to Iris Versicolour, while 
class marker 3 refers to Iris Virginica. 

By more precise discretization of the attribute 
a4: petal width we have obtained slightly better 
objects classification. In the second experiment 
more objects (137) were classified by exact rules 
(134 object in the first experiment). Potentially, 
with every further re-discretization of the 
attributes that have a high number of 



consecutive only-child nodes, even better 
classification could be achieved. 

 

5 Conclusions and future work 
 

There are various methods and techniques for 
decision rules extraction from data. The rough 
sets theory (RST) is a good theoretical 
background for If Then rule synthesis from 
table-organized data. The classification power of 
these rules is often checked by calculation of so 
called confusion matrix. This matrix with integer 
entries summarizes the performance of rule set 
while classifying the set of objects. In this paper 
we presented the If Then rules generating 
process by so called SSCO system which has 
been developed at the Technical Faculty 
"Mihajlo Pupin" in Zrenjanin, Serbia. This 
system is used for automated decision rules 
synthesis and it is based on systematic syntax 
state space search. As a previous step to rule 
generating procedure there is a discretization 
step as a pre-required step, so that continuous 
attribute’s values are divided into a finite set of 
adjacent intervals in order to generate attributes 
with a small number of distinct values. The 
analysis of generated decision rules was done by 
usage of the graph approach. Based on the 
adjacency matrix, it is possible to extract the 
attributes that appear less frequently in a set of 
rules. It is shown how to reconsider the 
influence of less frequent attributes to the value 
of the decision attribute. This is very important 
for human experts because they could have the 
deeper insight to generated rule sets. We have 
used UCI Machine Learning Repository “Iris” 
data set to conduct the experiments. First 
experiment is conducted so that equal width 
(EW) discretization algorithm is used and rules 
are formed by SSCO system. In the second 
experiment, the analysis of previously generated 
rules is done by usage of the graph (decision 
tree). Based on the adjacency matrix of the 
graph we can find those attributes that have a 
higher number of consecutive only-child nodes. 
Only for the attributes that have a higher number 
of consecutive nodes that are only-child, the 
discretization is applied again, but more precise 
(a larger number of intervals is formed), and 
new set of rules is generated. The result shows 
that re-discretization obtains better rules (a 
better confusion matrix is achieved). Also, this 
method can be incorporated into SSCO 

algorithm so that re-discretization process will 
be done automatically. 

After incorporation of re-discretization 
algorithm into SSCO system, future work will 
include the test on a larger data set as well as the 
comparison with other supervised discretization 
methods. Then the system will be tested on real 
life data from various domains. 
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