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Abstract. Linear logic provides a logical perspec-
tive on computational issues such as control of re-
sources and order of evaluation. The most impor-
tant feature of linear logic is that formulas are con-
sidered as actions. While classical logic treats the
sentences that are always true or false, in linear
logic it depends on an internal state of a dynamic
system. Curry-Howard correspondence is a corre-
spondence between logic and computing in infor-
matics. In this contribution we present two ways of
computations which correctness we prove by Curry-
Howard correspondence. We show a standard way
and a new way of computing based on hylomor-
phism by using coalgebras which is an alternative
method.
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1 Introduction

Linear logic provides a logical perspective on com-
putational issues such as control of resources and
order of evaluation. In classical logic treats the
sentences that are always true or false; but in lin-
ear logic the truth value depends on an internal
state of a dynamic system. We showed in [9] a
new way of computing factorial based on hylomor-
phism by using coalgebras. Because of the check-
ing, the correctness of the program is the most im-
portant phase of transformation into logical formu-
lae. In this contribution we present correctness of
this computing by Curry-Howard correspondence.

2 Basic notions

We start our approach with the well-known notion
of universal algebra: many-typed signature (the
signature in the following text). A many-typed
signature Σ = (T,F) consists of a finite set T of
the basic types needed for a problem solution de-
noted by symbols σ, τ . . . and of a finite set F of
function symbols. Each function symbol f ∈ F is
of the form f : σ1, . . . , σn → σn+1 for some nat-
ural n. Generally, we distinct in a signature the
constructor operations which tell us how to gener-
ate data elements; the destructor operations, also
called observers or transition functions that tell us
what we can observe about data elements; and the
derived operations that can be defined inductively
or coinductively. If the operation f has been de-
fined inductively, the value of f is defined on all
constructors. In a coinductive definition of f the
values of all destructors on each outcome f(x) have
been defined.

2.1 Category theory

Algebraic and coalgebraic concepts are based on
category theory. A category C is mathematical
structure consisting of objects, e.g. A,B, . . . and
morphisms of the form f : A → B between them.
Every object has the identity morphism and mor-
phisms are composable. Morphisms between cate-
gories are called functors, e.g. a functor F : C → D
from a category C into a category D which pre-
serves the structure.



2.2 Linear Logic

Girard’s linear logic [5] has offered great promise, as
a formalism particularly well-suited to serve at the
interface between logic and computer science. By
using the Curry-Howard correspondence, proposi-
tions of linear logic are interpreted as types. This
paradigm has been a cornerstone of new approach
concerning connections between intuitionistic logic,
functional programming and category theory [3].
We consider here intuitionistic linear logic because
it is very suitable for describing of the program ex-
ecution. Precisely, reduction of linear terms cor-
responding to proofs in intuitionistic linear logic
can be regarded as a computation of programs [9].
The interpretation in linear logic is of hypotheses
as resources: every hypothesis must be consumed
exactly once in a proof. Its the most important
feature is that formulae are considered as actions.
That differs from usual logics where the governing
judgement is of truth, which may be freely used
as many times as necessary. Linear logic uses two
conjunctions: multiplicative ϕ⊗ ψ expressing that
both actions will be performed; and additive one
ϕNψ expressing that only one of two actions will
be performed and we shall decide which one. Intu-
itionistic linear logic uses additive disjunction ϕ⊕ψ
which expresses that only one of two actions will be
performed but we cannot decide which one.

2.3 Curry-Howard correspondence

The Curry-Howard isomorphism is a correspon-
dence between systems of mathematical logic and
programming languages. It is the relationship be-
tween computer programs and proofs in construc-
tive logic and it forms the proofs-as-programs and
formulae-as-types paradigms. The concept was for-
mulated by the mathematician H. Curry and logi-
cian W. A. Howard.

The rôle of the computer program is carrying on
the instructions under whose the computer system
is to perform some required computations. We con-
sider programming as a logical reasoning over ax-
iomatized mathematical theories needed for a given
solved problem. A program is intuitively under-
stood as data structures together with algorithms
[7]. Data structures are always typed and opera-
tions between them can be regarded as algorithms.
The results of computations are obtained by evalu-

ation of typed terms. Due to a connection between
linear logic and type theory [11], we are able to
consider types as propositions and proofs as pro-
grams, resp. Then we are able to consider the pro-
gram as a logical deduction within linear logical
system. Thus computation of any resource-oriented
program is some form of goal-oriented searching the
proof in linear logic. This approach also keeps us
away from potentional problems in the verification
of programs.

3 Algebras and Coalgebras

The essential idea of the behavioral theory is to
determine the relation between internal states and
their observable properties. The internal states
are often hidden. There are introduced many for-
mal structures to capture the state-based dynam-
ics, e.g. automata, transition systems, Petri nets,
etc. Horst Reichel firstly introduced the notion of
behavior in the algebraic specifications [8]. The
basic idea was to disengage types in a specification
into visible and hidden ones. Hidden types capture
states and they are not directly accessible. The ex-
ecution of a computer program causes a generation
of some behavior that can be observed typically as
a computer’s input and output [6]. The observation
of program behavior can be formularized by using
the coalgebras. A program is considered as an el-
ement of the initial algebra arising from the used
programming language. In other words it is an in-
ductively defined set P of terms [7] which forms a
suitable algebra F (P ) → P where F is an endo-
functor constructed over the signature. Then data
type is completely determined by its constructors,
algebraic operations, going into data type. Each
language construct corresponds to certain dynam-
ics captured in coalgebras. The behavior of pro-
grams is described by the final coalgebra P → G(P )
where the functor G captures the kind of behavior
that can be observed. Shortly, generated computer
behavior amounts to the repeated evaluation of a
(coinductively defined) coalgebraic structure on an
algebra of terms. The state can be observed via the
visible values and can be modified. In coalgebra it
is realised using destructor operations pointing out
of the structure. Thus coalgebraic behavior is gen-
erated by an algebraic program [7, 9]. Therefore
the algebras are used for constructing basic struc-



tures used in computer programs and coalgebras
act on the state space of computer describing what
can be observed externally. For expressing the re-
lations we use categories. Because the objects of
category can be arbitrary structures, categories are
useful in computer science, where we often use more
complex structures not expressible by sets [2].

Algebras and coalgebras are considered as dual
structures. Usually we treat them in categories [10].
We use special kind of algebras and coalgebras -
an initial algebra and a final coalgebra, resp. It
holds for initial algebra, that there exists the unique
morphism from the initial algebra into any algebra.
This morphism is called the catamorphism. Dually,
there exists final coalgebra, for which holds, that
from any coalgebra exists unique morphism into
final coalgebra, called anamorphism [1]. Compo-
sition of those morphisms is an another morphism
which is called the hylomrphism. We apply it in
the alternative way of the factorial computation.

3.1 Initial algebras

Let F be an endofunctor from C to C . An algebra
with the signature F (or an F -algebra for short)
is a pair (A,α) where A called the carrier is an
object and the algebra structure α : FA → A is
a morphism in C . For any two F -algebras (A,α)
and (C, γ), a morphism f : A → C is said to be a
homomorphism of F -algebras from (A,α) to (C, γ),
so the following diagram at fig. 1 commutes.

FA
α - A

FC

Ff

?

γ
- C

f

?

Figure 1: Diagram of algebras

It follows from the diagram at Fig. 1 that it
holds the equality α ◦ f = Ff ◦ γ. An F -algebra
is said to be an initial F -algebra if it is an ini-
tial object of the category A lg(F ) of F -algebras.
The existence of initial algebra of the endofunc-
tor is constrained by the fact that initial algebras,

when they exist, must fulfil some important prop-
erties: they are unique up to isomorphism and the
initial algebra has an inverse. It follows from the
first property that there exists at most one initial
F -algebra. Because from the initial F -algebra ex-
ists unique homomorphism to every F -algebra, the
initial T -algebra is the initial object in the cate-
gory A lg. The second property was proven by J.
Lambek and it says that the initial F -algebra is the
least fixed point of the endofunctor F .
The initiality provides a general framework for in-
duction and recursion. Given a functor F , the exis-
tence of the initial F -algebra (µF, inF ) means that
for any F -algebra (A,α) there exists a unique ho-
momorphism of algebras from (µF, inF ) into (A,α).
Following [4], we denote this homomorphism by
(cata α)F , so (cata α)F : µF → A is characterized
by the universal property [12]:

f ◦ inF = α ◦ Ff ⇔ f = (cata α)F .

The type information is summarized in the fol-
lowing commutative diagram at Fig. 2.

FµF
inF- µF

FA

Ff

?

α
- A

f

?

Figure 2: Diagram of initial algebra and catamor-
phism

Morphisms of the form (cata α)F are called cata-
morphisms; the structure (cata (_))F is an itera-
tor.

3.2 Final coalgebras

Coalgebras are dual structures to algebras. Let F
be an endofunctor from C to C . A coalgebra with
the signature F (an F -coalgebra for short) is a pair
(U,ϕ), where U called the state space is an ob-
ject and ϕ : U → FU called the coalgebra struc-
ture (or coalgebra dynamics) is a morphism in C .



For any two F -coalgebras (T, ψ) and (U,ϕ), a mor-
phism f : T → U is said to be a homomorphism
from (T, ψ) to (U,ϕ) between F -coalgebras, so the
following diagram at Fig. 3 commutes.

U
ϕ - FU

T

f

?

ψ
- FT

Ff

?

Figure 3: Diagram of coalgebras

and it holds the equality ϕ ◦ Ff = f ◦ ψ.
The F -coalgebras and the homomorphisms be-

tween them form a category. The category
C oalg(F ) is the category whose objects are the F -
coalgebras and morphisms are the homomorphisms
between them. Composition and identities are in-
herited from C . An F -coalgebra is said to be a final
F -coalgebra if it is the final object of the category
C oalg(F ).

The existence of the final F -coalgebra (νF, outF )
means that for any F -coalgebra (U,ϕ) there exists a
unique homomorphism of coalgebras from (U,ϕ) to
(νF, outF ). This homomorphism is usually denoted
by (ana ϕ)F , so (ana ϕ)F : U → νF is character-
ized by the universal property [12]:

outF ◦ f = Ff ◦ ϕ ⇔ f = (ana ϕ)F .

The type information is summarized in the fol-
lowing diagram at Fig. 4.

U
ϕ - FU

νF

f

?

outF
- F νF

Ff

?

Figure 4: Diagram of final coalgebra and anamor-
phism

Morphisms of the form (ana ϕ)F are called
anamorphisms and the structure of (ana (_))F is
a coiterator.

3.3 Recursive coalgebra

The concept of the recursive coalgebra, i.e. a coal-
gebra which has a unique coalgebra-to-algebra mor-
phism into every algebra is important for the for-
mulation of the relation between coalgebras and al-
gebras in one category. Recursive coalgebras ex-
tend that universal property beyond the initial al-
gebra considered as coalgebra [1].

Let F : C → C be an endofunctor. A coalge-
bra (U,ϕ) is called recursive if for every algebra
(A,α) there exists a unique coalgebra-to-algebra
morphism f : U → A at Fig. 5.

FU �
α

U

FA

Ff

?

ϕ
- A

f

?

Figure 5: Diagram of recursive coalgebra

So it holds the equality f = α ◦ Ff ◦ ϕ.

3.4 Hylomorphism

The hylomorphism recursion pattern was firstly de-
fined in [4]. Given an F -coalgebra ϕ : U → FU and
an F -algebra α : FA → A, the hylomorphism de-
noted by hylo(α,ϕ)F is the least arrow f : U → A
that makes the following diagram at Fig. 6 com-
mute.

Moreover, the hylomorphism is a composition of
an anamorphism with a catamorphism [12]:

hylo(α,ϕ)F = (cata α)F ◦ (ana ϕ)F .

The hylomorphism captures general recursion by
producing the complex data structure and then
processing it.



FU �
ϕ

U

FA

Ff

?

α
- A

f

?

Figure 6: Diagram of hylomorphism

4 The computation and logical
proof

Using the Curry-Howard correspondence we are
able to consider proofs as programs and execution
of a program as a logical deduction in considered
logical system. The first step in the design solu-
tion is constructing the type theory that we will
use for a given problem. The types together with
operations over them we enclose into a many-typed
signature Σ = (T,F).

4.1 Traditional computation
Traditional mathematical way of the factorial com-
puting is as follows.

fact (n) =

{
1, if n = 0 or n = 1
n ∗ fact (pred n) otherwise

The type theory for a given problem we construct
as a signature Σ = (T,F). Set of types contains
the types for numerical values, tuples of values and
the type of truth values Ω.

T = {nat, nat× nat,Ω} .

Set of function symbols contains operations over
those types in T used for the calculation of factorial.

F = {pred : nat→ nat,

=: nat, nat→ Ω

mult : nat, nat→ nat

zero :→ nat

one :→ nat}

Term for factorial in the type theory has the form

n : nat `
if (n = 0) ∨ (n = 1) then 1 else n ∗ fakt (pred n) .

Corresponding formula in linear logic for the given
term is

(ϕ−◦ ψ1) N
(
ϕ⊥ −◦ ψ2

)
where

ϕ : (n = 0 N n = 1)
ψ1 : fact = 1
ψ2 : fact = n ∗ fact (pred n)

So the formula is

((n = 0 N n = 1)−◦ fact = 1) N
((n > 1)−◦ fact = n ∗ fact (pred n))

Now we are able to construct the logical proof for
a given formula. The fragment of proof is depicted
at Fig. 7.

Figure 7: Proof of formula expressing standard fac-
torial computation

Finally, the corresponding program in OCaml is



l e t r e c f a c t n =
i f (n==0) or (n==1) then 1
e l s e n∗ f a c t ( pred n ) ; ;

4.2 Alternative method for the fac-
torial calculation

We show alternative method of the factorial cal-
culation based on algebras and coalgebras. The
signature consists of a finite set of the basic types

T = {int, intList,Ω}

and of a set of function symbols:

F = { ==: intList, intList→ Ω,
=: int, int→ Ω,
join : int, intList→ intList,
∗ : int, int→ int,
pred : int→ int,
head : intList→ int,
tail : intList→ intList }

For our alternative method for computation of the
factorial we need terms, which represent catamor-
phism and anamorphism. Our function fact(n)
is based on hylomorphism. Function fact con-
sist of composition two functions. Listed functions
are named by morphisms which are representing,
namely: cata and ana, resp.

4.2.1 Anamorphism

An anamorphism usually represents a corecursive
function that starts with a single input (here nat)
and it returns more complex output, here a wide
list (natList). The function ana it is of type nat→
natList.
The definition of function ana is as follows:

ana(n) =
if (n = 0) then ana = emptyList
elseif (n = 1) then ana = [1]
else ana = join(n, ana(pred n))

Typed term that represents the function ana has
the following form:

n : nat ` if (n = 0) then ε
elseif (n = 1) then [1] else join(n, ana(pred n))

Formula representing the function ana(n) is:

(ϕ1 −◦ ψ1) & (ϕ2 −◦ ψ2) & ((ϕ⊥
1 ⊗ ϕ⊥

2 )−◦ ψ3)

where

ϕ1 : (n = 0)
ϕ2 : (n = 1)
ψ1 : ana = ε
ψ2 : ana = [1]
ψ3 : ana = join(n, ana(pred n))

4.2.2 Catamorphism

By applying the catamorphism in the informatics,
we get a recursive function that starts with a list
(here natList) and it returns a single numerical
output (here nat). The function cata is of type
natList→ nat.

Definiton of this function:

cata(list) =
if (list = emptyList) then cata = 1
else cata = head(list) ∗ cata(tail(list))

Typed term that represents the function cata has
the following form:

l : natList ` if (list == ε) then 1
else head(list) ∗ cata(tail(list))

Formula representing the function cata(l) is:

(θ −◦ α)N(θ⊥ −◦ β)

where

θ : list = emptyList
α : cata = 1
β : cata = head(list) ∗ cata(tail(list))

4.2.3 Function for calculating the factorial

The composition of functions ana a cata creates a
function fact(n) for the factorial computation. The
function generates a list of natural numbers by in-
crements from 1 to number n, and simultaneously
the list is eliminated by the multiplication opera-
tion between elements of the list. The function is
of type nat→ natList→ nat.
Definiton of the function fact(n):

fact(n) = cata(ana(n)) =
if (ana(n) == emptyList) then fact = 1
else fact = n ∗ cata(ana(predn))



Typed term that represents the function cata has
the following form:

n : nat ` if (ana(n) == ε) then 1
else n ∗ cata(ana(pred n))

Formula representing the function fact(n) is:

((ϕ1 −◦ ψ1)−◦ α) & ((ϕ2 −◦ ψ2)−◦ α) N
N (((ϕ⊥

1 ⊗ ϕ⊥
2 )−◦ ψ3)−◦ β)

4.2.4 The proof

The logical proof of the given formula in the section
4.2.3 is at Fig. 8.

Figure 8: Proof of formula expressing alternative
factorial computation

When the formula is proven it means that our pro-
gram is correct and it does not need any verifica-
tion.

5 Implementation in OCaml

In this section we show the implementation of our
method for the factorial calculating. We use the
new functional language OCaml.

5.1 The function ana

This function is defined as follows: if the argument
of the function ana is 0 then it returns an empty
list. If the argument is 1 then ana generates a list
containing only 1 as item. Otherwise, ana gener-
ates a list with new element appended. The imple-
mentation of the function ana(n) is:

l e t r e c ana n =
match n with
| 0 −> [ ]
| 1 −> [ 1 ]
| n −> n : : ana (n−1) ; ;

5.2 The function cata

This function takes as an argument a list of factors
of the type nat and returns the result of multi-
plicative operations over the list by multiplicating
the values from the input list. The result of the
function is an element of the type nat which is the
result of multiplication of elements in the list. The
implementation of the function cata(l) is:

l e t r e c cata l i s t =
match l i s t with
| [ ] −> 1
| head : : t a i l −> head ∗ ( cata t a i l ) ; ;

5.3 The function fact

Composition of two function cata ◦ ana is written
in programming language OCaml as cata(ana(n)).
The definition of this hylomorphism function
fact(n) is as follows:

l e t f a c t n =
cata ( ana n ) ; ;

Execution of this function with input value 4 is:

# f a c t 4 ; ;
− : i n t = 24

Illustration of this example step by step:



fact 4 =
cata (ana 4) =

4 cata (ana 3) =
12 cata (ana 2) =
24 cata (ana 1) =
24 id =
24

It is seen that our alternative method of pro-
gramming based on hylomorphism provides the ex-
pected results. Because it has been proven in linear
logic as a formula representing our function in the
Curry-Howard correspondence, we can say tgat our
function is correct.

6 Conclusion

We presented an alternative way of the facto-
rial calculation which is based on the algebraic
and coalgebraic structures expressed in categories.
These structures provide the computation which we
proved with the Curry-Howard correspondence and
we constructed the logical proof of the appropri-
ate formulae in linear logic. Our next goal will be
the extension of this approach in other categori-
cal structures based on monads and comonads and
to formulate the linear logic proofs in appropriate
categorical structures.
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