

Error Messaging in Generative Programming

Danijel Radošević, Ivan Magdalenić, Tihomir Orehovački

Faculty of Organization and Informatics

University of Zagreb

Pavlinska 2, 42000 Varaždin, Croatia
{danijel.radosevic, ivan.magdalenic, tihomir.orehovacki}@foi.hr

Abstract. Standard programming tools use a system
of error messages and warnings to help programmers
in finding syntax and logical errors in their programs.
Generative programming differentiates the level of
generator from the level of generated application. The
source code is synthesized at the level of generator
from a set of code templates according to application
specification and rules defined by generator
configuration. Code templates, application
specification and generator configuration are
mutually dependent and error in any part may result
in incorrect source code. This paper deals with
possibilities of introducing error messages that are
specific at the level of generator. An example of
generator is developed and discussed.

Keywords. generative programming, generator,
error messages

1 Introduction

Generative Programming is one of the concepts of
Software Product Lines (SPL). SPL provides a means
for composing software products that match the
requirements of different application scenarios from a
single code base and can be developed using a variety
of implementation techniques [13]. Other concepts in
this area are pre-processor definitions, components,
Aspect Oriented Programming, Feature-Oriented
Programming (FOP) [8][13], Aspectual Feature C
Modules (AFMs) [1] and frames like XVCL [15].
Using Generative Programming helps to increase the
software making productivity, by producing it in a
way comparable to industrial production. Almost
every new technology has its own specific problems.
In the case of the generative programming problems
arise during the creation of program code templates,
building of source code generator and definition of
application. The creation of source code requires
high-quality error messaging system when using
generative programming technique.

Our work is based on the SCT dynamic frames
model that is used for source code generation. The
SCT model consists of three basic components:
Specification (S), which describes the application
characteristics, Configuration (C), which describes the
rules for building applications, and Templates (T),
which refers to application building blocks. The SCT
model is described in detail in [9]. It is primarily
designed for web application development, but there
are no constraints to using the SCT model in
development of any kind of a source-code, regardless
to problem domain and programming language.

This paper introduces error messaging system to
the SCT dynamic frames model. Introduced error-
related messages are compared to similar messages in
object-oriented programming languages and some
generative systems.

 The paper is organized as follows: Related work
is presented in section 2. The basics of the SCT model
are explained in section 3. Possible SCT model
inconsistencies are discussed in section 4. Section 5
describes error messaging in generative programming,
which is followed by one example in section 6. The
conclusion is given in section 7.

2 Related work

The process of writing code in one of the object
oriented programming languages [6] consists of four
steps: writing the source code, compiling the source
code, linking the executable code and finally testing
the program. If during the writing of source code a
programmer makes syntax or logical mistake, in the
remaining three phases following types of error
related messages may occur:
• Compile-time error message indicates that

source code violates syntax or grammatical rules
of a programming language. Before it is possible
to compile source code into object code, it is
necessary to correct all syntax errors. The most
common examples of compile-time errors are

[12][14]: Undeclared Variables, Undeclared
Functions, Missing Semicolons, Extra
Semicolons, Incorrect Number of Braces,
Unmatched Parentheses, Unterminated Strings,
Left-Hand Side of Assignment does not Contain
an L-Value, Value-Returning Function has no
Return Statement, Converting Errors (e.g. int* to
int**), and Illegal Function Overloading.

• Link-time error message prevents the
generation of executable code when it is not
possible to link object codes. Some examples of
frequent logical mistakes that lead to occurrence
of link-time error messages are [11]:
Uninitialized variables, Setting a variable to an
uninitialized value, Using a single equal sign to
check equality, Divide by Zero, Forgetting a
Break in a Switch Statement, Overstepping Array
Boundaries, and Misusing the && and ||
operators.

• Run-time error message occur in the testing
phase when the program or any of its parts
returns the unexpected results. Most often causes
of this kind of messages are following logical
errors [14]: Infinite Loop, Misunderstanding of
Operator Precedence, Dangling Else, Off-By-One
Error, Code inside a Loop that does not Belong
There, and Not Using a Compound Statement
When One is Required.

• Warning message do not interrupts the process
of compiling or linking code but often indicates
the cause of errors that occur during the testing
phase. Using ‘=’ when ‘==’ is Intended, Loop has
no Body, and Uninitialized Variable are
examples of common syntax warnings [14].

Recent study [10] into analysis of students’

compilation behavior revealed that “Unused
Variable”, “Undeclared Variables”, “Expected `;'
Before” and “Control Reaches End of Non-Void
Function” are most frequent error related messages
that occur when writing source code. It should be
noted that “Unused Variable” and “Control Reaches
End of Non-Void Function” are warning messages
while “Undeclared Variables” and “Expected `;'
Before” are compile-time error messages. Error
related messages are not only useful within
aforementioned steps of writing programming code,
but also during the process of generative application
development. There are three mature approaches to
generative programming: XVCL, GenVoca and
Codeworker.

XVCL (XML-based Variant Configuration
Language) is a meta-programming language based on
the same concepts as frame technology [2]. It can be
used for handling variants in program code or
software product lines. To facilitate the
implementation of the variations, we can use XVCL
commands to mark the variation points in program
and thus decompose it into generic and adaptable
components called x-frames. GenVoca (a mixture of

the names Genesis and Avoca) is a composition
methodology aimed for creating system families. It is
based on two main ideas [3]: feature modularity
which came out of inheritance and programming style
called programming-by-difference [4]; and program
objectification. In GenVoca, each module is
comprised of set layers where each layer specifies an
aspect of module. Codeworker [5] is a versatile
parsing tool based on generative technique. It is used
for generating source code by parsing existing or
newly created language. A scripting language
provided by Codeworker is configured for the writing
of code generation templates and for the description
of language grammars.

Although principles of XVCL, GenVoca and
Codeworker have been tested in practice, studies
related to the error messaging in generative
application development were not well explored
before.

3 SCT model basics

The SCT generator model [9] is developed on the
basis of previous Scripting model of generator (SGM)
[7]. The model defines the source code generator from
three kinds of elements: Specification (S),
Configuration (C) and Templates (T). All three model
elements together make the SCT frame (Figure 1):
• Specification contains features of generated

application in form of attribute-value pairs.
• Template contains source code in target

programming language together with connections
(replacing marks for insertion of variable code
parts)

• Configuration defines the connection rules
between Specification and template.

Figure 1. SCT frame

Starting SCT frame contains the whole

Specification, the whole Configuration, but only the
base template from the set of all Templates. Other
SCT frames are produced dynamically, for each
connection in template, forming generation tree
(Figure 2). So, SCT generator model is generator
model based on dynamic frames, unlike some other
frames-based generator models, like XVCL [2].

It's important that SCT based generator is fully
configurable, so the whole generation process is
defined in Configuration, with no need to change the
code of generator itself.

Figure 2. The generation tree

As shown in Figure 2, the process of code generation
is recursive, where each level behaves as a whole
generator.

4 Possible SCT model
inconsistencies

There are several possible SCT model inconsistencies
that can occur during development of source code
generator: the existence of all needed files, correct
syntax according to SCT model definition,
insufficient Specification and mutual dependencies of
SCT elements.

Because the SCT model assumes the use of
several files, the first step is to check the existence of
these files. The next step is checking the syntax of
Specification and Configuration. The check of the
syntax of programming templates cannot be done at
this point since it can be done only on final source
code. If some necessary attributes and their values
are not specified, some connections in templates will
be unused and the generated source code will be
invalid. This could be detected regardless of
compiling: the necessary Specification attribute could
be found in Configuration according to the unused
connection in the generated code.

Specification and Configuration are mutually
dependent. All attributes in Specification have to be
defined in Configuration. Configuration and
Templates are also mutually dependent. All
connections that appear in program templates have to
be defined in Configuration. The check of existence
of all needed templates cannot be done because SCT
model allows selection of templates dynamically
based on values from the specification.

There are some issues related to syntactic
correctness of the generated code that are as a
consequence of the process of generating source code.
These errors are hard to detect because they depend
on target programming language. Some of them are:

usage of unsafe names in Templates, calls of
functions prior to their declarations, and breaking
program restrictions.

The usage of unsafe names in Templates
(variables, functions, classes etc.) is potential cause of
syntactic incorrectness because the attribute values
from Specification could collide with the names in
Templates. Using names with prefixes/suffixes could
reduce the risk. Some programming languages require
that functions are to be defined prior to their calls.
The order of Specification attributes could lead to the
breach of that rule. This could be solved by providing
function declarations prior to their use (which should
be included in Templates or generated). Breaking
program restrictions can be done be exceeding the
size limit and other restrictions caused by
Specification values.

Generally, the issues can be avoided/solved by the
appropriate generative application development
process, where building generators and generated
applications are closely connected processes. The
error messaging could significantly help in generative
application development process.

5 Error related messages

The current error related messages introduced in the
SCT generator model include errors, as obligatory
kind of messages, and warnings that could be ignored
in some cases. That is similar to error related
messages in standard programming languages (e.g.
structural and object-oriented). The whole list of error
related messages in the SCT generator model is given
in Table 1:

Error or
Warning Message/Explanation

Error 01

Specification attribute <attr. name> is not used in Configuration.

Incomplete Configuration or wrong specification attribute.

Error 02

No template file <file name>

Template that is specified in Configuration was not found.

Error 03

Connection <conn.> was not found in Configuration.

Connection in '#'-es that is used in template was not specified in
Configuration.

Error 04

Can't write into file: <file name>

Generated code can't be written in a file due to file/folder
protection, or file in use.

Error 05

Can't open Specification file: <file name>

Missing Specification file or file can't be read due to file/folder
protection, or file in use.

Error 06

Can't open Configuration file: <file name>

Missing Configuration file or file can't be read due to file/folder
protection, or file in use.

Error 07

Output types are not specified. Use OUTPUT keyword.

At least one output type has to be specified in Specification.

Warning
01

Attribute <attr. name> is used in Configuration, but not specified
in Specification.
Some attributes, and their values, should not to be specified in all
cases, so this message sometimes could be ignored.

Warning
02

Possibly incorrect output type <output type> for <attr. value>.

It is possible explanation of Error 01, for cases where <attr.
value> is a file name.

Table 1: Error-related messages

All error messages are related to SCT model
inconsistencies and help in building of SCT based
generators in a way similar to error messages in
standard programming languages. Decomposition of
error related messages among SCT model elements is
shown in Figure 3.

<
a
tt
ri
b
u
te
s
>

#
c
o
n
n
e
c
ti
o
n
s
#

Figure 3. Decomposition of error-related messages

Some errors related messages are placed in the

interconnection of two model elements because
Specification and Configuration share Specification
attributes, while Configuration and Templates share
connections (Figure 3). The example or Error report is
given in Figure 4.

Figure 4. Example of Error report

As shown in Figure 4, each error-related message
occurs as many times as it appears in generation
process.

6 An Example

Example is given for C++ linked lists generator.
Generator1 uses Specification, Configuration and set
of Templates to produce C++ source code.

1 Example is available at

http://generators.foi.hr/SCT_error_messages_example/index.html

Specification of the example generator includes
one output type (main), and two lists (Students and
Courses) with their attributes:

OUTPUT:main

main:output/linked_list.cpp (generated file)
list:Students (list name)
+key:student_id1 (subordinated attributes)
+field_int:student_id1
+field_char:surname
+field_char:name

list:Courses (list name)
+key:course_id (subordinated attributes)
+field_int:course_id
+field_char:course_name

Possible erroneous situations that target
Specification are as follows:
• Specification file can't be opened (Error 05)
• No one output type specified (Error 07)
• Incorrect output type (Warning 2; occurs if

filename specified for attribute that is not an
output type)

Configuration defines one basic template file

(main.metascript) that is connected to first output type
in Specification, and a list of configuration rules:

#1#,,main.metascript
#class_headings#,list,
 class_heading.metascript
#list#,list
#classes#,list,class.metascript
#attributes#,field_*,field_*.metascript
#field#,field_*
#attributes_entry#,field_*,
 attributes_entry.metascript
#attribute#,field_*
#attributes_print#,field_*,
 attributes_print.metascript
#head_allocation#,list,
 head_allocation.metasc ript
#menu#,list,menu.metascript
#cases#,list,cases.metascript
#key#,key

As could be seen in example, each Configuration

rule consists from connection (in '#'-es), attribute
name (as defined in Specification) and, optionally, a
lower level template (meaning that connection should
be replaced by whole template). Most of the
erroneous in SCT based generators are connected with
Configuration:
• Configuration file can't be opened (Error 06)
• No appropriate Configuration rule for

Specification attribute (Error 01)
• Attribute defined in Configuration is not used in

Specification (Warning 01; could be ignored if
attribute is optional)

• Template that is specified in Configuration was
not found or can't be opened (Error 02)

• Connection from Templates is not specified in
Configuration (Error 03)
Templates consist from 14 textual files

containing code templates. Main template is defined

in Configuration (main.metascript) giving the base
structure of program code to be generated:

// C++ linked lists
// SCT generated example
#include <iostream>
using namespace std;

#class_headings# (class headings)
#classes# (class bodies)
int main(){

int choice,arg;
int counter1;

#head_allocation# (allocation of lists headings)
do{

counter1 = 1;

#menu# (user options)
 cout << "\n 0. Exit";
 cout << "\n--------------------";
 cout << "\n-> Your choice: ";
 cin >> choice;
 counter1 = 1;

#cases# (function calls)
}while(choice != 0);
return 1;

}

Connections #class_headings#, #classes#,

#head_allocation#, #menu# and #cases# have to be
defined in Configuration (otherwise, Error 03 occurs).

Generated code includes code templates together
with the Specification values:

// C++ linked lists
// SMG generated example
#include <iostream>
#include <string.h>
using namespace std;

class Students; (class headings)
class Courses;

class cStudents{ (class body)
public:

cStudents *next; (pointer to next element)

int student_id; (attributes)
char surname[40];
char name[40];

. . . .

Generated code still can contain some syntax and

logical errors, regardless to correct SCT model. In the
example, these errors can be caused by following:
• insufficient Specification, e.g. attributes were not

specified,
• unsafe names were used in Templates, e.g.

variable names are same as Specification values
and

• calls of functions prior to their declarations
(caused by order in Specification).

7 Conclusion

Generative programming is a relative new approach in
automatic program generation, and there are no many

studies about error messaging systems in this
approach.

The system of error-related messages, that is part
of our SCT generation model, is presented in this
paper. Unlike object oriented programming
languages, errors in our system are related to the
consistency of the SCT model. Warnings refer to
possible inconsistencies, and developer should decide
about their relevance. The use of such error-related
messages systems makes building of source code
generators easier.

Developed system of error-related messages was
tested on the example of SCT based generator which
produces program code in C++ that deals with linked
lists.

References

[1] Apel S, Leich T, Saake G: Aspectual Feature

Modules, IEEE Transactions on Software
Engineering (TSE), 34(2), 2008, pp. 162-180.

[2] Bassett P: Framing Software Reuse - Lessons
From Real World, Yourdon Press, Prentice
Hall, 1997.

[3] Blair J, Batory D. A Comparison of Generative
Approaches: XVCL and GenVoca, Technical
Report, ftp://ftp.cs.utexas.edu/pub/predator/xvcl-
compare.pdf

[4] Johnson RE, Foote B: Designing Reusable
Classes, Journal of Object-Oriented
Programming, 1(2), 1988, pp. 22-35.

[5] Lemaire C: CodeWorker: A universal parsing
tool & a source code generator,
http://codeworker.free.fr/

[6] Lovrenčić A, Konecki M, Orehovački T: 1957-
2007: 50 Years of Higher Order Programming
Languages, Journal of Information and
Organizational Sciences, 33(1), 2009, pp. 79-150.

[7] Magdalenić I, Radošević D, Skočir Z: Dynamic
Generation of Web Services for Data Retrieval
Using Ontology, Informatica, 20(3), 2009, pp.
397-416.

[8] Prehofer C: Feature-Oriented Programming: A
Fresh Look at Objects. Lecture Notes in
Computer Science, Springer-Verlag, Berlin,
Germany, 1241, 1997. pp. 419-443.

[9] Radošević D, Magdalenić I: Source Code
Generator Based on Dynamic Frames, Journal

of Information and Organizational Sciences,
2011, in press.

[10] Radošević D, Orehovački T: An Analysis of
Novice Compilation Behavior using
Verificator , Proceedings of the 33rd International
Conference on Information Technology
Interfaces, 27th – 30th June, Cavtat, Croatia, 2011,
in press.

[11] Rhodes G: Common Beginner C++
Programming Mistakes. Valencia Community
College,
http://fd.valenciacc.edu/file/grhodes4/CommonB
eginnerMistakes.pdf [20/04/2011]

[12] Rinker B: Error Messages and Debugging in
C++. University of Idaho, Computer Science
Department, 2002. http://www2.cs.uidaho.
edu/~rinker/cs113/errors.pdf [20/04/2011]

[13] Rosenmüller M, Siegmund N, Saake G, Apel S:
Code Generation to Support Static and
Dynamic Composition of Software Product
Lines, Proceedings of the 7th International
Conference on Generative Programming and
Component Engineering, 19th - 23th October,
Nashville, Tennessee, USA, 2008, pp. 3-12.

[14] Teorey TJ, Ford AR: Practical Debugging in
C++, Prentice Hall, 2001.

[15] Zhang H, Jarzabek S: XVCL: a mechanism for
handling variants in software product lines,
Science of Computer Programming, Elsevier,
The Netherlands, 53(3), 2004, pp. 381-407.

