
The Impact of Application Non-Functional
Requirements on Enterprise Architecture

Darko Galinec

Information and Communication Technology
Department

Ministry of Defence of The Republic of Croatia
Bauerova 31/2., Zagreb

darko.galinec@morh.hr

Ljerka Luić
B4b Zagreb

Ulica grada Vukovara 271
ljerka.luic@b4b.hr

Abstract. Enterprise architecture (EA) is seen as a
key enabler for driving information technology (IT)
cost down and speed benefit delivery, so that the right
solutions are delivered faster and cheaper [6].
However, EA can no longer focus on cost reduction
and IT rationalization, but must shift to delivering
strategic business value [13]. Many EA teams still use
IT architecture as a term synonymous with EA. This
misperception limits EA scope and, thus, possible
business outcomes and EA value [16]. By producing
an EA, architects are providing a tool for identifying
opportunities to improve the enterprise, in a manner
that more effectively and efficiently pursues its
purpose. In this paper we examine means for
enterprise architecture improvement, in order to help
the enterprise architecture team produce a compelling
value proposition. By focusing on non-functional
requirements of the software applications within EA
description and appliance, we investigate its impact
on EA. We find them as one of key artifacts of EA for
complex business technology initiatives support in
achieving enterprise strategic goals.

Keywords. application, non-functional
requirements, enterprise architecture.

1 Introduction

An enterprise architecture (EA) is a rigorous
description of the structure of an enterprise, which
comprise enterprise components (business entities),
the externally visible properties of those components,
and the relationships (e.g. the behavior) between them
[5], [4], [21]. Within the definiton of EA mentioned
above, description of EA is comprehensive, including
enterprise goals, business process, roles,
organizational structures, organizational behaviors,
business information, software applications and
computer systems. Practitioners of EA are "enterprise
architects." An enterprise architect is a person
responsible for developing the enterprise architecture
and is often called upon to draw conclusions from it.

A business application delivers value to the
business by providing support for business processes.
The business invests in applications because the

investment is seen to deliver some real value by
delivering the functional requirements e.g. the visible
functionality that is necessary for these processes. An
application is a complex engineering system that
needs to be able to deliver value throughout its life
cycle. There are many aspects of the engineering
design and construction of an application that do not
provide visible support for the business process
directly but which are nevertheless critical to the
efficient operation of the application: non-functional
requirements. Non-functional requirements or
attributes have been given different names in different
disciplines such as “non-functional properties”,
“service level agreement properties”, “quality of
service properties” or “extra-functional properties”,
which include security, availability, reliability,
maintainability, agility, timeliness, location, price,
performance and many other aspects of the system
that are not immediately obvious to the user but which
have a big impact on the applications value.

When new applications are developed the most
commonly emphasized non-functional requirements
are “cost to go live” and “time to go live”. Failure to
consider many other non-functional requirements
during the architecture and design phase of the system
generally means accepting far higher lifetime costs
and lower lifetime satisfaction [12, p. 1].

2 The scope of an enterprise

architecture

The term enterprise refers to a complex, socio-
technical system that comprises interdependent
resources of people, information, and technology that
must interact with each other and their environment in
support of a common mission [5], [4].
The term "enterprise" is used because it is generally
applicable in many circumstances, including

• Public or Private Sector organizations,
• An entire business or corporation,
• A part of a larger enterprise (such as a business

unit),
• A conglomerate of several organizations, such

as a joint venture or partnership,

• A multiply-outsourced business operation.
Defining the boundary or scope of the enterprise to be
described is an important first step in creating the
enterprise architecture. It should also be noted that the
term "enterprise" as used in enterprise architecture
generally means more than the information systems
employed by an organization.[14]

2.1 Methods and frameworks

Enterprise architects use various business methods,
analytical techniques and conceptual tools to
understand and document the structure and dynamics
of an enterprise. In doing so, they produce lists,
drawings, documents and models, together called
"artifacts". These artifacts describe the logical
organization of business functions, business
capabilities, business processes, people organization,
information resources, business systems, software
applications, computing capabilities, information
exchange and communications infrastructure within
the enterprise.

An enterprise architecture framework collects
together tools, techniques, artifact descriptions,
process models, reference models and guidance used
by architects in the production of enterprise-specific
architectural description. Describing the architecture
of an enterprise aims primarily to improve the
effectiveness or efficiency of the business itself. This
includes innovations in the structure of an
organization, the centralization or federation of
business processes, the quality and timeliness of
business information, or ensuring that money spent on
IT can be justified. An Enterprise Architecture
Framework is a framework for an enterprise
architecture which defines how to organize the
structure and views associated with an enterprise
architecture.

2.2 View and modeling perspectives

A view of a system is a representation of the system
from the perspective of a viewpoint. This viewpoint
on a system involves a perspective focusing on
specific concerns regarding the system, which
suppresses details to provide a simplified model
having only those elements related to the concerns of
the viewpoint. For example, a applications viewpoint
focuses on applications concerns and a applications
viewpoint model contains those elements that are
related to applications from a more general model of a
system [4].

A view allows a user to examine a portion of a
particular interest area. For example, an Information
View may present all functions, organizations,
technology, etc. that use a particular piece of
information, while the Organizational View may
present all functions, technology, and information of
concern to a particular organization. In the Zachman
Framework views comprise a group of work products

whose development requires a particular analytical
and technical expertise because they focus on either
the “what,” “how,” “who,” “where,” “when,” or
“why” of the enterprise. For example, Functional
View work products answer the question “how is the
mission carried out?” They are most easily developed
by experts in functional decomposition using process
and activity modeling. They show the enterprise from
the point of view of functions. They also may show
organizational and information components, but only
as they relate to functions [20].

Modeling perspectives is a set of different ways
to represent pre-selected aspects of a system. Each
perspective has a different focus, conceptualization,
dedication and visualization of what the model is
representing. In information systems, the traditional
way to distinction between modeling perspectives is
structural, functional and behavioral/processual
perspectives. This together with rule, object,
communication and actor and role perspectives is one
way of classifying modeling approaches [10].

2.3 The Zachman framework and The Open

Group Architecture framework

The Zachman Framework is often referenced as a
standard approach for expressing the basic elements
of enterprise architecture. The Zachman Framework
has been recognized by the U.S. Federal Government
as having "...received worldwide acceptance as an
integrated framework for managing change in
enterprises and the systems that support them" [1].
Example of enterprise architecture frameworks in
military (defense industry frameworks) are:

• DoDAF - the US Department of Defense
Architecture Framework,

• MODAF - the UK Ministry of Defence
Architecture Framework,

• NAF - the NATO Architecture Framework,
• AGATE - the France DGA Architecture

Framework,
• DNDAF - the DND/CF Architecture

Framework (Canada).
The Open Group Architecture (TOGAF) framework

divides the practice of enterprise architecture into
three domains: "Business Architecture", "Information
Systems Architecture" and "Technology Architecture"
and then subdivides the information systems
architecture into "Information Architecture and
"Applications Architecture"[18].

3 Information technology

architecture and enterprise
architecture

EA obviously does not focus only on IT change; EA
also addresses business change. When EA derives
requirements for change in the different EA areas, as

part of EA strategizing to define the business context,
it provides a much more business-visible linkage
between IT strategy and investments. Changes in
technology can be mapped back to information,
people or process changes, and through those changes
to business strategies. This missing thread of
justification, this line of sight, is what a true EA
approach really adds, and where IT architecture
normally falls short.

3.1 Application systems

Many EA teams and their stakeholders still use the
term "IT architecture" to refer to EA. This effectively
limits EAs scope and the value delivered, and
increases the risk that the EA program will be ignored
or cut. IT architecture is not synonymous with EA. IT
architecture typically means focusing only on the
enterprise technical architecture (ETA) aspects of EA.
IT architecture always includes individual solution or
project architecture work, which is not EA activity at
all. Therefore, move from an IT architecture approach
to a full EA approach is to be made. Usage of the term
"IT architecture" — which is certainly not a synonym
for EA — is to be avoided. Those who still use IT
architecture and EA synonymously are to be educated,
clarifying the significantly wider scope and value of
holistic EA [16].

Software product development is typically carried
out in project settings in which complexity,
unpredictability, and continuous change is common
[9]. Software development projects, as a form of
work, often involve complex problem solving as well
as potentially changing customer requests, tasks,
colleagues, and physical places of work. New
software product development is typically carried out
in projects. There are several established approaches
to new product development, which have focused on
exploring processes of new product development
projects. Much mainstream new product development
research has investigated how such projects are
managed and how new product development
processes can be improved [3].

3.2 Enterprise architecture as a Service

If the process isn’t real life then people will subvert it.
Processes are not the be all and end all of the way
organizations work because much of what happens is
independent of the formal processes. Trying to
formalize interactions between different business
teams can make life overly complex [6].

Architecture is seen as a key enabler for driving
IT cost down and speed benefit delivery, so that the
right solutions are delivered faster and cheaper.

For most of stakeholders (project teams, service
teams, planners and architects, infrastructure
providers, business and IT planners) the “Architecture
Process” is obscure. According to their perception
“architecture is there to enforce compliance with

standards”, “architecture stifles innovation”,
“architecture slows our projects down”.

As a solution, delivering the architecture
capabilities as a service is proposed where key
stakeholders engage with the service, their
engagement is event driven, not process driven and
architecture processes are disengaged from other
project processes. Metrics drive behavior: service
metrics illustrate what architecture delivers
independently of what projects deliver, positive
measures encourage use of the service.

3.3 System attributes

Business can invest in an application system by
developing, licensing or subscribing, but the primary
aim of the business stakeholders tends to be the
functionality: what the application system does. The
investment is being made because some business
benefit is being sought, and the evaluation of the
target application is centered around the way in which
it will deliver that business benefit. Alongside these
"functional fit" evaluation criteria there are often
some "non-functional" system attributes which need
evaluation. These might include issues such as "ease
of use" or "multi-language support".

Very few organizations have an effective
mechanism for defining requirements for a broad
range of application attributes in a consistent manner.
There are many different system attributes but most
enterprises seem to be somewhat haphazard when it
comes to defining the minimum required
measurement to be applied to each and every
attribute. For example the requirements team may fail
to explicitly specify the requirements for
"availability" in terms of hours per day or week or
month and frequency of permissible downtime. If no
such attribute requirements definition exists then
every design will be evaluated without reference to
this attribute. Later on, when the investment decision
has been made and money has been spent, there is
plenty of opportunity to rue the absence of an
"availability" goal [12, p. 3].

When a business team decides to invest in a new
business application, ownership of the functional
specification resides with the lead business team,
whether this is a transformation of business process
improvement team or simply the management team of
the funding group. The business owners of the
functional specification will doubtless be assisted by
consultants, business analysts and process design
specialists, but the final decision rests with "the
business".

4 Non-functional requirements

The ownership of non-functional requirements
(attributes) is much less clear. Some may be a visible
component of the project brief (e.g. "the application

must be available 24/7 to support all the countries
where we operate) but inadequately specified or over-
specified. But many system attributes are completely
missing from the project brief – not mentioned, not
specified, not designed for and not funded. This is
dangerous – particularly because it means that many
different stakeholders will have different expectations
of what they think that they are paying for.

The completeness of the design specification of
any application must be the responsibility of the
Information technology department – no other
functional group in the enterprise has the capability to
understand the nonfunctional requirements and the
cost implications of setting design targets. Within the
information technology department it is the enterprise
architecture team who should shoulder this
responsibility, working alongside the project
management office.

4.1 ISO 9126 Software Quality Model

ISO 9126 provides structure for understanding non-
functional requirements: ISO 9126-1 (Table 1). The
six groupings (Functionality, Reliability, Usability,
Efficiency, Maintainability and Portability) are each
decomposed into a number of sub-definitions [8].

The challenge for an enterprise architecture team
is to extract from this source the key elements that
should be articulated for any given project proposal,
and to develop a local set of tools that support the
understanding of and discussions about the
appropriate level that any specific non-functional
requirements should achieve.

A project brief should include sections for each of
the high-level attribute groupings, with option
selection of specific lower-level attribute definitions.
The non-functional requirements specifications should
be [12, p. 6]:
• Complete: including "no known requirements"
• Transparent: avoiding using technical jargon –

explain the value choices that will need to be made
in terms that non-technical managers can
understand

• Ranged: Not specifying a single value. Rather, the
recommended lower and upper levels of
specification should be specified and the cost and
performance implications should be explained.

• Measurable: Showing how the achievement of the
specified level can be tested.

• Comparative: Comparing the proposed behavior of
the system with known references, both within and
outside the business. e.g. – "the same level of
availability as our email system". This greatly
assists the non-technical manager in understanding
the proposal.

The project tends to become the dominating way
of organizing operations in many industries. An
increasing number of organizations are identified as
‘project-based’, i.e. organizations where almost all
operations are organized as projects and where

permanent structures fill the function of
administrative support. The projectified society means
that more and more organizational members are being
redefined as project workers and project managers [2],
which has an effect on their identity. Enterprise logic,
that is, initiative, energy, self-reliance, boldness,
willingness to take responsibility for one’s actions,
might even become a major element in their self-
identities [17]. However, because project management
focuses on structure, activities, and control, identity
issues in project settings have been relatively
unexplored.

4.2 ISO 9126 observations

ISO 9126 is an international standard for the
evaluation of software. The standard is divided into
four parts which addresses, respectively, the following
subjects: quality model; external metrics; internal
metrics; and quality in use metrics.

For the most part, the overall structure of ISO
9126-1 is similar to past models, although there are a
couple of notable differences. Compliance comes
under the functionality characteristic, this can be
attributed to government initiatives like SOX. In
many requirements specifications all characteristics,
that are specified, that are not pure functional
requirements are specified as non-functional
requirements. It is interesting to note, with ISO 9126,
that compliance is seen as a functional characteristic.

Using the ISO 9126-1 (or any other quality
model) for derivation of system requirements brings
clarity of definition of purpose and operating
capability. For example a rules engine approach to
compliance would enable greater adaptability, should
the compliance rules change. The functionality for
compliance could be implemented in other ways but
these other implementation methods may not produce
as strong an adaptability characteristic as rules, or
some other component based, architecture.

Also, a designer typically will need to make trade
offs between two or more characteristics when
designing the system. Consider highly modularized
code, this code is usually easy to maintain, i.e. has a
good changeability characteristic, but may not
perform as well (for central processing unit resource,
as unstructured program code). On a similar vein a
normalized database may not perform as well as a not
normalized database. These trade offs need to be
identified, so that informed design decisions can be
made.

Although ISO 9126-1 is the proposal for a useful
quality model of software characteristics, it is unlikely
to be the last. The requirements (including
compliance) and operating environment of software
will be continually changing and with this change will
come the continuing search to find useful
characteristics that facilitate measurement and control
of the software production process [8].

Table 1: ISO 9126-1 software quality model - structure for understanding non-functional requirements
Characteristics Subcharacteristics Definitions

 Suitability This is the essential Functionality characteristic and refers to the
appropriateness (to specification) of the functions of the software.

 Accurateness This refers to the correctness of the functions, an ATM may provide a cash
dispensing function but is the amount correct?

Functionality Interoperability
A given software component or system does not typically function in isolation.
This sub characteristic concerns the ability of a software component to interact
with other components or systems.

 Compliance
Where appropriate certain industry (or government) laws and guidelines need to
be complied with, i.e. SOX. This sub characteristic addresses the compliant
capability of software.

 Security This sub characteristic relates to unauthorized access to the software functions.

 Maturity This sub characteristic concerns frequency of failure of the software.

Reliability Fault tolerance The ability of software to withstand (and recover) from component, or
environmental, failure.

 Recoverability Ability to bring back a failed system to full operation, including data and
network connections.

 Understandability Determines the ease of which the systems functions can be understood, relates
to user mental models in Human Computer Interaction methods.

Usability Learnability Learning effort for different users, i.e. novice, expert, casual etc.

 Operability Ability of the software to be easily operated by a given user in a given
environment.

Efficiency Time behavior Characterizes response times for a given thru put, i.e. transaction rate.

 Resource behavior Characterizes resources used, i.e. memory, cpu, disk and network usage.

 Analyzability Characterizes the ability to identify the root cause of a failure within the
software.

Maintainability Changeability Characterizes the amount of effort to change a system.

 Stability Characterizes the sensitivity to change of a given system that is the negative
impact that may be caused by system changes.

 Testability Characterizes the effort needed to verify (test) a system change.

 Adaptability Characterizes the ability of the system to change to new specifications or
operating environments.

Portability Installability Characterizes the effort required to install the software.

 Conformance
Similar to compliance for functionality, but this characteristic relates to
portability. One example would be Open SQL conformance which relates to
portability of database used.

 Replaceability Characterizes the plug and play aspect of software components, that is how easy
is it to exchange a given software component within a specified environment.

4.3 Consequences of investment
decisions

Each software project commences with
requirements specification phase. Unspecified
requirements present a constant rise of errors,
disillusionment, and costly solutions required to fix
them. Frequent changes of processes and
technologies direct adaptive and tool supported
requirement specification.

The dangers and cost of standardization in
organizations have been neglected, including
impacts on subjectivities [7]. Complex ways in
which individuals respond to dominant discourses
of organizations seem to be under-explored [19].

The basic effort for designers and architects is
in the conflict between getting quick and cheap
solutions and the need to design a system where the
lifetime total cost of ownership (TCO) is
acceptable. The problem is that for a project
manager the objective is to deliver the project and
for the business manager under pressure, "benefits
soon" is tangible whereas "benefits later" may well
accrue to somebody else. All this means that many
of the necessary non-functional requirements are
ignored or ruled out of scope or out of budget.

There will be times when it is the correct
choice for the enterprise to decide to make the
application quickly and not to add the complexity
and cost of higher levels of performance of non-
functional requirements. However, if the business
decides that "quick and cheap" is what they want, it
is then invidious of the business to complain later
that the resultant application system is expensive to
operate or slow to adapt to changing business
demands.

The challenge for enterprise architects is to
ensure that the consequences of investment
decisions are clearly presented and understood by
all the appropriate stakeholders – not just the
managers who are seeking the solution, but the
more senior levels of the management team. In
many cases, the pressure on a project team is to find
a way of delivering the required functionality for
less cost in the initial project. This downward
pressure on the cost of the project tends to result in
less attention being paid to the non-functional
requirements which affect the operational costs and
the change management costs after the "go live"
date [12, p. 11].

4.4 Setting up the non-functional

requirements at an appropriate level

In order to set the non-functional requirements for
an application at an appropriate level to support the
business it is necessary to have some view of how
the application will evolve over its life. If an
application is likely to be very stable then there is

little point in taking extraordinary efforts to make
the application highly adaptable. If the application
will only ever be used within one country then there
is little value in investing in high localizability
levels in the design.

One of the fundamental determinants of the
lifetime total cost of ownership is the overall
volatility of the application. This volatility has two
constituent components: functional volatility and
scope creep. Functional volatility examines the
extent to which the business rules or data are likely
to change throughout the life of the application.
Scope creep examines the way in which the
application is likely to extend its reach though the
addition of new functionality or integration with
other applications. The Maintainability non-
functional requirements for the application should
be set at a level that is appropriate to the expected
future volatility [12, p. 12].

Maintenance is discipline in information and
communications technology which is frequently
underfunded and undervalued. Enterprise architects
should see maintenance as an essential component
of any well-run information technology department
and should seek to ensure that all aspects of the
maintenance task are properly resourced and
valued. In particular, it is important to look at the
ways in which the maintenance function can
modify the application to change the characteristics
of the system through perfective maintenance. This
is particularly important where the investment team
have taken a decision to downgrade key non-
functional requirements in order to save funds and
time in the initial implementation, but have
accepted that there will be a need to reinstate the
original higher levels of performance in order to be
able to get maximum value from the application
throughout its life.

The problem with these decisions is that all too
often the intention gets lost as maintenance budgets
are trimmed and the demands of corrective and
adaptive maintenance overwhelm the team.

4.5 Post-implementation analysis

Most well-run organizations now understand the
value of post-implementation benefits analysis.
This important activity needs to be matched by
continuous evaluation of the non-functional
performance of the application. All the non-
functional requirements should have appropriate
measures and regular reporting mechanisms that
assess current performance against the designed
objectives and against current needs. It may be that
some non-functional requirements have been set at
too high a level, and these could be allowed to be
downgraded. Others will be behaving as designed,
but the needs of the business have changed and now
higher levels of performance may be required. All
this data should be used to refine the way in which

non-functional requirements are set and managed
for future projects.

Modifying the design attributes of an
application is generally an expensive and difficult
task. If it is to be undertaken then it is best done
generally during the first third of the expected life
cycle of the application. Eventually, as an
application is being prepared for decommissioning,
there will be a period when no changes should be
contemplated. The investment profile for an
application should recognize that the initial project
to create the application is just the beginning of the
investment, not the end.

Since enterprise architecture is a
comprehensive framework used to manage and
align an organizations IT assets, people, operations,
and projects with its operational characteristics, it
defines how information and technology will
support the business operations and provide benefit
for the business. Well-documented and well
understood enterprise architecture enables the
organization to respond quickly to changes in the
environment in which the organization operates. It
serves as a ready reference that enables the
organization to assess the impact of the changes on
each of the enterprise architecture components. It
also ensures the components continue to operate
smoothly through the changes [14]. Enterprise
architects should work with project sponsors to find
ways of financing the essential post-project
activities that will be necessary to make the
application a valuable asset for as long as possible.

5 Conclusion

This paper briefly reviews some typical
requirements and highlights potential contributions
that application non-functional properties can make
to enterprise architecture. In this connection
pertinence of non-functional requirements for
enterprise architecture is especially emphasized.

Non-functional attributes describe the nature,
mechanism, or context of the application execution
(how and under which conditions is the application
doing). Hence, we examine application non-
functional attributes impact on enterprise
architecture and find them substantial for
enterprises, suggesting their long-term implications
for enterprise architectures. Modeling non-
functional requirements is the critical step for
achieving successful realization of complex
application development projects.

According to this we consider application non-
functional requirements as an architectural element
affecting IT as well as organizational issues and
thus enterprise architecture appliance. Therefore
application non-functional requirements raise the
question for interdependencies between IT and
organization. Application non-functional
requirements are major component in complex

information and technology systems which have a
significant influence on business processes. They
are of great importance through all steps of
application development, starting with requirement
specification, over non-functional requirements
modeling, to their implementation.

Successful application development depends
tightly on many other requirements beside
functional ones. Very late and missing specification
of security attributes in application development
cause that developers in the later development
phases must manage different security requirements
and configurations ad-hoc and manually, which
negatively affects development costs. We find that
there is a considerable gap between the importance
of application non-functional requirements in EA
and the way they are used in enterprises today.
Consequently, application development must
support specification of non-functional
requirements in the design phase and traceability
i.e. mapping of non-functional requirements to
software solutions within enterprise architecture.

Cost reduction alone does not provide a
compelling justification for an enterprise
architecture program. With the business focus
shifting to agility and competitive advantage,
enterprise architects need to focus on improving the
availability of management information, supporting
business growth and enabling strategic business
development.

An application strategy represents a plan to
achieve a business outcome via the use of
technology, where the result is recognized to be the
optimum balance between the conflicting
requirements of stakeholders. It is a long-term view
that enables companies to make short-term
technology decisions. An effective application
strategy enables enterprises to balance stakeholders'
(internal and external) needs to decide on a path for
technology investments. The more often this plan is
in place and followed, the better prepared a
enterprise will be for the future.

The enterprise architecture value proposition
should be focused on the major strategic drivers
articulated in the business strategy and the way EA
program will support the business in achieving its
strategic goals by transparently linking the
architectural direction and requirements to those
strategic goals. This results in an EA program that
not only serves the business better by focusing on
what is important to the business, but also elicits
much stronger support and engagement from the
business, which significantly increases the program
chances of success.

In this regard, the paper suggests importance of
non-functional requirements established within
enterprise architecture and identifies is as
component that prevents loss, leverages
organizations functioning and enhances business to
continue to maintain a level of sustainable

competitive advantage, as well as to exploit
business opportunities.

References

[1] Chief Information Officers (CIO) Council:

Federal Enterprise Architecture
Framework, USA, 1999.

[2] Cicmil S., Hodgson D.E.: New possibilities

for project management theory: a critical
engagement, Project Management Journal,
37(3): 111-122., Project Management Institute
(PMI), USA, 2006.

[3] Cooper R.G.: Stage-gate systems: a new tool

for managing new products, Business
Horizons, 33(3): 44-54 SciVerse
ScienceDirect, NL, 1990.

[4] Enterprise Architecture Research Forum

(EARF): EARF definition for EA, available at
http://earf.meraka.org.za/earfh
ome/defining-ea, Accessed: 17th January
2011.

[5] Giachetti R.E.: Design of Enterprise Systems,

Theory, Architecture, and Methods, CRC
Press, Boca Raton, FL, USA, 2010.

[6] Haine P.: Managing Processes as Services,

Business Process Management Conference
Europe 2005, BPM Group, London, UK, 2005.

[7] Hodgson D., Cicmil, S.: The politics of

standards in modern management: making
‘the project’ a reality, Journal of Management
Studies, 44(3): 431-450., Wiley, USA, 2007.

[8] International Standardization Organization

(ISO): ISO 9126 Software Quality
Characteristics, available at
http://www.sqa.net/iso9126.html, Accessed
January 11th 2011.

[9] Kolehmainen S.: The dynamics of control

and commitment in IT firms, Information
Society and the Workplace: Spaces,
Boundaries and Agency, Routledge, UK, 2004.

[10] Krogstie J., Sølvberg A.: Information systems

engineering - Conceptual modeling in a
quality perspective, Kompendiumforlaget,
Trondheim, Norway, 2003.

[11] Kyte A.: A Framework for the Lifetime

Total Cost of Ownership of an Application,
Research, Gartner, Inc., 2010.

[12] Kyte A.: Applications — Functional
Requirements are Only Half the Story,
Gartner Briefing, Gartner, Inc., Zagreb, 2010.

[13] Lapkin A., Papegaaij B.: Business Strategy

Defines Enterprise Architecture Value,
Research, Gartner, Inc., USA, 2010.

[14] National Institutes of Health (NIH) Enterprise

Architecture: What is enterprise
architecture?, available at
http://enterprisearchitecture.n
ih.gov/About/What/, Accessed: 18th
January 2011.

[15]Nelson D.S., Sribar V.T., Kyte A.: Signs

Indicate a Train Wreck is Coming, Unless
You Modernize IT, Research, Gartner, Inc.,
2008.

[16] Robertson B.: IT Architecture Is Not

Enterprise Architecture, Research, Gartner,
Inc., USA, 2010.

[17] Storey J., Salaman G., Platman K.: Living with

enterprise in an enterprise economy:
freelance and contract workers in the media,
Human Relations, 58(8): 1033-1054., SAGE,
UK, 2005.

[18] The Open Group: The Open Group

Architectural Framework (TOGAF) 8.1.1,
available at
http://www.opengroup.org/archit
ecture/togaf8-doc/arch/toc.html,
Accessed: 14th January 2011.

[19] Thomas R., Davies A.: Theorizing the micro-

politics of resistance: new public
management and managerial identities in
the UK public service, Organization Studies,
26(5): 683-706., SAGE, UK, 2005.

[20] US Department of the Treasury Chief

Information Officer Council: Treasury
Enterprise Architecture Framework,
Version 1, USA, 2000.

[21] Weill P., MIT Center for Information Systems

Research: Enterprise Architecture, The Sixth
e-Business Conference, Barcelona, Spain,
2007.

