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Some useful structures for categorical approach for
program behavior

Abstract. Using of category theory in computer
science has extremely growth in the last decade.
Categories allow us to express mathematical
structures in unified way. Algebras are used for
constructing basic structures used in computer
programs. A program can be considered as an
element of the initial algebra arising from the
used programming language. In our contribution
we formulate two ways of expressing algebras
in categories. We also construct the codomain
functor from the arrow category of algebras into
the base category of sets which objects are also the
carrier-sets of the algebras. This functor expresses
the relation between algebras and carrier-sets.
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1 Overview

The aim of programming is to construct such cor-
rect programs and program systems that during
their execution provide expected behavior. A pro-
gram can be considered as an element of the ini-
tial algebra arising from the used programming lan-
guage [12]. Algebraic structures and number sys-
tems are widely used in computer science. They
allow to abstract from concrete objects which leads
to the mathematical branches of abstract algebra
and universal algebra. On the other hand, cate-
gory theory provides possibilities to model many
important features of computer science [1, 6] and
it affords suitable structures for the describing pro-
gram construction using algebras T (C) → C and

for modelling observable behavior using coalgebras
C → T (C), where C is a category object and T is
a polynomial endofunctor induced by a signature.
Algebra and coalgebra are from category’s point of
view dual constructions [17]. In this contribution
we present two ways of expressing the relation of
T -algebras and their carrier-sets. We define arrow
category of algebras and Kleisli arrow category of
algebras. The relation we will formulate with the
codomain functors.

2 Basic Concepts

Algebraic and coalgebraic concepts are based on
category theory. Roughly speaking it is related to
algebra and coalgebra, but far more general [3, 9].
A category C is mathematical structure consisting
of objects, e.g. A,B, . . . and morphisms of the form
f : A → B between them. Every object has the
identity morphism idA : A → A and morphisms
are composable. Because the objects of category
can be arbitrary structures, categories are useful in
computer science, where we often use more com-
plex structures not expressible by sets. Morphisms
between categories are called functors, e.g. a func-
tor F : C → D from a category C into a category D
which preserves the structure. In this contribution
we use only the category Set with sets as objects
and functions between them as morphisms, but this
approach can be extended to categories of arbitrary
complex objects.
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3 Algebras in category

In our research we are interested in formal descrip-
tion of program construction by algebras and be-
havior theory of programs. Construction of al-
gebras over the signatures is important approach
[9, 14]. We define the endofunctor over the appro-
priate category for substantiation of the signature
operations for a given program. Such a functor we
call the polynomial functor.

Algebras over signatures we construct in cate-
gory. We use basic category Set of sets and func-
tions. Let T be an endofunctor

T : Set→ Set (1)

Operations in signature determine polynomial
endofunctor that can be constructed inductively
from T using constants, identities, products, co-
products and powersets. One of the most used cat-
egorical forms of algebra is as follows: we define
T -algebra as a pair

(A, a)

T -algebra is a model of signature and its carrier-
set is the representation of the type. The algebraic
structure (or structuring map) is defined as cotuple
function of constructors cons1, . . . , consn:

a = [cons1, . . . , consn] : T (A)→ A

The relations between algebras are defined by al-
gebra homomorphisms. Let (A, a) and (B, b) be
T -algebras. A homomorphism f∗ : (A, a) → (B, b)
of T -algebras is the function f : A → B between
carrier-sets, which commutes with the operations
as it is illustrated on the following diagram at the
Fig. 1

T (A)
T (f)- T (B)

A

a

?

f
- B

b

?

Figure 1: The relation between algebras

so it holds the universal property f ◦ a = b ◦ T (f).

Homomorphisms of T -algebras can be composed,
and every T -algebra (A, a) has the identity ho-
momorphism id(A,a) : (A, a) → (A, a), therefore
we can construct the category ALG of T -algebras
consisting of T -algebras as objects and homomor-
phisms between them as category morphisms. The
most important concept in algebraic approach is
the initial T -algebra [9, 10]. An T -algebra is initial
if for arbitrary T -algebra there is unique homomor-
phism from initial to arbitrary T -algebra. Initial T -
algebras, if they exists have some important prop-
erties:

• they are unique up to isomorphism, therefore
we write initial T -algebra as u : T (U) ∼= U ,
and

• the initial algebra has an inverse u−1 : U →
T (U)

In the other words, from the first property it fol-
lows that there exists at most one initial T -algebra.
Because from the initial T -algebra exists unique
homomorphism to every T -algebra, the initial T -
algebra is the initial object in the category ALG.
The second property was proved in [11] and says
that the initial T -algebra is the least fixed point of
the functor T . Initial algebras are generalizations of
the least fixed points of monotone functions, since
they have unique maps into arbitrary T -algebra.

Such formulated category of T -algebras allows us
to work with algebras as with unique objects. If we
want to formulate the relations between algebras
and carrier-sets, we need to define the couple of
two adjoint functors F a U [5, 15]. The functor
U is forgetful functor which assigns to any alge-
bra from category of sets an appropriate carrier-set
from the category of sets. Vice versa, the functor
F has to be generating functor. But there is also
another form of representation of algebras in cate-
gory. By availing of properties of the algebras and
some special categories, we enclose algebras in the
arrow category.

4 Arrow category for algebras

For simpler handling of algebras in category we de-
fine algebras in another form: we will interpret al-
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gebraic structure given by the (A, a) as a map

TA
a−→ A

For such expressed algebras we define category of
morphisms - the arrow category. For formulation of
the relation between algebras and carrier-sets we in-
troduce the codomain functor from arrow category
into category of carrier-sets.
Now we define the category of algebras as ar-
row category. This category of algebras we de-
note TALG. It consists of algebras of the form
TA

a−→ A, TB b−→ B, . . . as objects and mor-
phisms between objects. Morphisms are algebra
homomorphisms of the form (f, a, b), where map f
is the function between codomains of the appropri-
ate algebras - the carrier-sets A and B

f : cod(a)→ cod(b)

as it is depicted at Fig. 2.

TA
a - A

TB

Tf

?

b
- B

f

?

Figure 2: Morphism of algebras

In the category we also define for each alge-
bra TA a−→ A the identity morphism of the form
(idA, a, a) (Fig. 3).

TA
a - A

TA

TidA

?

a
- A

idA

?

Figure 3: Identity morphism of algebras

It also holds, that morphisms are composable: for
(f, a, b) and (g, b, c) we have (g ◦ f, a, c) as it is de-
picted at Fig. 4.

TA
a - A

TB

Tf

? b - B

f

?

TC

Tg

?

c
- C

g

?

Figure 4: Composition of algebra homomorphism

An initial algebra in the category TALG is the
initial object of that category. It is the least fixed
point of the functor T . The least fixed point of the
functor T we denote also as µT . Seeing that it is
the T -algebra, there exists operation in defined as

in : T (µT )→ µT

The T -algebra (µT, in) is the initial T -algebra, if for
any T -algebra (A, a) there exists an unique arrow
cata a : µT → A making the diagram at Fig. 5
commute.

TµT
in - µT

TA

T (cata a)

?

a
- A

cata a

?

Figure 5: Diagram for initial algebra

satisfying the universal property:

cata a ◦ in = a ◦ T (cata a)

The morphism cata(−) we call the catamorphism.
The initial algebra (µT, in) is the initial object
in the category TALG and the catamorphism
cata(−) is the mediating arrow out of it. It also
holds that the initial algebra exists if T is ω-
cocontinuous (i.e. it preserves the colimits of ω-
chains) [3]. From the existence of initial algebra
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it implies the property called the reflection, that it
holds

id = cata in

5 Monads

From one point of view, a monad is an abstraction
of certain properties of algebraic structures. From
another point of view, it is an abstraction of certain
properties of adjoint functors. Theory of monads
has turned out to be an important tool for studying
toposes [5, 15].

5.1 Definition

A monad
T = (T, η, µ)

on a category C is an endofunctor

T : C→ C

together with two natural transformations

• η : idC → T called unit

• µ : T 2 → T called multiplication

subject to the condition that the following diagrams
commute.

T 3 Tµ - T 2

T 2

µT

?

µ
- T

µ

?

Figure 6: Coherence square for monad

If we consider monad over category Set of
sets, then the unit transformation is a map
ηX : X → TX for each set X satisfying a suitable
naturality condition; and the multiplication trans-
formation consists of functions µX : T 2X → TX
with X ranging over sets. Next we will handle
with the endofunctor T 1 over the category of sets.

T
ηT - T 2 � Tη

T

T

µ

?�
id
T

id
T

-

Figure 7: Coherence triangle for monad

Example. The simplest example of monad in-
volves monoids. Let M be a monoid and define
T : Set→ Set by TX =M ×X.

Let ηX : X → M × X takes x to (idM , X) and
µX : M × M × X → M × X takes (m,n, x) to
(mn, x). Then the associative and unitary identi-
ties follow from those on M .

ut
The monad structures play a crucial rôle in

modeling "branching". Intuitively, the unit η
embeds a non-branching behavior as a trivial
branching with only one possibility to choose.
The multiplication µ "flattens" two successive
branching into one branching, abstracting away
internal branching [7].

The notion of "algebras for a monad" general-
izes classical notions from universal algebra, and
in this sense, monads can be thought of as "theo-
ries". Every monad is defined by its T -algebras [2].
T -algebras for a monad T should interact properly
with the extra structure on T. A T -algebra is an ar-
row a : TA→ A as before, such that the diagrams
at Fig. 8 and Fig. 9 commute.

T 2A
Ta- TA

TA

µA

?

a
- A

a

?

Figure 8: Algebra in monad via multiplication
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A
ηA - TA

A

a

?

id
A

-

Figure 9: Algebra in monad via unit

5.2 Kleisli categories

Kleisli category is the kind of category which should
be investigated for the functional programming
paradigm or for the generalizing the structures in
category [5, 13]. This category is an extremal so-
lution of the problem of constructing an adjunc-
tion that gives rise to a given monad. A monad
is a functor from a category to itself consisting of
composition of adjoint functors [4]. Especially the
dual concept, comonad has useful properties for be-
havioral theory [15]. Recognizing the categories of
coalgebras for a comonad is an important tool of
topos theory [16].

The relevance of Kleisli categories in usual
coalgebraic approach is that Kleisli category can
be thought of as a category where the branching is
implicit [7, 13].

Given any monad T, its Kleisli category K(T) is
defined as follows. Its objects are the objects of
the base category, hence sets in the current setting.
An arrow A → B in K(T) is the same thing as an
arrow A→ TB in the base category, here Set:

A→ B in K(T)

A→ TB in Set

Identities and compositions of arrows are defined
using the unit and the multiplication of T . More-
over, there is a canonical adjunction

F a U

where functors are:

F : Set→ K(T) U : K(T)→ Set

In this adjunction the right adjoint U carries arrow
f : A → B in K(T) that is a function f : A → TB

in Set to map

TA
Tf−→ T 2B

µB−→ TB

in Set. Moreover, compositions of arrows in cate-
gory K(T) are given by

A
f−→ B

g−→ C

as the composition

A
f−→ TB

Tg−→ T 2C
µC−→ TC

in the category Set. µC ◦Tg is the unique lifting of
g to the free T -algebra on its domain. The Kleisli
category K(T) is equivalent to the subcategory of
TALG consisting of the free algebras of the form

µA : T 2A→ TA

Objects of K(T) uniquely determine free algebras
TA and actions µA and Kleisli arrows lift uniquely
to arrows µB ◦ Tf . These are morphisms of free
algebras by virtue of the diagram at Fig. 10

T 2A
T 2f- T 3B

TµB- T 2B

TA

µA

?

Tf
- T 2B

µTB

?

µB
- TB

µB

?

Figure 10: Algebras in Kleisli category

6 Codomain functor and the
expression of algebras

Codomain functor is the special functor defined for
arrow category. Codomain functor is always de-
fined for the arrow category and the appropriate
base category [8]. The arrow category of the base
category is the mathematical structure which con-
tents are

• an object of arrow category is an arrow (mor-
phism) of the base category
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• given two objects say A f−→ B, A′ g−→ B′ a
morphism from T to g consists of an ordered
pair (ϕ,ψ), where A ϕ−→ A′, B ψ−→ B′ such
that the following diagram

A
f - B

A′

ϕ

?

g
- B′

ψ

?

is a commutative diagram. For purpose of this
approach we can consider the morphism of an
arrow category also in the form (ψ, f, g).

6.1 Codomain functor for the cate-
gory of algebras TALG

In this approach we define codomain functor be-
tween category of algebras TALG and category of
sets Set which objects are also the carrier-sets of
the algebras. Codomain functor Cod is defined as

Cod : TALG→ Set

The functor Cod sends the object of the category
TALG - the algebra into the category Set, into the
appropriate carrier-set:

Cod(FA
a−→ A) = A

The functor Cod according the definition sends the
morphism of the category TALG - the algebra ho-
momorphism into the appropriate morphism of the
category of sets. For objects of TALG: FA a−→ A,
FB

b−→ B and FC
c−→ C and their morphism

(f, a, b), (g, b, c) where f and g are the codomain
maps

f : cod(a)→ cod(b) g : cod(b)→ cod(c)

it holds
Cod(f, a, b) = f

and for the identity morphism

Cod(id, a, a) = id

which satisfy the definition of the codomain func-
tor. Functor Cod also preserves the composition of
the morphisms:

Cod(g ◦ f, a, c) = g ◦ f

The codomain functor from arrow category into
appropriate base category always exists. It also
doesn’t need to define extra adjoint functors to
formulate the relation between algebras and the
carrier-sets.

6.2 Codomain functor for the Kleisli
category

We defined the Kleisli category K(T) of a monad
T = (T, µ, η). Now we construct the arrow category
over K(T) denoted K(T)→ as follows:

• objects are algebras of the form

µA : T 2A→ TA

• morphisms are algebra homomorphisms of the
form (Tf, µA, µB) such that the following dia-
gram at Fig. 11 commutes

T 2A
µA- TA

T 2B

T 2f

?

µB
- TB

Tf

?

Figure 11: Morphism of algebras in category K(T)

• identity has the form (TidA, µA, µA)

• compostion of two algebras (Tf, µA, µB) and
(Tg, µB , µC) is (Tg ◦ Tf, µA, µC)

Next we define the codomain functor Kod for the
Kleisli arrow category. The functor has the form

Kod : K(T)→ → Set

Codomain functor Kod sends the objects of
Kleisli arrow category of algebras into the category
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of carrier-sets Set such that it assigns to any alge-
bra µA : T 2A→ TA the appropriate carrier-set:

Kod
(
T 2A

µA−→ TA
)
= TA

Functor Kod according to definition maps the
morphisms of category K(T)→ (the algebra ho-
momorphisms) into the appropriate morphisms of
the category of carrier-sets. Let’s have the alge-
bras µA : T 2A → TA, µB : T 2B → TB, µC :
T 2C → TC with their morphisms (Tf, µA, µB) and
(Tg, µB , µC), where Tf and Tg are the codomain
maps

Tf : cod(µA)→ cod(µB)

Tg : cod(µB)→ cod(µC)

For the algebra homomorphisms according to the
definition of Kleisli category it holds that

Kod (Tf, µA, µB) = µB ◦ Tf

For identity homomorphisms it holds that

Kod (TidA, µA, µA) = µA ◦ ηA

Codomain functor Kod also preserves the com-
position of algebra homomorphisms:

Kod (Tg ◦ Tf, µA, µC) = (µC ◦ Tg) ◦ (µB ◦ Tf)

As in the previous case, the codomain functor
from Kleisli arrow category into the appropriate
base category always exists. It also doesn’t need
to define extra adjoint functors to formulate the
relation between algebras and the carrier-sets.

7 Conclusion
In this contribution we formulated the expression
of algebras in the arrow category. The relation
between algebras and their carrier-sets we con-
structed as codomain functor from the arrow cate-
gory TALG into the base category Set of sets. We
also formulated another approach of expressing al-
gebras in Kleisli arrow category. We defined that
relation between algebras and their carrier-sets as
codomain functor from K(T)→ into the base cate-
gory of sets. The codomain functor for the arrow
category is always defined, that’s why our approach
does not need to construct the couple of adjoint
functors and to prove the construction. In our next

research we will focus on suitable categorical struc-
tures as a base for algebraic description of construc-
tion and coalgebraic behavior of program systems.
We would like to apply achieved theoretical results
to real non trivial program systems from the area
of computer networks, database systems and dis-
tributed systems.
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