
Croatian OCR Error Correction Using

Character Confusions and Language Modelling

Mladen Marović, Mladen Mikša, Jan Šnajder, Bojana Dalbelo Bašić
Faculty of Electrical Engineering and Computing

University of Zagreb
Unska 3, 10000 Zagreb, Croatia

{mladen.marovic, mladen.miksa, jan.snajder, bojana.dalbelo}@fer.hr

Abstract. Manual correction of errors produced
by optical character recognition (OCR) is a time-
consuming task. This paper presents an automatic
post-processing system that utilizes various meth-
ods for improving the OCR results of Croatian
language texts. The system relies on knowledge
of general characteristics of OCR errors, as well
as language-specific knowledge. Used methods
include character confusions, a character n-gram
model, and word-splitting. A statistical language
model is used for ranking the generated candidates
depending on the sentential context. Experimental
evaluation, performed on newspaper texts supplied
by the Croatian News Agency, shows an error rate
reduction of above 20%. These results amount to
about 36% of the performance of manual correction.

Keywords. Natural language processing, OCR,
character confusions, character n-grams, word
merge errors, language model, Croatian language

1 Introduction

With the advent of the information age a need has
arisen for large-scale digitalization of vast quanti-
ties of data, with the dominant type being that
in written form. A simple solution for converting
written data into its appropriate electronic form
is manual input, but – considering the volume of
data that still exists primarily (or only) in print
– this approach can be discarded as highly inad-
equate. A much more effective solution is to ap-
ply OCR (Optical Character Recognition), which
is a process that translates images of handwritten,

typewritten, or printed text into machine-encoded
text. Unfortunately, such a process is not error-
proof. While most errors appearing in an OCR-ed
text can be easily corrected by a human reader, in
automated text processing and IR (information re-
trieval) tasks the presence of such errors leads to
a decrease in performance and the deterioration of
results.

A substantial improvement of OCR results can
be achieved by manual correction. However, for
anything but a small quantity of text, manual cor-
rection is expensive and time consuming [10]. An-
other potential solution is correction via existing
spelling checkers, such as the ones included in var-
ious word processors. Upon closer inspection, this
approach can be deemed as unsatisfactory due to
its semi-automaticity and the differences between
typing errors and OCR errors. Therefore, a spe-
cific solution is needed for automatic correction of
OCR errors.

Depending on the language of the corrected
texts, some linguistic properties can also present ei-
ther a difficulty or a useful source of information in
correcting OCR errors. A high degree of inflection,
such as in Croatian or Arabic languages, as well
as the absence of specific word boundaries, such
as in Chinese language, can present an additional
challenge during OCR correction. Syntactic pars-
ing techniques using regular or context-free gram-
mars can increase the efficiency of the correction
process, as was shown in [2].

In this paper, we describe and evaluate a post-
processing system that utilizes various methods for
improving OCR results of Croatian texts. The sys-
tem is based on character confusion and character

Proceedings of the 21st Central European Conference on Information and Intelligent Systems 281

Varaždin, Croatia Faculty of Organization and Informatics September 22-24 2010

n-gram models used to generate correction candi-
dates, a combinatorial search method for splitting
merged words, and a statistical language model for
context-dependent candidate selection.

The rest of the paper is structured as follows.
A brief overview of related work is given in the
next section. Section 3 describes the OCR error
correction system. Evaluation results are presented
in Section 4, while Section 5 concludes the paper
and outlines future work.

2 Related work

Research in correcting OCR errors has produced
a set of diverse methods for tackling the problem.
Many different ways of detecting and correcting er-
roneous words were developed, usually integrating
some form of a dictionary and the information con-
cerning the OCR process. Here we present some
of the correction methods and the systems imple-
menting them.

Tong and Evans [10] built a system based on
retrieving correction candidates by character n-
grams. The observed word is divided into n-grams
and a list of candidate words that contain at least
one of its n-grams is retrieved. Candidates are
ranked by the likelihood of character confusions
that could have resulted with the given string. A
statistical language model is used to include con-
text information and provide more accurate final
ranking of candidates. The system assumes that
the words in the OCR document are separated by
blanks and therefore does not correct word bound-
ary errors. They reported a result of 60.1% error
reduction on the tested documents.

Another method used in correcting OCR doc-
uments is based on the idea that different OCR
devices produce different errors. Klein and Kopel
[3] have exploited this idea in their system using
outputs from two OCR devices. In cases when
the outputs differ the system uses additional in-
formation from the dictionary, character confusion
matrix, and local context to decide on the correct
word. The system achieved a decrease in the er-
ror rate of the two devices from 3.7% and 5.9% to
3.2% for English, from 22.1% and 2.1% to 1.5%
for French, and from 14.1% and 11.0% to 3.2% for
Hebrew.

OCRSpell, built by Taghva and Stofsky [9], is

a complex system that exploits information gath-
ered from multiple knowledge sources. It is semi-
automatic in that it requires user interaction for
some problematic cases. The system uses dynamic
and static device mappings, n-gram analysis, and
heuristics to improve its performance. It relies on
heuristics to discern word boundaries, making cor-
rection of split and merged words possible. Eval-
uation of the system was performed on two OCR
documents and it displayed an increase in word ac-
curacy from 98.18% to 99.79% for one document,
and from 98.46% to 99.85% for another document.

The work presented in this paper combines sev-
eral described approaches, but with some modifica-
tions. We have modified character n-grams to in-
clude the information about its position in a string
to make them more efficient. Word merge errors
are handled by a combinatorial search.

3 System description

The system attempts to correct character confu-
sion and word merge errors. Split word errors are
neglected because of the small probability of their
occurrence. The correction process starts by split-
ting the input text into distinct tokens represent-
ing possible words, punctuation marks, html tags,
etc. Word tokens are processed further, whereas
the rest is simply copied to the output. Word to-
kens are then checked against the dictionary; if the
word is found in the dictionary, it is copied to the
output, otherwise it is processed in three steps as
follows. The first step generates correction candi-
dates for the word token. The second step deals
with merged words correction on candidates that
do not exist in the dictionary, while the third step
adjusts each candidate’s probability via a language
model. These three steps, depicted in Figure 1, are
described next.

3.1 Character confusions

Candidate generation begins with a method based
on character-level correction If character sequences
known to be the result of an error are found in a
word token, they are corrected in an attempt to
produce valid word candidates. This type of cor-
rection is based on a noisy channel model, which
relates an observable string O to an underlying se-

Proceedings of the 21st Central European Conference on Information and Intelligent Systems 282

Varaždin, Croatia Faculty of Organization and Informatics September 22-24 2010

Figure 1: System workflow

quence, in this case recognized character strings to
underlying word sequences. Such a model is used
to learn how a chosen OCR device corrupts sin-
gle characters or character sequences, producing a
character-level confusion model specific to the de-
vice it was trained on.

The error model may be formalized as follows
[6]. Let Wv = #V1 . . . Vi . . . Vj . . . Vn# represent a
valid word, while Wc = #C1 . . . Ck . . . Cl . . . Cm#
is a corrupt word produced by the OCR process,
with # marking word boundaries. The Ck . . . Cl is
a character sequence misinterpreted from Vi . . . Vj .
Let there also be three types of confusions: inser-
tion and deletion of a character sequence, and sub-
stitution of a character sequence with a different
one. Then, estimates for the probabilities of these
confusions are given by the following formulas:

Psub(Vi . . . Vj → Ck . . . Cl) =
c(Vi . . . Vj → Ck . . . Cl)

c(Vi . . . Vj)
, (1)

Pdel(Vi . . . Vj → ε) =
c(Vi . . . Vj → ε)

c(Vi . . . Vj)
, (2)

Pins(ε → Ck . . . Cl) =
c(ε → Ck . . . Cl)

c(〈all characters〉)
, (3)

with c(x) being the number of observations of x
in the training data set, and ε being the empty
string. The probability of the entire word Wv being
corrupted into Wc, with n confusions, is given by
the formula:

P (Wc|Wv) =
n∏

m=1

Perr (Vim
. . . Vjm

→ Ckm
. . . Clm). (4)

The above described model assigns zero probabil-
ities to unknown confusions. This can be avoided
by smoothing these probabilities, i.e., by assigning
a small uniform probability to unknown confusions,
in accordance to Lidstone’s law [6]. The uniform
probability was chosen to be 100 times smaller than
the probability of the rarest character confusion ob-
served in the data set.

Our system uses a set of rules for correcting the
aforementioned confusions based on the above de-
scribed model. An excerpt from this set is given
in Table 1. Rules are defined by a corrupt charac-
ter sequence, Ci . . . Cj , and its valid replacement,
Vk . . . Vl. The rule set is used to generate correction
candidates from the word token. Because insertion
rules can be applied to all positions in a word to-
ken, their use would cause a large increase in the
number of generated candidates. Therefore, they
are neglected in this step (note that insertion rules
are produced from deletion confusions, so in fact
the appearance of deletion confusions is neglected).
The candidates generated using this method are
then ranked by their respective probabilities and
used in subsequent correction steps.

3.2 Character n-grams

Candidates generated via the character confusion
model contain only corrections to known insertion
or substitution errors. In principle, to deal with
deletion errors and all unknown errors, the word
token should be compared to each word in the dic-
tionary to compute the conditional probability of
that word being the correct candidate. However,
the computational costs associated with such an
exhaustive search are too high to be of any prac-
tical use [10]. Instead, similar to [10], a character
n-gram model is used to retrieve words orthograph-
ically similar to the word token, presuming that
these are the most likely correction candidates.

All words are indexed by their character n-grams
at system startup. During word token processing,
the token is split into character n-grams, which are
then used to retrieve all the words in the dictionary

Proceedings of the 21st Central European Conference on Information and Intelligent Systems 283

Varaždin, Croatia Faculty of Organization and Informatics September 22-24 2010

Table 1: Character confusion rules

Sequence

Corrupt Valid Probability

v y 0.4090
ii ü 0.3750
u ü 0.3125
tb TB 0.2857

...
\ v 0.0001
J l 0.0001
o p 0.0001

...
š ε 10−6

šn ε 10−6

TM ε 10−6

un ε 10−6

containing at least one of these n-grams. An exam-
ple of a word split into its character trigrams, with
acting as a word boundary marker, is given by:

nGrams(#zamjena#) =
{#za, zam, amj ,mje, jen, ena,na#}. (5)

The method described so far greatly reduces the
number of candidates retrieved from the dictionary.
In order to further reduce this number, another
problem with character n-grams should be avoided.
This problem arises when two completely unrelated
words have a number of n-grams in common. For
example, words vjerojatnost (probability) and pos-
tojanje (existence) share the trigram ost, which
would cause one word to be retrieved as a candi-
date for the other. Therefore, a modification to the
existing character n-gram model is proposed by us-
ing each n-gram’s relative position in a word as an
additional information for candidate retrieval. Let
W be a word of length n, and p the position of the
observed n-gram G in the given word, with zero
marking the position of the first n-gram. Then, a
measure of the relative position, R, of the n-gram
G in the word W can be expressed as:

R(G, W) =
p

n− 1
, (6)

with n being equal to the number of n-grams in
W expanded with word boundary markers. For ex-
ample, R(amj ,#zamjena#) = 2/6. Based on this
measure, for each n-gram, words are distributed
into k classes of equal interval width (with k be-
ing 10 in our system). During candidate retrieval,
only words in the same or the surrounding l classes
are retrieved, with l being inversely proportional to
the length of the word token.

Additionally, candidates are filtered using either
of the two different measures: the number of com-
mon n-grams or minimum edit distance. Mini-
mum edit distance is the minimum number of sin-
gle character insertions, deletions, and substitu-
tions needed to produce some new word from a
given one [5]. Using either of these measures elimi-
nates candidates least likely to be correct and thus
further improves processing time. Retrieved can-
didates are then matched to the word token and
ranked by their respective probabilities using the
character confusion model described in 3.1.

3.3 Merged words correction

After the candidate generation step has finished,
those candidates that are not contained in the dic-
tionary are additionally processed by the word-
splitting step. The base of our approach to word-
splitting is a combinatorial search algorithm. It
searches the word token trying to split it between
each character and keeping the N best results of
such splits. The probabilities of the resulting splits
are calculated using a statistical language model
(explained in Section 3.4). The decision whether
to perform the split at a given point is governed by
dictionary lookup and several heuristics.

Dictionary lookup is based on a dictionary orga-
nized into a trie [4]. As the algorithm progresses
through the token, the split candidate descends
down the trie. If the current node indicates that
we have found a valid word, a split is performed
at the corresponding point. An example of a trie
is presented in Fig. 2. On the word token onje,
consisting of valid words on (he) and je (is), the
algorithm starts with the candidate positioned at
the root node 〈s〉. As the algorithm progresses the
candidate descends down the branch 〈s〉 → o → n.
Whenever a valid word is encountered (designated
by a double-ringed node), a new candidate is gen-
erated containing the split after the valid word.

Proceedings of the 21st Central European Conference on Information and Intelligent Systems 284

Varaždin, Croatia Faculty of Organization and Informatics September 22-24 2010

Figure 2: Trie example

Alternatively, there are several splitting heuris-
tics employed in the system. We assume that up-
per case letters usually begin words and perform
the split on their occurrence. Similarly, we split
the word token on the occurrence of a sequence of
digits, assuming that words do not contain digits.

Our system processes only the tokens that are
not contained in the dictionary, so merge errors
that result in a valid word can not be corrected.
One way of addressing this issue could be by keep-
ing a precompiled list of merges that result in a
valid word and checking every token against that
list. However, our preliminary results showed that
this approach generates more errors than it cor-
rects, so we currently decided to leave it out.

3.4 Statistical language model

A statistical language model is used as a discern-
ing factor in choosing the most likely candidate for
the error input, and also as a guide in the word-
splitting step. The theory of language modelling
[1] states that the probability of a word sequence
can be calculated as follows:

P (wn
1) =

n∏
k=1

P (wk|wk−1
1), (7)

where wt
s is a word sequence 〈ws, ws+1, . . . , wt〉.

In practice the model described by (7) has a high
memory cost, so it is approximated by the Nth-
order Markov model (N usually being one or two).
In our system we use the first-order Markov model,

thus only looking at the preceding word. That
model, also called the bigram model, is represented
by the equation:

P (wn
1) ≈

n∏
k=1

P (wk|wk−1), (8)

with w0 being a special token 〈s〉 meaning “Start of
sentence” [1]. The equation calculates the probabil-
ity of a word sequence as the product of conditional
probabilities of each consecutive pair of words.

In the case of previously unseen bigrams we use
Witten-Bell discounting. The idea behind it is that
the probability of encountering a new bigram can
be approximated by the ratio of the number of ob-
served bigram types to the total number of bigrams.
This can be incorporated into the equation for the
probability p∗(wi|wi−1) of seeing an unknown bi-
gram beginning with wi−1 as follows [1]:

p∗(wi|wi−1) =
T (wi−1)

Z(wi−1)(N(wi−1) + T (wi−1))
, (9)

where T (wi−1) is the number of bigram types,
Z(wi−1) is the number of zero-probability bigrams,
and N(wi−1) is the total number of bigrams start-
ing with wi−1. In order to preserve the probability
mass, the probability of seen bigrams must be dis-
counted using the following equation:

∑
i:c(wxwi)>0

p∗(wi|wx) =
c(wxwi)

c(wx) + T (wx)
. (10)

4 Experimental evaluation

This section presents the evaluation of the perfor-
mance of the given system. Two preliminary exper-
iments were made: one with raw OCR output, and
the other with the same OCR data corrected man-
ually beforehand by the Croatian News Agency.

4.1 Training and test data

Experiments were performed on real OCR data ac-
quired through the use of Abbyy FineReader1 with
Croatian language support. We refer to these data

1http://finereader.abbyy.com/

Proceedings of the 21st Central European Conference on Information and Intelligent Systems 285

Varaždin, Croatia Faculty of Organization and Informatics September 22-24 2010

as raw data, although Abbyy FineReader proba-
bly performs some rudimentary OCR correction.
The total data set consisted of 827 OCR-ed news-
paper articles from various sources, of which 758
were used for extracting character confusions and
determining their probabilities. The remaining 69
documents, which consisted of 32,541 words, were
corrected manually by the authors of this paper and
used as the ground truth for evaluation.

A corpus consisting of articles from the daily
Croatian newspaper Vjesnik and the Official
Gazette of the Republic of Croatia was used to
build a dictionary and a language model. To ac-
count for various (and some rare) inflectional word-
forms, we used the procedure described in [8] to
first acquire an inflectional lexicon from the corpus,
and then expanded this lexicon into a dictionary of
nearly a million wordforms. Since this procedure
is fully automatic, the dictionary is not error free
and contains a number of morphologically invalid
wordforms. This, however, should not be problem-
atic because morphological errors in general do not
coincide with OCR errors.

4.2 Performance measures

Two different measures were used to evaluate OCR
error correction: text accuracy and error reduction
rate. Text accuracy is the ratio of the number of
correct words in the processed texts to the total
number of words in the manually corrected text.
This measure describes the percentage of correct
text according to the ground truth. It equals 1 −
ErrorRate, where ErrorRate is a measure given in
[3]. Error reduction rate, a measure used in [10],
gives the percentage of valid corrections penalized
by the number of newly generated errors, as follows:

ERR =
c(correct)− c(generated)
c(correct) + c(incorrect)

. (11)

4.3 Results

The experiments were performed using different
correction methods; the results of the evaluation
are shown in Table 2. The first column shows the
methods used in each experiment, with conf. stand-
ing for the use of character confusions for candidate
generation, n-gram for the n-gram model, split for
word merge errors correction, and LM for the use
of the language model.

The first experiment shows an increase in over-
all text accuracy achieved by using the proposed
system on raw OCR data. The best results
are achieved using candidate generation based
on character confusions, word splitting and lan-
guage model (0.61% text accuracy improvement
and 22.8% error reduction rate). The use of charac-
ter confusions generated the majority of valid can-
didates. Word splitting and the language model im-
proved the error reduction rate by about 2% each.
However, word splitting had a greater effect on text
accuracy because text accuracy increases with each
valid word being split, whereas the number of valid
corrections increases only if all the words in a word
merge error are split correctly. For example, the
splitting of the word token dajebaruspjelodijeljenje
to words da, je, baruspjelo, dijeljenje generated
three valid words and one invalid (baruspjelo). This
correction increased the number of correct words by
three, whereas the number of errors remained the
same because the correction made was not entirely
successful, thus increasing only text accuracy.

The results reveal that using the n-gram model
degrades the performance of the system. This is
because the n-gram model generates a large num-
ber of new errors, compared to the number of valid
corrections it brings. If a valid word is processed
that does not exist in the dictionary, a correction
attempt will be made that may change the valid
word and produce a new error. This is counted
towards the number of generated errors. Also, dur-
ing candidate generation a valid correction is often
produced and later discarded because it does not
exist in the dictionary, thus adding to the num-
ber of invalid corrections. A possible reduction of
generated errors and invalid corrections might be
achieved through the use of a larger dictionary.

The second experiment was performed on the
hand corrected OCR output, which, as the re-
sults reveal, is still not 100% correct. By itself,
manual correction achieved 99.31% text accuracy,
which amounts to a 1.66% improvement over the
raw OCR output. Further correction using the
proposed system resulted in a minor increase of
text accuracy in some cases, whereas a slight de-
crease was observed in others. The overall results
show that manual correction currently outperforms
our system; the system achieves up to 36.75% (i.e.,
0.61/1.66) of the performance of manual correction.

The comparison of results with similar systems

Proceedings of the 21st Central European Conference on Information and Intelligent Systems 286

Varaždin, Croatia Faculty of Organization and Informatics September 22-24 2010

Table 2: Text accuracy and error reduction rate

Text accuracy (%) Error reduction rate

Input text/Correction method Original Corrected Change Correct Incorrect Generated ERR (%)

OCR output
conf. 97.65 97.98 +0.33 114 447 8 +18.9
conf. + LM 97.65 98.02 +0.38 123 438 8 +20.5
conf. + split + LM 97.65 98.26 +0.62 152 409 24 +22.8
conf. + n-gram 97.65 97.95 +0.31 122 439 32 +16.1
conf. + n-gram + LM 97.65 97.97 +0.33 123 438 27 +17.1
conf. + n-gram + split + LM 97.65 98.20 +0.56 163 398 59 +18.5

OCR output + Hand correction
conf. 99.31 99.34 +0.03 16 180 6 +5.1
conf. + LM 99.31 99.35 +0.04 14 182 1 +6.6
conf. + split + LM 99.31 99.39 +0.08 19 177 2 +8.7
conf. + n-gram 99.31 99.27 −0.04 19 177 32 −6.6
conf. + n-gram + LM 99.31 99.28 −0.03 18 178 28 −5.1
conf. + n-gram + split + LM 99.31 99.31 +0.00 22 174 29 −3.6

is complicated by the fact that different sets and
different measures are used for the evaluation, and
that there are differences in what constitutes a valid
and an invalid correction. Although extremely dif-
ferent in approaches, we have achieved similar re-
sults to Klein and Kopel [3] for the final text ac-
curacy. OCRSpell was evaluated with user inter-
action, expectedly demonstrating better text accu-
racy than our system. The measure used by Tong
and Evans [10] is the same as ours, but they only
consider literal words containing letter sequences,
whereas we consider all tokens, which additionally
deteriorates our results and makes the comparison
questionable.

5 Conclusion

Correcting OCR errors is a difficult problem, whose
solution would have positive effects on a diverse set
of tasks, e.g., information retrieval. Unfortunately,
achieving the accuracy of manual correction rate
currently seems an unlikely task. We have pre-
sented an OCR correction system for the Croat-
ian language utilizing different methods for correct-
ing character and word merge errors. Our system
demonstrated an increase of 0.62% in text accu-
racy and the error reduction rate of 22.8%, which
amounts to 36.75% of the performance of manual

correction. These results show that our system can
not completely substitute manual correction, but it
can be used to speed up the process. To the best of
our knowledge, this paper presents the first OCR
error correction system for the Croatian language.

As our evaluation was performed on a relatively
small data set, we plan to perform further, more
detailed evaluation in the future. Also, as the cor-
rection rate of any automatic system can not yet
match manual correction, we are considering to im-
plement a semi-automatic system. That way we
could lower the time needed for correcting the text,
while retaining high accuracy of manual correction.
For correcting the word merge errors we are plan-
ning on looking into the forward-DP backward-A∗

algorithm, as described in [7]. The implemented bi-
gram language model on some occasions does not
provide enough contextual knowledge, so some ex-
perimentation with a trigram or higher order model
could provide us with better evaluation results.
Also, we plan on investigating how results are af-
fected by the quality of the wordforms dictionary.

Acknowledgements

The authors would like to thank their colleague
Ognjen Laǰsić for the initial work on the OCR er-
ror correction system providing some of the ideas

Proceedings of the 21st Central European Conference on Information and Intelligent Systems 287

Varaždin, Croatia Faculty of Organization and Informatics September 22-24 2010

employed in the paper. We would also like to thank
our colleagues Sinǐsa Bidin, Sonja Grdan, Ante
Kegalj, Tomislav Lombarović, Veljko Srdarević,
and Ana Stopić, who have worked with us on the
first version of the system. This work has been sup-
ported by the Ministry of Science, Education and
Sports, Republic of Croatia and under the Grant
036-1300646-1986. The authors are grateful to the
Croatian News Agency (HINA) for making avail-
able the OCR data set.

References

[1] D. Jurafsky, J.H. Martin, A. Kehler, K. Van-
der Linden, and N. Ward. Speech and language
processing. Prentice Hall New York, 2000.

[2] K. Kise, T. Shiraishi, S. Takamatsu, and
H. Kusaka. Improvement of Text Image Recog-
nition Based on Linguistic Constraints. In
Proc. of the Conference for Machine Visions
Applications, Tokyo, pages 511–514, 1992.

[3] ST Klein and M. Kopel. A voting system
for automatic OCR correction. In Proc. of
the SIGIR 2002 Workshop on Information Re-
trieval and OCR: From Converting Content to
Grasping Meaning, Univ. of Tampere, 2002.

[4] D.E. Knuth. The art of computer program-
ming. Vol. 3, Sorting and Searching. Addison-
Wesley Reading, MA, 1973.

[5] V. Levenshtein. Binary codes capable of cor-
recting deletions, insertions, and reversals. So-
viet Physics-Doklady, 10(8), 1966.

[6] W. Magdy and K. Darwish. Arabic OCR error
correction using character segment correction,
language modeling, and shallow morphology.
In Proc. of the 2006 conference on empirical
methods in natural language processing, pages
408–414. Association for Computational Lin-
guistics, 2006.

[7] M. Nagata. A stochastic Japanese morpholog-
ical analyzer using a forward-DP backward-A∗

N-best search algorithm. In Proc. of COLING,
volume 94, pages 201–207, 1994.

[8] J. Šnajder, B. Dalbelo Bašić, and M. Tadić.
Automatic acquisition of inflectional lexica
for morphological normalisation. Informa-
tion Processing and Management, 44(5):1720–
1731, 2008.

[9] K. Taghva and E. Stofsky. OCRSpell: an in-
teractive spelling correction system for OCR
errors in text. International Journal on Docu-
ment Analysis and Recognition, 3(3):125–137,
2001.

[10] X. Tong and D.A. Evans. A statistical ap-
proach to automatic OCR error correction in
context. In Proc. of the fourth workshop on
very large corpora, 1996.

Proceedings of the 21st Central European Conference on Information and Intelligent Systems 288

Varaždin, Croatia Faculty of Organization and Informatics September 22-24 2010

