
A multiple layered approach to malware
identification and classification problem

Tonimir Kišasondi1, Domagoj Klasić2, Željko Hutinski1

Faculty of Organization and Informatics1, Department of the national CERT2
University of Zagreb1, Croatian academic and research network – CARNET2

Pavlinska 2, 42000 Varaždin, Croatia1, Josipa Marohnica 5, 10000 Zagreb, Croatia2
tonimir.kisasondi@foi.hr, domagoj.klasic@carnet.hr2 zeljko.hutinski@foi.hr1

Abstract. The increasing threat of malware is a
constant problem for information system security.
Current detection methods are showing lack in
sufficiency and are bulky, with a slow response to
high traffic needs and for new samples. In this work
we will present a method for in-depth malware
identification and classification. We will show a
concept of a multi layered approach where we can
detect and classify malware mixed with legit data
samples based on speed or precision trade-offs. We
will employ a classification and risk based method
with various detection criteria that can identify
various hazardous aspects of various malware
instances. The classifiers will be organized in layers
which will help us in building various high speed or
high precision detectors based on the protection
needs and requirements.

Keywords. malware identification, multilayer

classification, malware, botnets, static analysis,
runtime analysis

1. Introduction

Today, malware is a growing concern for

computer security. From 2003 till today, there have
been significant incidents involving malware, such as
Titan Rain and GhostNet attacks that have been
perpetrated with the help of malware. Most current
methods of malware detection are based on pattern
(signature) matching or behavior analysis. Signature
matching is quick, easy and very reliable if you can
match the correct signature which is usually stored in
a signature base which is updated every couple of
hours. The problem with signature detection is when
we want to match a malicious sample for which we
don't have the signature. Anti-malware houses have to
analyze the malware and then issue a signature for it's
anti-malware software so the malware can be
detected.

Unfortunately, there is a gap between the
following events:

1. A new malware type begins its infection run

(outbreak)
2. Anti-malware houses receive a sample of the

malware
3. Anti-malware houses issue updates for their

software that can detect and remove the sampled
malware

4. Users of the anti-malware software begin
removing the malware

5. The infection rates for the specified malware
type drop because of the detection mechanisms

Currently, there are about 40 anti-malware

applications that are issued by their respective anti-
malware houses or companies. About 50% of these
houses are predominantly using signature detection,
where the other half uses signature detection mixed
with heuristics, behavior analysis or other proprietary
methods. The downside on the behavior based
methods is the time that is needed to detect a sample.
On the other side, signature detection by that works
only after the stage 3, when we can detect the sample
with the signatures. We would like to propose a new
model that should be able to work from stage 1,
because it wouldn't be confide in only signature
detection, but also would be more flexible to detect a
wider variety of malicious code.

2. Prior research

Much research has been done in the field of
malware analysis and prevention. One of the few
formal results has shown us that it is not possible to
create an algorithm that can perfectly detect all
possible viruses (malware software) [3, page 1].
Although this result is discouraging, researchers have
found a way to increase the detection rate for malware
samples. Some researchers have tried to approach the
problem using strict formalization. In [9] authors have
proposed a malware formalization based on process
algebra. Authors have also stressed that using such a

Proceedings of the 21st Central European Conference on Information and Intelligent Systems 429

Varaždin, Croatia Faculty of Organization and Informatics September 22-24 2010

formalization can improve detection and prevention
of malware samples. There have also been attempts at
classification of metamorphic and polymorphic
malware samples using formalism. In [10] authors use
value set analysis to detect different instances of the
same metamorphic malware family. Authors in [2]
have demonstrated the usage of Strong Token-Pair
(STP) signatures scheme for detecting polymorphic
worms. These papers provide a valuable advancement
in the field of malware detection, but they are
focusing only on a few classes of malware.

Other researchers have focused on analysis of
different behavioral aspects of malware. In [8]
researches propose a system for detecting malware
infection that monitors network communication
between internal and external entities. Authors in [14]
have created Pandora, a system for detecting malware
that focuses on processing behavior and information
access. It works by detecting which information
malware accesses and checks if this access breaches
user privacy.

3. Methods used by malware

authors

In order to evade detection as long as possible,

malicious software uses many anti-reversing
techniques. These techniques significantly prolong the
time required for successful analysis of malware, and
thereby reduce the detection rate of modern anti-virus
software.

Most malware does not use direct code
obfuscation but instead rely on packer to hide from
analysis. Packers are programs designed to compress
or encrypt another executable program in place and
therefore be completely invisible to the end-user [5,
page 287]. Although it is very difficult to say exactly
how many malware is packed, some studies estimate
that over 80% of them use some form of packing [7,
page 1]. The most widely used packer is UPX, while
behind him we can find ASPack, FSG and UPack [7,
page 2.]. There are also malware samples that use
more advanced packer programs which represent the
pinnacle of the packing technology, while some of
them use packing methods not currently seen in the
wild.

Malicious software also uses more direct anti-
reversing techniques for which malware authors write
code themselves. For example, Conficker approaches
the problem of anti-reversing using multiple layers.
On one layer it’s packed with UPX, second layer is
packed with a custom made packer and it also uses
cryptography to hide its network traffic [4].

There is a large number of anti-reversing
techniques, but most of them can be categorized to
one of the following categories (as presented in [5]):

• Code Encryption
• Anti-debugger techniques
• Anti-Dissasembler techniques

• Code obfuscation
• Control flow transformation
• Data transformation

No matter what anti-reversing technique malicious

software uses in the end it’s functionality doesn’t
change. And based on that, we think that a multiple
layered approach to identifying malware would be
more suited, because we don't want to invest a large
amount of time in bypassing anti-reversing
techniques.

4. Analyzing detection and

response rates

As a part of our preliminary research we wanted to

experiment with the detection rates of popular anti-
malware software. Since [13] offers almost all current
and up to date scanners and forwards the sample to
anti-malware houses for analysis, we used it to assess
some samples. In the course of the authors work, we
managed to collect a few thousand unique malware
samples, and used a small subset of those for testing.
In this work, we will list only some most interesting
conclusions from our experiments:

The main weakness of signature matching is that
even basic alterations to the core of the malware will
be undetectable to the scanner. We can show this
problem easily with the following experiment. We
took a number random malware samples out of our
batch, and employed a simple packing method. For
example, here we list 5 very popular malware samples
and the detection success with the regard to 39
popular anti-malware scanners provided by an online
service [13] at the time of our analysis. Our results are
presented in table 1:

Table 1: Detection rates for selected malware
samples

Malware sample: Detection rate:

alpha 37/39 (94.87%)

beta 38/39 (97.44%)

gamma 37/39 (94.87%)

delta 33/39 (84.62%)

eta 28/39 (71.8%)

After that, we took a simple packer [12] and ran it

each of those samples trough the same scanners. It is
important to note that the demo version is free to
download, and anyone can download and run the
packer and pack any common malware type, which
doesn't require any special malware writing skills.
Our results follow in table 2:

Proceedings of the 21st Central European Conference on Information and Intelligent Systems 430

Varaždin, Croatia Faculty of Organization and Informatics September 22-24 2010

Table 2: Detection rates for packed samples

Malware sample: Detection rate: Difference:

alpha-vmp 18/39 (46.16%) 48.71%

beta-vmp 18/39 (46.16%) 51.28%

gamma-vmp 16/39 (41.03%) 53.84%

delta-vmp 15/39 (38.47%) 46.15%

eta-vmp 17/39 (43.59%) 28.21%

According to this, even simple trivial obfuscation

mechanisms like packing can defeat a lot of signature
based scanners. The anti-malware applications that
detected the sample were either using behavior or
some other in-depth analysis, so they could unpack
the malware and test it. It is important to note that
behavior based detection takes longer than signature
matching, and it is logical to assume that even lower
detection rates could be achieved with a better or
custom built method. Since [13] automatically sends
the sample to anti-malware houses, we wanted to
assess the speed in which the anti-malware houses
would recognize our packed sample as malicious and
issue signatures to detect our packed variant. For that
experiment we used the evaluation VMProtect packer,
picked an extremely popular and simple malware
sample (which had 100% detection rate by all anti-
malware tools), we packed the sample and uploaded it
and scanned it with [13] in 24 hour intervals for 10
days. That way we can see how fast can anti-malware
houses deploy signatures for new malware variants.
Our results are in table 3:

Table 3: Daily detection rates for a selected
sample

Day Detection rate

1 16/40 (40.0%)

2 19/40 (47.5%)

3 21/40 (52.50%)

4 23/41 (56.1%)

5 27/42 (64.29%)

6 27/40 (67.5%)

7 27/41 (65.86%)

8 27/41 (65.86%)

9 28/41 (68.3%)

10 29/41 (70.74%)

As we can see, it took the 40 anti-malware houses

about 10 days to improve their detection rate for about
20%. It is important to note that this is a simple single
stage obfuscation mechanism and better results could
be had by coding a custom packer. Also, the results
could be skewed because our sample was just
forwarded as a malicious one to the anti-malware

houses and was not released into the wild. We believe
that if our malware sample was a real live high risk
malware, the anti-malware houses hopefully would
have a faster response. Unfortunately, there is no
representative, ethical and legal way to assess this
response.

5. Classifier elements

Our classifier uses a multiple layered approach to

malware identification. Each layer of identification
performs one test on the malware subject. With each
test performed, our classifier engine computes the
total score of malware risk. This score indicates if the
subject in question is legit malware sample or not.

Our test’s can roughly be divided in two groups.
• Static tests
• Behavioral analysis tests

Static check include test that are performed
without executing the malware sample and do not
pose any risk to the machine running the tests. On
other hand, behavioral analysis test observe the
patterns that malware is exhibiting after it’s been
executed, preferably in a virtual machine.

Here are some static tests that we recommend:

1. Entropy analysis:

An average standard PE executable or other non

compressed files have low to medium Shannon
entropy, if additional compression, encryption or
packing is used the entropy will rapidly approach to 8
bits. The samples that we analyzed gave the same
conclusion that high entropy samples use encryption
or packers. This is a low complexity, fast check that
can help us to decide will we try to scan the sample
with known malware patterns or try to unpack the
sample and maybe continue with further analysis.

2. Packer analysis and unpacking

If the entropy value is high, we can try and detect

packers. We can use some publicly known patterns
like [packpatterns], where we can use PeID [11] or
other methods like Ero Carrera's python pefile
package [6], which we used to implement a custom
packer detector which we compared to PeID. If we
detect a common packer like UPX, we can try and
unpack it. Failure to unpack a standard packer should
raise a red flag that would mean that some kinds of
anti-debugging/disassembly or obsfucation methods
are used. Some custom packers are custom built for
malware or are made to obfuscate the file to thwart
reversing. The use of custom malware centric packers
or usage of standard packers with anti-reversing
methods should automatically raise a high risk
warning.

Proceedings of the 21st Central European Conference on Information and Intelligent Systems 431

Varaždin, Croatia Faculty of Organization and Informatics September 22-24 2010

3. Identify crypto signatures

Cryptographic algorithms can be detected by their

implementation in code. S-Boxes, P-Boxes, standard
initialization vectors, library calls, machine code
patterns or other elements are static in code, and can
be detected. Encrypted chunks are not necessary a
high risk case, but are a good indicator that we need
to submit the sample to behavior testing.

4. Known code patterns

Malware authors, especially the ones that created

multiple malicious code variants share the common
trait as each programmer: They reuse their code.
Similar code chunks like update processes for
malware, fast flux techniques, stealth or
polymorphism segments, payloads,
exploits/shellcode, rootkit or other elements are
reused between the malware created by the same
authors or by the same group. If detected, such
malicious code patterns are a high risk threat.

Complementing those static tests we can run

behavior or dynamic tests:

1. Self removal test

A large percentage of malware samples will

remove itself from current working directory to some
obscure location on the system in hope of avoiding
user detection. Most legit software doesn't exhibit this
characteristic. This classifier should monitor the
executable that’s being analyzed and check if it has
deleted itself from the current working directory.
Although this is not a definite indication of malware
behavior it will raise suspicion.

2. Persistency test

Most malware samples (excluding only memory

resident malware) will try to use some known auto-
start method in order to ensure the survival of system
shutdown or reboot. Although legit software also uses
this method, there is a big difference - malware will
not ask user for permission and it will try to insert
itself in less known locations that are not reserved for
user software but for operating system use. If we
cross-reference this test with self removal test, we can
get a strong indication of malware behavior.

3. Third-party injection

Malware inject their code or dll in another process

using mechanism provided by operating system.
Using this techniques malware can go undetected by
executing its code in trusted applications process.
Legit software rarely has any need to create threads in
remote processes or load rouge dll's. Our classifier
should monitor the subject for any such attempt and

logs it adding it to the global score of the samples
malware behavior.

4. System call tracing

Most AV solutions employ some kind of

heuristics based on examining which system calls an
executable is using, also, the order of system calls is
of significance. However, most AV solutions have
problems with packed or encrypted malware. Our
classifier employs a novel approach at tracing system
calls that can't be circumvented by regular user-mode
malware. Using this technique we can apply advanced
heuristic on which system calls is application using
and in which order.

5. Hooking techniques (IAT, SSDT, SSDT

Shadow, IDT)

In order to control the infected computer and steal

users information malware tries to insert itself into
normal execution path. One of the most common
techniques for achieving this is hooking. Our
classifier should monitor the system for presence of
such hooks, if any of them is found this will be a
strong indication of malware behavior.

Tests don’t have equal significance, and therefore

carry different weights that are used to compute the
final score of for the malware being tested.

6. Classifier design

Our classifier should be created in phases, where

we group similar activities to achieve better
performance. The two most costly operations are disk
reads and behavior testing. Considering we separated
the tests in two distinct groups, we consider the
following:

Phase 1: Single pass testing

The first phase tests are Entropy testing, packer

detection, cryptographic signature detection and
known code pattern scanning. The optimization is that
all those measures require one read/scan per sample.
By implementing those measures in parallel, we can
achieve better performance. The most significant
weight would be if a sample has common malicious
code elements found in other malware samples,
followed by packing information if a malware centric
packer was used.

Our suggestion is, if a malware specific packer is
used, to automatically flag the sample as high risk or
malicious. If a packer is used, the sample can be
unpacked and rescanned for code samples or other
data.

Other interesting information can be obtained if a
packing attempt fails, or if we can see anti-debugging

Proceedings of the 21st Central European Conference on Information and Intelligent Systems 432

Varaždin, Croatia Faculty of Organization and Informatics September 22-24 2010

methods in the file. Crypto signatures can add a low
risk score.

All above mentioned operations can be multi-
threaded, so a multiple threaded implementation
would have a speed gain. Also, it is important to note
that the searching algorithms are slower as we have
more samples to search. Therefore, we can say it is
better to search for a smaller concrete subset of
patterns then a large malware pattern base

After all those methods, we can parallelize
scanning for known malware patterns, which is costly
by time. We suggest ordering the patterns where
newer malware samples are at the beginning of the
list, where they can be matched faster and other
methods can use a quick hash function lookup, where
we calculate a hash function from a sample and try to
check if the sample is widely known as malicious.

Phase 2: Simple runtime tests

There are two simple runtime tests, Self removal

and persistence. If a sample removes itself from its
current runtime location, then this is a medium risk
flag. Adding itself to a automatic run location is
another medium risk flag. If both are present at a
same time, then it is a very high risk flag as this
behavior is not exhibited in installing applications, but
only malware.

Phase 3: Advanced runtime tests

Advanced tests are runtime injection, syscall

tracing and hooking detection. Those tests are highly
reliable, but as phase 2 they require executing the
sample. Therefore, it would be highly recommended
to run the samples in a bare-bone virtual machine that
can be scrubbed after testing. Unfortunately, the most
reliable tests are the slowest and should be used as a
last resort measure.

7. Future research

Our future research will be concentrated on

benchmarking the classifier speeds with various
methods and parameters. Also, we have collected a
wide malware sample base, and we want to tune and
benchmark the model against other commercial and
open source providers to obtain the optimum speed
and classification precision considering each
classifiers importance and reliability. One of our
research areas will cover other methods that are even
faster than the ones covered here or the importance of
some methods that we have shown here.

8. Conclusion

In this work, we have shown a concept for

malware detection that does not rely solely on
signature matching or behavior detection. We have
presented a concept that is both faster and We believe
while an increasing number of malware samples is
presented each day the methods of malware detection
at the gateways and routers to our networks are not
improving as fast as they should. Complex malwares
like Conficker or custom malware like the ones used
in GhostNet and Aurora attacks are gaining
popularity. We can only conclude that additional
research needs to be done in this area.

7. References

[1] http://abysssec.com/AbyssDB/Database.TXT

[2] BAYOGLU B., SOGUKPINAR I., "Polymorphic
worm detection using strong token-pair
signatures", Gebze, Koaceli-Turkey

[3] Chess D., White S., "An Undetectable Computer
Virus", Hawthorne, New York, USA

[4] http://mtc.sri.com/Conficker/, Acc. 29.3.2010

[5] Eliam E., “Reversing: Secrets of Reverse
Engineering”, Wiley Publishing Inc., 2005

[6] http://code.google.com/p/pefile , Acc. 29.3.2010

[7] Guo F., Ferrie P. , Tzu-cker C., „A study of the
Packer Problem and Its Solutions“, Symantec
Research Labaratories, 2008.

[8] Guofei G., Porras P., Yegneswaran V., Fong M.,
Lee W., "BotHunter: Detecting Malware Infection
Through IDS-Driver Dialog Correlation", 16th
USENIX Security Symposium, p. 167-182

[9] Jacob G., Filiol E., Debar H., "Formalization of
malware through process calculi", eprint
arXiv:0902.0469, 2009

[10] Leder F., Steinbock B., Martini P.,
“Classification and Detection of Metamorphic
Malware using Value Set Analysis", Institute of
Computer Science, Bonn, Germany

[11] http://www.peid.info/, Acc. 29.3.2010

[12] http://www.vmprotect.ru/, Acc. 29.3.2010

[13] www.virustotal.com, Acc. 29.3.2010

[14] Yin H., Song D., Egele M., Kruegel C., Kirda E.,
"Panorama: capturing system-wide information
flow for malware detection and analysis",
Conference on Computer and Communications
Security

Proceedings of the 21st Central European Conference on Information and Intelligent Systems 433

Varaždin, Croatia Faculty of Organization and Informatics September 22-24 2010

