
Solving Shortest Proof Games by Generating

Trajectories using Coq Proof Management System

Marko Maliković

The Faculty of Humanities and Social Sciences

University of Rijeka

Omladinska 14, 51000 Rijeka, Croatia
marko.malikovic@ffri.hr

Mirko Čubrilo

Faculty of Organization and Informatics

University of Zagreb

Pavlinska 2, 42000 Varaždin, Croatia
mirko.cubrilo@foi.hr

Abstract. In this paper we focus on Shortest Proof

Games (SPG) as one important genre of retrograde

chess analysis. SPG's serve to establish the legality of

a position in given chess problems by searching for

the shortest sequence of moves that lead to the initial

chess position. First we give an overview of existing

computer programs for solving SPG's, but due to the

absence of any research papers on the topic, we

provide informal descriptions obtained by the authors

via e-mail and from partial information from

programs' Web sites. In the second part of the paper

we propose some systematic ideas for the

establishment of a formal system for solving SPG's by

using Coq - a formal proof management system. Our

approach is based on the shortest trajectories

(shortest planning paths which certain pieces might

follow from initial square to achieve the target

square), admissible trajectories (trajectories longer

than the shortest trajectory) and bundles of

trajectories. We show how these forms can be

recursively generated using Coq and how they can be

used in order to solve an SPG.

Keywords. Retrograde chess analysis, Shortest proof

games, Trajectories, Coq

1 Introduction

Retrograde chess analysis (RCA) is a method to

determine which moves were played leading up

to a given chess position. There are several main

types of retrograde chess problems which can be

classified on the basis of different criteria. In this

paper we focus on Shortest Proof Games (SPG).
1

SPG can serve to establish the legality of a

position. The problem of SPGs is the search for

the shortest sequence of moves leading from the

1 For other types see [8] or [13].

given to the initial chess position. Here we give a

general definition of retrograde chess moves.

Due to the inability to axiomatization of

retrograde chess, definition is indirect and based

on a definition of moves in “standard” chess: “If

in accordance with the laws of chess, position

Pn+1 arises from position Pn due to the move m of

piece p, then the retrograde chess move m’ of

move m is the movement of piece p due to the

position Pn arising from position Pn+1.” If we do

not restrict ourselves only to chess then we can

say that the retrograde analysis may be applied to

any system that can display different states and

in which a set of rules defines the change of one

state to another. The purpose of such retrograde

analysis can be: avoidance of undesirable final

states or determination of action sequences

which lead to some of the desirable final states.

For a build-up model for solving SPGs we

use Coq, a computer tool for verifying theorem

proofs in higher-order logic, whose complete

theory and possibility of practical applications is

given in [1] and [18]. The underlying theory of

the Coq is the Calculus of Inductive

Constructions [5], a formalism that combines

logic from the point of view of λ-calculus and

typing. OCaml is the implementation language

for Coq [9]. Concerning a proposition that one

wants to prove, the Coq system proposes tactics,

to construct a proof, using elements taken from a

context, namely, declarations, definitions,

axioms, hypotheses, lemmas, and already proven

theorems. In addition, the Coq system provides

the language Ltac of operators called tacticals

which make it possible to combine tactics and, in

such a way, to build more complex tactics that

Proceedings of the 21st Central European Conference on Information and Intelligent Systems 11

Varaždin, Croatia Faculty of Organization and Informatics September 22-24 2010

can be defined as integral function called Ltac

functions [2], [1, 61], [18, 213].

Why use Coq for solving retrograde chess

problems? We offer a short answer by quoting

from [20, 5]: “Even most problem composers

feel that the basis of retrograde chess analysis is

rather mathematical logic than the game of

chess.” Apart from [10], [11] and [12], so far the

Coq system has not been applied in the field of

chess. But, in these three last publications Coq is

applied to different types of retrograde chess

problems than the problems we deal with in this

paper, and this was reason for applying different

methodology for solving these problems here.

Specifically, the publications mentioned deal

with problems of proving invalidity of any given

position, such as determining if castling is

disallowed or an en passant capture is possible or

determining a certain number of moves played

leading up to a given position, but under the

premise of the lengths of the entire paths of the

figures from initial to the given position being

irrelevant.

There are several computer programs for

solving SPGs but there is no research paper in

this field. Therefore, below we offer descriptions

of existing programs given by the authors (by E-

mail) and from programs’ web sites. Retractor

[7] is an old program developed in 1991 in the

Department of Computer Science at Stanford

University, California. Retractor uses a simple,

classical backtracking search. All possible

retromoves are generated at each node, with

backtracking when a position is hit that can be

proven to be either illegal, or previously reached.

If the search reaches an implied given maximum

depth without hitting a position it can prove

illegal, then that branch is counted as a solution.

But this does not guarantee that the solution is

correct, only that the preprogrammed ruleset isn't

able to prove the position illegal. Natch [19]

identifies pieces that have never moved (pawns

first, and then pieces blocked by pawn). On a

board where the squares identified in the

previous phases cannot be used, or crossed, it

builds many tables, where the minimum number

of moves is given from one square to any other

square, for all piece types. After this, it searches

for all combinations of pieces. There are two

constraints that must be respected. The number

of moves must not exceed the total number of

moves. The second constraint is only for pawns.

When they are not on the same column, there

must be enough pieces missing in the opposite

camp. Then Natch tries to order moves. When

cycle in the moves order is detected, the position

is eliminated. “Natch isn't able to verify every

SPG problem. There are many kinds of positions

where Natch needs days, if not weeks, to find a

solution.” [19]. Euclide [3] is a program divided

in four major parts. The first one, called the

preliminary analysis, tries to make obvious

deductions directly from the position. Without

going into details, Euclide counts the required

moves for each piece to reach their possible

destinations and then eliminates impossibilities.

In the second part Euclide uses so-called

strategies. For each of the initial 32 pieces it is

determined: the final square of the piece, whether

this piece was captured or not, the promotion

square if any and the promotion piece, the order

of the various captures made, the castling side if

applicable. One subset of all these possible

choices for each piece forms a strategy. All

possible strategies are built by going through a

large number of permutations. The possible

permutations are built from data provided by the

preliminary analysis, without further analysis. If

Euclide failed to make many deductions in the

first part, the total number of possible strategies

is immensely huge, hence Euclide will run

“forever”. The third part, in order to eliminate

strategies, consists of a partial analysis of move

dependencies. For each strategy built in the

previous step, Euclide performs further counting

deductions, exactly like in the first part but this

time, for a given strategy, each piece has a

known final square, known captures, etc. This

can eliminate immediately a large number of

possible strategies. Finally, the fourth part simply

plays, from the initial position, moves until

solutions are found or the move tree is

exhausted. For each strategy, Euclide plays all

possible games. Again, this can be very time

consuming. The computations of the third part

are carefully used to truncate huge branches of

moves. Euclide fails to make obvious deductions

that a human is able to make, hence the program

sometimes considers a huge number of strategies

that are obviously impossible. When there are

many missing pieces, Euclide has much trouble

finding where the captures have occurred and

again considers a large number of strategies that

are obviously not possible.

2 Bases of RCA using Coq

Here we load the List module [6, 51], since our

model is going to use lists:

Proceedings of the 21st Central European Conference on Information and Intelligent Systems 12

Varaždin, Croatia Faculty of Organization and Informatics September 22-24 2010

Require Import List.

The coordinates of the squares according to

the orientation of chessboard are shown in Fig. 1.

As we see, the standard labels of rows and

columns of the chessboard are mapped into the

natural numbers as follows: a→1, ..., h→8, 1→8,

..., 8→1. The set of squares on the chessboard

can be defined in Coq as record type [1, 145]

with two functions column and row of type nat:

Record chessboard : Set := square {column : nat; row : nat}.

8 # # # #
7 # # # #
6 # # # #
5 # # # 6,4 #
4 # # # #
3 # # # #
2 # # # #
1 # # # #

a b c d e f g h

Figure 1. The coordinates of the squares

Set of pieces in order: king, knight, rook,

bishop, queen and pawn, as well as pieces’ colors

(black and white) we introduce as enumerated

inductive types without recursion [1, 137]:

Inductive piece : Set := k | n | r | b | q | p.
Inductive color : Set := W | B.

3 Trajectories in Coq

The Language of Trajectories is developed in

Linguistic Geometry [17], as the lowest level

language of the Hierarchy of Languages [14]. In

accordance with the domain of this paper, we can

informally describe trajectories as planning paths

between two squares which certain pieces might

follow to achieve the target square. We first want

to consider shortest trajectories for an piece P of

color C (abbreviation PC) with the beginning at

square (x0,y0) and the end at square (xn,yn).

Trajectories will be defined as predicate whose

attributes are: P, C and a list of squares which

represent path. The set of shortest trajectories is a

subset of set of admissible trajectories of some

degree which are formally defined in [17, 51].

We define admissible trajectories as follows (in

given definition is with tP((xm,ym),(xn,yn),l)

assigned set of trajectories of piece P from

(xm,ym) as the starting square and (xn,yn) as end

square and of length l): “An admissible trajectory

of degree 1 is a shortest trajectory. An admissible

trajectory of degree k (k is an integer, k>1) is a

trajectory ttP((x0,y0),(xl,yl),l) if there is a square

(xi,yi) at chessboard such that t is a concatenation

of an admissible trajectory of degree k-1 from

tP((x0,y0),(xi,yi),l1) and a shortest trajectory

tP((xi,yi),(xl,yl),l2), l1+l2=l.”

Admissible trajectories are defined

inductively and therefore, the first idea that arises

is to define them in Coq as inductive type with

recursion [1, 160]. But, for the starting and end

square related to some piece there is generally

more than one trajectory and we can’t

theoretically establish a whole system without

differentiation of such trajectories. Therefore we

just declare admissible trajectories of some

degree (type nat) as predicate:

Parameter At : nat -> piece -> color -> list chessboard -> Prop.

Bundle of trajectories of some degree and for

some piece, in accordance with [17, 50], is a set

of trajectories which all have the same starting

and end square:

Parameter bt :
nat -> piece -> color -> nat -> nat -> nat -> nat -> list (list chessboard) -> Prop.

4 Starting state of the system

Let us consider SPG problem given at Fig. 2.

ä # à é â á ä #
ë ê ë æ ë ê ë ê
 # ë #â #

 # Á # #

Ê Ã # #
Ê É Ê Ë Ê Ë Ê Ë
Å Æ # # À Ã Ä

Figure 2. Shortest Proof Game in 8.0

In SPG problems every piece has to reach its

own end square. Here one problem appears: Do

we know what square is an end square for every

piece? Generally, in all of SPG problems we

only know what the end square is for kings

because the other figures on the board can be

promoted (except for pawns, of course, but

pawns can change a column in which they are).

But, in the problem given in Fig. 2 we know

what the end square for more pieces is. This is

because problem 2 is a simplified SPG problem

for several reasons. First, all pieces from the

initial chess position are still on the chessboard

because no piece was captured and no piece was

promoted in the previous moves. This means that

we know what is the end square also for queens,

bishops, and pawns. There are two squares that

each of the knights could get to and this also

applies to rooks. Moreover, some knight or rook

can, in a given position, stay at the end square of

Proceedings of the 21st Central European Conference on Information and Intelligent Systems 13

Varaždin, Croatia Faculty of Organization and Informatics September 22-24 2010

another knight or rook of the same color and this

square can be just his temporarily square. Our

current intention isn’t to resolve such issues. Due

to this we just discover to the reader that the

knight at f6 come from square g8 and knight at

c3 from b1.
2
 To setup starting state of problem

shown in Fig. 2, we declare predicate ON where

term ON P C x0 y0 xn xn means that peace PC

stays at square (x0,y0) and that square (xn,yn) is its

target square. Then we just list all the instances

of predicate ON for all pieces on the chessboard:

Parameter ON : piece -> color -> nat -> nat -> nat -> nat -> Prop.
Variable ON1 : ON k W 2 7 5 8.
Variable ON2 : ON q W 2 8 4 8.
...
Variable ON32 : ON p B 8 2 8 2.

5 Distances at chessboard

In order to construct the shortest trajectories, in

accordance with [17, 52] and [16, 95], we define

function MAP which gives the number of moves

necessary for piece P staying at (x0,y0) to reach

square (xn,yn) along the shortest path. For each

kind of piece a different function exists, but these

functions don’t differ for the same kind of pieces

of different colors apart for pawns. Let us first

describe function MAP informally. For each kind

of piece P we specify table 15×15 with number 0

on the central square of the table. The remaining

squares are filled with the numbers equal to the

number of moves necessary for piece P to reach

the given square from the central square along

the shortest path or, if the square is not reachable

then with 2×the number of points in

chessboard=128. To define such tables in Coq

for various kinds of pieces we use function

MAP_start with five initial lists of lists over

natural numbers which belong to kings, knights,

rooks, bishops and queens (we show here only

part of function which belongs to kings):

Definition MAP_start (P : piece) := match P with
| k => (7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: nil) ::
 (7 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 7 :: nil) ::
 (7 :: 6 :: 5 :: 5 :: 5 :: 5 :: 5 :: 5 :: 5 :: 5 :: 5 :: 5 :: 5 :: 6 :: 7 :: nil) ::
 (7 :: 6 :: 5 :: 4 :: 4 :: 4 :: 4 :: 4 :: 4 :: 4 :: 4 :: 4 :: 5 :: 6 :: 7 :: nil) ::
 (7 :: 6 :: 5 :: 4 :: 3 :: 3 :: 3 :: 3 :: 3 :: 3 :: 3 :: 4 :: 5 :: 6 :: 7 :: nil) ::
 (7 :: 6 ::-5 :: 4 :: 3 :: 2 :: 2 :: 2 :: 2 :: 2-:: 3 :: 4 :: 5 :: 6 :: 7 :: nil) ::
 (7 :: 6 ::-5 :: 4 :: 3 :: 2 :: 1 :: 1 :: 1 :: 2-:: 3 :: 4 :: 5 :: 6 :: 7 :: nil) ::
 (7 :: 6 ::-5 :: 4 :: 3 :: 2 :: 1 :: 0 :: 1 :: 2-:: 3 :: 4 :: 5 :: 6 :: 7 :: nil) ::
 (7 :: 6 ::-5 :: 4 :: 3 :: 2 :: 1 :: 1 :: 1 :: 2-:: 3 :: 4 :: 5 :: 6 :: 7 :: nil) ::
 (7 :: 6 ::-5 :: 4 :: 3 :: 2 :: 2 :: 2 :: 2 :: 2-:: 3 :: 4 :: 5 :: 6 :: 7 :: nil) ::
 (7 :: 6 ::-5 :: 4 :: 3 :: 3 :: 3 :: 3 :: 3 :: 3-:: 3 :: 4 :: 5 :: 6 :: 7 :: nil) ::
 (7 :: 6 ::-5 :: 4 :: 4 :: 4 :: 4 :: 4 :: 4 :: 4-:: 4 :: 4 :: 5 :: 6 :: 7 :: nil) ::
 (7 :: 6 ::-5 :: 5 :: 5 :: 5 :: 5 :: 5 :: 5 :: 5-:: 5 :: 5 :: 5 :: 6 :: 7 :: nil) ::
 (7 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 7 :: nil) ::
 (7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: nil) ::
 nil...

2 It is clear that all rooks are at their side and no castling is done.

The required results of function MAP for the

king standing at f6 is represented by a 8×8 sub-

table (internal shaded table) in which number 0 is

located in the square where observed piece

stands.
3

To define function MAP over function

MAP_start we first define several auxiliary

recursive functions [4, 27], [18, 38], [1, 164].

Fixpoint beginning_of_linear_list (x0 : nat) (l : list nat) {struct l} : list nat := match l with
nil => nil | l'::l1 => match 16-x0 with 0 => nil | S x0' => l'::beginning_of_linear_list
(x0+1) l1 end end.

Fixpoint rest_of_linear_list (x0 : nat) (l : list nat) {struct l} : list nat := match l with nil =>
nil | l'::l1 => match 8-x0 with 0 => l | S x0' => rest_of_linear_list (x0+1) l1 end end.

Fixpoint beginning_of_2_dim_list (y0 : nat) (l : list (list nat)) {struct l} : list (list nat) :=
match l with nil => nil | l'::l1 => match 16-y0 with 0 => nil | S y0' =>
l'::beginning_of_2_dim_list (y0+1) l1 end end.

Fixpoint rest_of_2_dim_list (y0 : nat) (l : list (list nat)) {struct l} : list (list nat) := match l
with nil => nil | l' :: l1 => match 8-y0 with 0 => l | S y0' => rest_of_2_dim_list (y0+1) l1
end end.

Fixpoint MAP_temp (x0 y0 : nat) (l : list (list nat)) {struct l} : list (list nat) := match l with
 nil => nil | l' :: l1 => app (0 :: nil) (rest_of_linear_list x0 (beginning_of_linear_list x0 l'))
:: MAP_temp x0 y0 l1 end.

The attributes of function MAP are the

coordinates of the starting square of piece P and

starting 15×15 table which belong to pieces of

the type P:

Definition MAP x0 y0 l := app ((0 :: nil) :: nil) (MAP_temp x0 y0 (rest_of_2_dim_list y0
(beginning_of_2_dim_list y0 l))).

6 Generating shortest trajectories

In this section we show how in Coq all shortest

trajectories for piece P from (x0,y0) to (xn,yn) can

be iteratively generated, mostly in accordance

with the steps given in [17, 196]. For example, in

the position shown at Fig. 3 we have to find all

the shortest trajectories for the white king from

c7=(3,2) to his target square e1=(5,8).

 # # # è #
É # #
 # # # #

 # # # #

 # # # #

Figure 3. By which shortest paths can white king from

c7=(3,2) come to his target square e1=(5,8)?

First we compute the shortest distance l0

between the starting and end square by

computing MAP for given starting square (x0,y0)

3 Now we can see that asymmetry is not only the reason for
problem of creating lists for pawns. The situation is more

complicated also because of the following: impossibility of

standing of pawns in 1th and 8th row, because of move two squares
backward only from 4th row (for white) or from 5th row (for black)

and because of diagonally moves (retrograde capturing).

Proceedings of the 21st Central European Conference on Information and Intelligent Systems 14

Varaždin, Croatia Faculty of Organization and Informatics September 22-24 2010

and given piece. In our example we have to

compute MAP 3 2 (MAP_start k). The value in

the resulting list which corresponds to the end

square is the shortest distance l0 (in our example

l0=6). Further, we compute MAP for end square

(xn,yn) and same piece (in our example MAP 5 8

(MAP_start k)). Now, we find the set of squares

such as MAP x0 y0 (MAP_start k)+MAP xn yn

(MAP_start k)=l0. To find this set which we

denote by SUM, we define function Sum which is

the sum of two 2-dimensional matrices:

Fixpoint Sum_linear (M1 M2 : list nat) {struct M1} : list nat := match M1 with nil => nil |
M :: M1' => match M2 with nil => nil | N :: M2' => nth 0 M1 0 + nth 0 M2 0 ::
Sum_linear M1' M2' end end.

Fixpoint Sum (M1 M2 : list (list nat)) {struct M1} : list (list nat) := match M1 with nil =>
nil | M :: M1' => match M2 with nil => nil | N :: M2' => Sum_linear M N :: Sum M1' M2'
end end.

After computing SUM we get:

Sum (MAP 3 2 (MAP_start k)) (MAP 5 8 MAP_start k)) =
(0 :: nil) ::
(0 :: 9 :: 8 :: 8 :: 8 :: 9 :: 10 :: 11 :: 12 :: nil) ::
(0 :: 8 :: 7 :: 6 :: 7 :: 8 :: 9 :: 10 :: 11 :: nil) ::
(0 :: 7 :: 6 :: 6 :: 6 :: 7 :: 8 :: 9 :: 10 :: nil) ::
(0 :: 6 :: 6 :: 6 :: 6 :: 6 :: 7 :: 8 :: 9 :: nil) ::
(0 :: 7 :: 6 :: 6 :: 6 :: 6 :: 6 :: 7 :: 8 :: nil) ::
(0 :: 8 :: 7 :: 6 :: 6 :: 6 :: 6 :: 6 :: 8 :: nil) ::
(0 :: 9 :: 8 :: 7 :: 6 :: 6 :: 6 :: 7 :: 8 :: nil) ::
(0 :: 10 :: 9 :: 8 :: 7 :: 6 :: 7 :: 8 :: 9 :: nil) :: nil

All the first possible moves from the starting

square are from the intersection of three sets:

• SUM

• ST1(x0,y0)={square x y | nth x (nth y (MAP

x0 y0 (MAP_start k)) nil) 0=1}

• STl
0
-l+1(xl

0
-l+1,yl

0
-l+1)={square x y | nth x (nth

y (MAP xl0-l+1 yl0-l+1 (MAP_start k)) nil)

0=l0-l+1} for l=l0

For example, in the case shown in Fig. 3, b6,

c6 and d6 are three end squares of all the

possible first moves from c7 related to e1. These

squares are now new starting squares for the next

step of generation. The SUM is the same for all

steps of the generation, while ST1 and STl
0
-l+1

iterative changed in the way that ST1 in every

next step as arguments takes coordinates of the

new square, while in STl
0
-l+1 in every next step

value l decreases by one. In such a way, after l0

steps we get all possible shortest trajectories.

To iteratively generate bundles of shortest

trajectories for all pieces on the chessboard we

create very complex auxiliary function GM,

function GBT1 and main recursive function GBT:

Fixpoint GM (i : nat) (j : nat) (n : nat) (P : piece) (C : color) (t0 : list chessboard) (xl yl :
nat) {struct n} : list (list chessboard) := match n with S n' => match j with S j' => match
i with S i' => if eq_nat (nth i (nth j (MAP (column (last t0 (square 0 0))) (row (last t0
(square 0 0))) (MAP_start P)) nil) 0) 1 then if eq_nat (nth i (nth j (MAP (column (nth 0
t0 (square 0 0))) (row (nth 0 t0 (square 0 0))) (MAP_start P)) nil) 0) (length t0) then if
eq_nat (nth i (nth j ((Sum (MAP (column (nth 0 t0 (square 0 0))) (row (nth 0 t0 (square
0 0))) (MAP_start P)) (MAP xl yl (MAP_start P)))) nil) 0) (nth xl (nth yl (MAP (column
(nth 0 t0 (square 0 0))) (row (nth 0 t0 (square 0 0))) (MAP_start P)) nil) 0) then if
eq_nat i xl then if eq_nat j yl then (app t0 (square i j :: nil)) :: nil else app (GM i' j n' P C
t0 xl yl) ((app t0 (square i j :: nil)) :: nil) else app (GM i' j n' P C t0 xl yl) ((app t0

(square i j :: nil)) :: nil) else GM i' j n' P C t0 xl yl else GM i' j n' P C t0 xl yl else GM i' j
n' P C t0 xl yl | _ => GM 8 j' n' P C t0 xl yl end | _ => nil end | _ => nil end.

Fixpoint GBT1 (P : piece) (C : color) (bt : list (list chessboard)) (xl yl : nat) {struct bt} :=
match bt with nil => nil | bt0 :: bt' => app (GM 8 8 128 P C bt0 xl yl) (GBT1 P C bt' xl
yl) end.

Fixpoint GBT (P : piece) (C : color) (bt : list (list chessboard)) (xl yl n : nat) {struct n} :=
match n with | O => bt | S n' => GBT1 P C (GBT P C bt xl yl n') xl yl end.

Now we introduce axiom AGBT which will

allow us to compute a bundle of shortest

trajectories as result of the function GBT:

Axiom AGBT : forall x0 y0 xl yl k : nat, forall P : piece, forall C : color, ON P C x0 y0 xl
yl -> bt k P C x0 y0 xl yl (GBT P C ((square x0 y0 :: nil) :: nil) xl yl (nth xl (nth yl (MAP
x0 y0 (MAP_start P)) nil) 0)).

We can create the Ltac function LGBST

which will from hypotheses in the initial state of

system generate bundles of shortest trajectories

for all pieces for which trajectories exists:

Ltac LGBST := repeat match goal with [h : ON ?P ?C ?X0 ?Y0 ?XL ?YL |- _] =>
apply AGBT with (k:=1) in h;compute in h end.

The resulting bundles will appear in context

as lists of lists of squares. For example, bundle of

shortest trajectories of the white king in Problem

2 will look like this:

bt 1 k W 2 7 5 8 ((square 2 7 :: square 3 6 :: square 4 7 :: square 5 8 :: nil) :: (square 2
7 :: square 3 7 :: square 4 7 :: square 5 8 :: nil) :: (square 2 7 :: square 3 7 :: square 4
8 :: square 5 8 :: nil) :: (square 2 7 :: square 3 8 :: square 4 7 :: square 5 8 :: nil) ::
(square 2 7 :: square 3 8 :: square 4 8 :: square 5 8 :: nil) :: nil)

To generate single trajectories from such

bundles we need one new recursive function, one

axiom and one Ltac function as follows:

Fixpoint FGT (P : piece) (C : color) (bt : list (list chessboard)) {struct bt} : Prop :=
match bt with nil => True | bt0 :: bt' => At 1 P C bt0 /\ (FGT P C bt') end.

Axiom AGT : forall k x0 y0 xl yl : nat, forall P : piece, forall C : color, forall bt_list : list
(list chessboard), bt k P C x0 y0 xl yl bt_list -> FGT P C bt_list.

Ltac LAGT := repeat match goal with [h : _ |- _] => apply AGT in h;compute in h end;
repeat match goal with h : (_ /\ _) |- _] => case h;clear h;intros end; repeat match
goal with [h : True |- _] => clear h end.

7 Obstacles

In RCA a piece P can’t reach some square

(blocked destination) if it is occupied by another

element P’ and can’t cross the square (blocked

beam) if it is occupied by another element P’

although P and P’ can belong to the same or the

opponents side. Blocked destinations and

blocked beams are called obstacles. In some

position two kinds of obstacles can exist for

pieces to reach a square: unmovable and

movable. Unmovable obstacles are pieces which

stay at their target square and can’t move

anymore. Such obstacles have to be bypassed.

In the context we get after applying the

function LAGT, some trajectories can be of

length 1. Those trajectories correspond to

unmovable obstacles. We introduce type

At_block, axiom A_block and Ltac function

L_block_end_square by whose application we

Proceedings of the 21st Central European Conference on Information and Intelligent Systems 15

Varaždin, Croatia Faculty of Organization and Informatics September 22-24 2010

can assign all trajectories of length 1 as

unmovable obstacles:

Parameter At_block : piece -> color -> list chessboard -> Prop.

Axiom A_block : forall P : piece, forall C : color, forall x y : nat, At 1 P C (square x y ::
nil) -> At_block P C (square x y :: nil).

Ltac L_block_end_square := repeat match goal with | [h : At ?k ?P ?C (square ?X ?Y
:: nil) |- _] => apply A_block in h end.

Movable obstacles are pieces that can still

move and other pieces can wait their move. In

order to consider movable and unmovable

obstacles we create a new important function:

function obstacle whose result will indicate

whether a piece obstructs another piece to reach

the planned square. The term obstacle x y x1 y1 x2

y2 will return the boolean value true if square

(x,y) is the obstacle for the move of a piece from

square (x1,y1) to square (x2,y2) and the value false

otherwise. The function obstacle is based on a

comparison of the coordinates of the considered

squares which we will not show here.

8 Goal

To solve an SPG means to find the shortest

sequence of alternating white and black moves

leading from the initial to a given chess position.

Generally, one move is given by the kind of

piece, its color and the starting and end squares.

For the purposes of this paper, in the declaration

of a move we have to add the attribute of type

nat which indicates the ordinal number of moves

in SPG:

Parameter move : nat -> piece -> color -> chessboard -> chessboard -> Prop.

To establish the order of moves first we have

to know whose move was the last. In problem 2

it is known that the last move was the 16
th
 move

and it was black’s move. Finally, now we can

designate a goal which we have to prove

according to problem 2 and this goal claims that

there is a list of moves of length 16:

Goal exists P : piece, exists x1 : nat, exists y1 : nat, exists x2 : nat, exists y2 : nat,
move 16 P W (square x1 y1) (square x2 y2).

9 Impossible trajectories

All trajectories which contain a move with an

unmovable obstacle have to be eliminated from

consideration and we call these trajectories

impossible trajectories. To find and eliminate

impossible trajectories we create the recursive

function F_s_on_t, axiom A_block_t and Ltac

function L_Block_t. The term F_s_on_t x y P C l

with the help of function obstacle gives as a

result the boolean value of true if at the square

(x,y) an unmovable obstacle for the trajectory l of

the piece PC is to be found. Also, axiom

A_block_t claims that if some unmovable

obstacle is blocking a trajectory then this

trajectory corresponds to the blocked trajectory

at its starting square while Ltac function

L_Block_t provides the elimination of the

trajectory if the conditions are satisfied:
4

Fixpoint F_s_on_t (x y:nat) (P:piece) (C:color) (l:list chessboard) {struct l} : bool :=
match l with nil => false | l' :: l1 => match l1 with nil => false |_ => match obstacle x y
(column l') (row l') (column (nth 0 l1 (square 0 0))) (row (nth 0 l1 (square 0 0))) with
true => true | false => F_s_on_t x y P C l1 end end end.

Axiom A_block_t : forall P : piece, forall C : color, forall t : list chessboard, forall k x y :
nat, At k P C t -> F_s_on_t x y P C t = true -> At_block P C (nth 0 t (square 0 0) :: nil).

Ltac L_Block_t := repeat match goal with [h1 : At 1 ?P1 ?C1 (square ?X1 ?Y1 :: ?t1),
h2 : At_block ?P2 ?C2 (square ?X2 ?Y2 :: nil) |- _] => apply A_block_t with (P:=P1)
(C:=C1) (t:=square X1 Y1 :: t1) (x:=X2) (y:=Y2) in h1; [compute in h1;try (match goal
with [h3 : At 1 P1 C1 (square X1 Y1 :: ?t2) |- _] => clear h1 end) | tauto] end.

10 Generating SPGs

With the help of the shortest trajectories we can

minimize the number of obvious moves in SPG.

We can see that after the elimination of

impossible trajectories from context of problem

2, the sum of number of moves in trajectories is

equal to 16 provided that we take into account

one trajectory for every piece. This is in

accordance with the assumption of problem

which is given as “SPG in 8.0”. Now we have, in

the correct order, to add up the moves from the

remaining trajectories in context. If At 1 P C

(square x1 y1 :: square x2 y2 :: l :: nil) is an

trajectory of degree 1 for some piece PC with

first move from (x1,y1) to (x2,y2) and with l as rest

of the path, then, if we want to add hypothesis

move i P C (square x1 y1) (square x2 y2) to the

context, the considered trajectory has to be

reduced for its first square. This can be formally

introduced in our system as the following axiom:

Axiom AGSPG : forall P : piece, forall C : color, forall x1 y1 x2 y2 i k : nat, forall l : list
chessboard, At k P C (square x1 y1 :: square x2 y2 :: l) -> At k P C (square x2 y2 :: l)
/\ move i P C (square x1 y1) (square x2 y2).

We now need to generate as many hypotheses

about the possible first moves as there are

possible moves for a player whose turn it is. For

now, the moves have to satisfy the conditions not

to skip any piece and not to arrive at a square

occupied by another piece. So, we need the

4 In addition, function L_Block_t does these steps: 1. If in context

appears more than one trajectories with the same starting square

and if one of them is blocked by a piece, then this trajectory can be
cleared from the context (this step is iteratively repeated); 2. If after

step 1 in context remain only one trajectory from a starting square

and if this trajectory is blocked by an unmovable obstacle then this
trajectory is designated as a blocked piece at its starting square; 3.

Clearing double trajectories.

Proceedings of the 21st Central European Conference on Information and Intelligent Systems 16

Varaždin, Croatia Faculty of Organization and Informatics September 22-24 2010

following axiom by which those moves that do

not meet these conditions can be eliminated:

Axiom Move_Obstacle : forall P1 P2 : piece, forall C1 C2 : color, forall x y x1 y1 x2 y2
i k : nat, forall l : list chessboard, move i P1 C1 (square x1 y1) (square x2 y2) -> At k
P2 C2 (square x y :: l) /\ obstacle x y x1 y1 x2 y2 = true -> False.

Each of the possible moves will be generated

in a separate subgoal. From all of these subgoals

we will generate new subgoals which will

contain second moves which belong to the

opponent. And so we continue to build a tree

until we generate one subgoal which will contain

the solution. For this purpose we create the

following Ltac function LGSPG with the

attributes col which indicates a players’ color

whose turn it is and attribute i which indicates

what the ordinal number of moves is:
5

Ltac LGSPG col I := assert (H_goal : exists P : piece, exists x1 : nat, exists y1 : nat,
exists x2 : nat, exists y2 : nat, move 16 P W (square x1 y1) (square x2 y2));
[match goal with [h : At 1 ?P col (square ?X1 ?Y1 :: square ?X2 ?Y2 :: ?l) |- _] =>
apply AGSPG with (i:=I) in h;case h;clear h;intro h;pattern 1 in h;intro end | match
goal with [h : At 1 ?P col (square ?X1 ?Y1 :: square ?X2 ?Y2 :: ?l) |- _] => pattern 1 in
h end]; repeat match goal with [H_goal : exists P : piece, exists x1 : nat, exists y1 :
nat, exists x2 : nat, exists y2 : nat, move 16 P W (square x1 y1) (square x2 y2) |- _]
=> clear H_goal; assert (H_goal : exists P : piece, exists x1 : nat, exists y1 : nat,
exists x2 : nat, exists y2 : nat, move 16 P W (square x1 y1) (square x2 y2)); [match
goal with [h : At 1 ?P col (square ?X1 ?Y1 :: square ?X2 ?Y2 :: ?l) |- _] => apply
AGSPG with (i:=I) in h;case h;clear h;intro h;pattern 1 in h;intro end | match goal with
[h : At 1 ?P col (square ?X1 ?Y1 :: square ?X2 ?Y2 :: ?l) |- _] => pattern 1 in h end]
end; try assumption; simpl in * |-; try match goal with [h1 : move ?I ?p1 ?c1 (square
?X1 ?Y1) (square ?X2 ?Y2), h2 : At 1 ?p2 ?c2 (square ?X2 ?Y2 :: ?L2), h3 : At 1 ?p3
?c3 (square ?X ?Y :: ?L) |- _] => apply Move_Obstacle with (P2:=p3) (C2:=c3) (x:=X)
(y:=Y) (l:=L) in h1;[tauto | (split;[assumption | tauto])] end; match goal with [h1 : move I
?P col (square ?x1 ?y1) (square ?x2 ?y2) |- _] => repeat match goal with [h2 : At 1 P
col (square x1 y1 :: ?l2) |- _] => clear h2 end end.

Whilst generating SPGs and reducing

trajectories, new trajectories of length 1, which

represent unmovable obstacles can appear in the

context of new subgoals. Due to this, we have to

try to use the function L_block_end_square

again. After this it can occur that new blocked

trajectories appear in context and they have to be

eliminated from consideration by applying

function L_Block_t. Now we have to find all the

possible moves of the player whose turn it is and

so on. In this way our system gives us a unique

solution of the problem 2, and this solution is:

1. Pb3 Pd6 2. Bb2 Nd7 3. Bd4 Nf6 4. Nc3 Qd7 5.

Qb1 Kd8 6. Kd1 Ne8 7. Kc1 Nf6 8. Kb2 Rg8.

11 Admissible trajectories

Let us now consider problem showed in Fig. 4.

By the problem it’s not given number of moves

of SPG. Due to this we don’t know who made

the last move. If we count all obvious white and

black moves we get number 6 for both players.

5 Note that at the end of the function LGSPG we clear trajectories

that are no longer valid because the same piece has already made a

move on another trajectory.

ä #â # è á â å
ë ê Á ë ê ë ê
 # ë # #
æ ë # #
 Ç Ê # # #

Ê # #
Ê Ë à # Ê Ë Ê Ë
Å Â # É À Ã Ä

Figure 4. Markus Ott, feenschach 1982, 16+16. SPG?

So, we can conclude that the last move was

made by black and that SPG is 12 moves long. If

we try to solve the problem under these

conditions and in the way described in previous

sections, system finds a sequence of 9 moves as

the longest sequence. A longer sequence doesn’t

exist because in all cases a piece remains

blocked. So, something with our assumptions is

wrong. First, the black did not make the last

move since it there would have to exist a SPG

with at least 12 moves long. This means that

white made the first move. From this, it arises

that SPG is longer than 12 moves, at least

because the number of moves must be odd. This

means that the trajectory of at least one piece is

longer than the shortest trajectory.

Problem 5 has to be solved by constructing

admissible trajectories of some degree k. First we

have to try to solve problem 5 by generating at

least one trajectory of degree 2. By definition,

every admissible trajectory t of degree 2 can be

generated by two shortest trajectories t1 and t2

where the end square of t1 and starting square of

t2 correspond to each other and this square is

called dock. So, we have to find one dock for

trajectory for which we have to find an

admissible trajectory of degree 2. The first

question that arises is for what piece do we have

to generate an admissible trajectory. We have to

generate bundles of admissible trajectories of

degree 2 for the white bishop from (3,2) to (3,8)

because this bishop has to avoid some movable

or unmovable obstacles. It can be shown that it is

very useful to find all docks first, that is in our

example, all squares (xD,yD) for which MAP 3 2

(MAP_start b)+MAP 3 8 (MAP_start b)=3.

After that we have to generate for every dock

(xD,yD) a bundle of shortest trajectories from

(x0,y0) to (xD,yD) and a bundle of shortest

trajectories from (xD,yD) to (xn,yn). Finally, we

have to merge these two obtained bundles in a

set of trajectories as combinations of every

trajectory from the first bundle with every

trajectory from the second bundle. Therefore, we

define the recursive function which makes such

Proceedings of the 21st Central European Conference on Information and Intelligent Systems 17

Varaždin, Croatia Faculty of Organization and Informatics September 22-24 2010

combinations and combines all trajectories into a

single bundle:

Fixpoint Add_bundles (b1 b2 : list (list chessboard)) (i j n : nat) {struct n} : list (list
chessboard) := match n with S n' => match i with S i' => match j with S j' => (app (nth
(i-1) b1 (square 0 0 :: nil)) (nth (j-1) b2 (square 0 0 :: nil))) :: (Add_bundles b1 b2 i j' n')
| _ => Add_bundles b1 b2 i' (length b2) n' end | _ => nil end | _ => nil end.

After generating bundles we can proceed to

solve the problem in a manner analogous to the

methods proposed in previous sections.
6

12 Conclusion

In this paper we propose some systematic ideas

for the establishment of a formal system for

solving SPG's as special type of retrograde chess

problems by using Coq - a formal proof

management system, while in [10], [11] and [12]

we presented a formal system for reasoning

about other types of retrograde chess problems,

also using Coq. The formal bases of the system

described in above publications are very similar

to the one in this paper. The systems differ in

detail in accordance with their purposes, which

are described in the introduction to this article. In

this way we get a good foundation for the

integration of these two systems into one that

will be able to find the SPGs much more

complex than those presented in this paper.

There is a general deficit of scientific articles

and developed computer systems covering this

area. We also think that this approach can be

extended to a wide range of complex practical

problems. As can be seen from our work, built-in

tactics provided with the standard distribution of

Coq frequently results in long scripts. In addition

to the general improvement of the system

described in this article, it is possible to extend

this work towards the development of new Coq’s

tactics.

References

[1] Bertot, Y., Castéran, P.: Interactive Theorem

Proving and Program Development, Springer-

Verlag, Berlin and Heidelberg, Germany, 2004.

[2] Delahaye, D.: A Tactic Language for the System

Coq, Proceedings of Logic for Programming and

Automated Reasoning, 2000, pp. 85-95.

[3] Dupuis, É.: Euclide, available at

http://lestourtereaux.free.fr, 22
th

 April 2010.

6 Note that for solving problem showed at figure 4 we have to

introduce one more rule and that is: “After some retrograde moves,
the opponent’s king may not be in check”. Detailed analysis and

formalization of this rule may be found in [11] and partly in [12].

[4] Giménez, E.: A tutorial on recursive types in

coq, Technical report, INRIA, 1998.

[5] Gimenez, E., Castéran, P.: A Tutorial on

[Co]Inductive Types in Coq, available at

http://www.labri.fr/perso/casteran/RecTutorial.p

df, January, 31
st
 2007.

[6] Huet, G., Kahn, G., Paulin-Mohring, C.: The

Coq Proof Assistant - A Tutorial, available at

http://coq.inria.fr/V8.2pl1/files/Tutorial.pdf, 27
st

February, 2009.

[7] Hwa, T., Whipkey, C.: Retractor, available at

http://www-cs-students.stanford.edu/~hwatheod,

22
th

 April 2010.

[8] Janko, O., de Heer, J.: The Retrograde Analysis

Corner, available at http://www.janko.at/Retros,

22
th

 April 2010.

[9] Leroy, X., Doligez, D., Garrigue, J., R´emy, D.,

Vouillon, J.: The Objective Caml system,

available at http://caml.inria.fr/distrib/ocaml-

3.11/ocaml-3.11-refman.pdf, April, 15
st
 2010.

[10] Maliković, M.: A formal system for automated

reasoning about retrograde chess problems using

Coq, Proceedings of 19th Central European

Conference on Information and Intelligent

Systems, Varaždin, Croatia, 2008, pp. 465-475.

[11] Maliković, M.: Developing heuristics for solving

retrograde chess problems, Ph. D. Thesis,

University of Zagreb, Faculty of organization

and informatics, 2008.

[12] Maliković, M., Čubrilo, M.: What Were the Last

Moves?, International Review on Computers and

Software, Vol. 5, No. 1, 2010, pp. 59-70.

[13] Smullyan, R. M.: Chess Mysteries of Sherlock

Holmes: Fifty Tantalizing Problems of Chess

Detection, Random House Inc., 1994.

[14] Stilman, B.: A Formal Model for Heuristic

Search, Proceedings of the 22nd annual ACM

computer science conference on Scaling up:

meeting the challenge of complexity in real-

world computing applications, Phoenix, Arizona,

United States, 1994, pp. 380-389.

[15] Stilman, B.: A Linguistic approach to geometric

reasoning, An international Journal: Computers

& Mathematics with Applications, Vol. 26, No.

7, 1993, pp. 29-58.

[16] Stilman, B.: A Linguistic Geometry of the Chess

Model, Advances in Computer Chess 7, 1994,

pp. 91-117.

[17] Stilman, B.: Linguistic geometry: from search to

construction, Kluwer Academic Publishers,

2000.

[18] The Coq Development Team: The Coq Proof

Assistant Reference Manual Version 8.2,

available at http://coq.inria.fr/refman/, 27
st

February, 2009.

[19] Wassong, P.: The Natch home page, available at

http://natch.free.fr/Natch.html, 22
th

 April 2010.

[20] Wilts, G., Frolkin, A.: Shortest Proof Games,

Privately published in Karlsruhe, 1991.

Proceedings of the 21st Central European Conference on Information and Intelligent Systems 18

Varaždin, Croatia Faculty of Organization and Informatics September 22-24 2010

