
Proceedings of the 20th Central European Conference on Information and Intelligent Systems 355

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

Analysis of Object Persistence Frameworks in the
.NET Framework

Rok Žontar, Uroš Goljat

Faculty of Electrical Engineering and Computer Science

University of Maribor

Smetanova 17, SI - 2000 Maribor, Slovenia

{rok.zontar, uros.goljat}@uni-mb.si

Abstract. Today, data is an important part of almost
every modern application. However programming
languages normally don't offer the same support for
data manipulation as for program logic. It is obvious
that there is a big gap between the two worlds;
namely the object-oriented world and relational
world. The consequences of the resultant gap are
reflected in the fact that developers spend a lot of
time transferring data from one form (object) to
another (relational) and vice versa. In this paper, we
will present the impedance mismatch between object-
oriented programming languages and relational
databases. Object-relational mapping will be
presented as a technology that helps developers
overcome the impedance mismatch. Thus, the primary
focus will be on object-relational patterns and
persistence ignorance. We will describe the different
object-relational mapping frameworks based on
the .NET framework. On this basis, comparison
criteria for evaluating applied O-R mapping
technologies will be defined. These criteria will then
be used in comparison and analysis of the presented
O-R frameworks.

Keywords. Object-relational mapping,
persistence ignorance, domain driven design,
.NET framework

1 Introduction

With the introduction of two Microsoft’s frameworks
in the .NET framework 3.5 and 3.5 SP1, began the
ORM hype in the .NET world. This was the impetus
behind our research in this field. We decided to put
the new frameworks to the test, comparing them with
the already established NHibernate.

Our goal was to provide classification criteria,
upon which an analysis could be done. In this paper,

we will present some criteria that best resemble the
qualities of a good ORM framework. Based on these
criteria, we will conduct a comparison and analyze its
results.

The paper is organized as follows: Section 2
discusses object­relational mapping with an emphasis
on patterns and persistence ignorance. Section 3
presents three persistence frameworks that work on
the .NET framework. Section 4 introduces
comparison criteria, which are used in section 5,
where we compare and analyze the results. Section 6
concludes the paper.

2 Object-relational mapping

Object-relational mapping is defined as the automated
persistence of objects in an application to the tables in
a relational database, using metadata that describes
the mapping between the objects and the database .
ORM, in essence, works by transforming data from
one representation to another. The main reason to use
an ORM is to bridge the gap between the objects and
database tables, called an impedance mismatch.

2.1 Object-relational impedance mismatch

When developing object-oriented information
solutions based on relational databases, we quickly
noted the differences between those two systems. This
is known as the Object-relational impedance
mismatch.

The first things we noticed were the different data
types used in the databases. Although there are some
standardized types, each database management
system uses some unique types. For example, a
System.String type in .NET has a few equal types
in a database, like char, nchar, nvarchar or text.

The other obvious difference can be found in the
nullable data types. As we know, database columns

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 356

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

can be set to accept null values. This is a problem in
the object-oriented world, because not all languages
support nullable primitive data types. This is not the
case in the .NET framework, because it has offered
support for the use of nullable primitive types since
version 2.0. These types must be declared with a
question mark (?).

Another difference is how both systems handle
navigation. Relational databases use a combination of
keys to determine the relationship between two rows.
On the other hand, objects use references to navigate
from one to another.

Finally, we have to mention inheritance as a
fundamental object-oriented concept. It presents itself
as a significant problem when trying to persist an
inheritance hierarchy to a relational database.

In the next chapter, we will present how O-R
mapping helps overcome these problems.

2.2 O-R mapping patterns

Patterns are a very important aspect of object-oriented
programming. In this section we will present some of
the patterns that are most commonly used in object-
relational mapping. The patterns presented in this
section are further explained in and .

Unit of Work - This pattern is important in the
aspect of tracking changes in order to write them back
to the database. Certainly, you could write back every
change made to an object, but this would lead to lots
of very small database calls. To avoid those
unnecessary calls to the database, the Unit of work
pattern is used. It keeps track of all the changes made
to an object and then applies those changes when we
are done.

Identity map - The Identity map pattern results
from the previously mentioned O-R impedance
mismatch. An identity map pattern keeps a record of
all objects, to insure that each object is loaded only
once. This ensures that you can compare two objects
that represent the same database entry, even though
they were loaded separately.

Lazy loading - When loading data from the
database into memory, it is useful to load only the
data needed. The lazy loading pattern is able to load
related objects at runtime. This means that we keep
only the minimum number of objects in memory and
load further objects only when necessary. There are
various implementations of this pattern. The most
commonly used has a marker, which signals if an
object or collection has been loaded or not.

Mapping associations - We already described the
different handling of associations in a previous
chapter. The association mapping pattern deals with
this problem. It uses metadata to determine how to
map one to many and many to many relationships
between database tables. This pattern also implies the
use of bidirectional associations within objects.

Mapping inheritance - Inheritance is a complex
problem when using a relational database. Because

managing inheritance is not something that a
relational database was designed to handle. To date,
three solutions have evolved on how to store an
inheritance hierarchy in a relational database. The
first solution is called the table per class hierarchy. It
uses only one table to store the entire hierarchy. A
discriminator column is used to determine, which
class each entry refers to. Another solution is the table
per concrete class. This means that we have to create
a table for each non-abstract class. This solution is far
more scalable than the first, but has some problems if
the abstract class has a lot of relations. And finally
there is the table per class hierarchy solution, which is
the most scalable, but needs complex querying to
retrieve entries.

2.3 Persistence Ignorance

Persistence Ignorance (PI) is a term that describes the
coupling between the domain model and persistence
framework. This term was introduced by Jimmy
Nilsson in , when he argued with Martin Fowler about
the term POCO. POCO is an acronym for Plain Old
CLR Object and as such describes the ability to use
regular classes in an O-R framework. They decided
that POCO does not accurately represent the topic and
therefore came up with the term Persistence
Ignorance. PI consists of seven characteristics, which
an ORM framework should avoid:
- Inherit form a certain base class.
- Instantiate only via a provider factory.
- Use specially provided data types, such as for
collections.
- Implement a specific interface.
- Provide specific constructors.
- Provide mandatory specific fields.
- Avoid certain constructs and usage of certain
constructs.

Only when a model is decoupled from its ORM
framework can we create quality solutions that are
scalable, reusable and easily maintainable.

3 O-R mapping frameworks for
the .NET Framework

In this chapter, we will introduce the most frequently
used frameworks for O-R mapping based on the .NET
framework. For each framework, we will provide a
short description, highlighting its special features
while also explaining how it manages mapping, and
what kind of query language it provides.

3.1 LINQ to SQL

LINQ to SQL (LTS) is a dialect of LINQ which stand
for “Language Integrated Query” and is a new
innovative way to create queries in .NET
programming languages.

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 357

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

LINQ is a set of APIs and language enhancements
that allow developers to create strongly typed queries
in programming languages. The new features
introduced in C# 3.0 are: implicitly typed local
variables, object and collection initializers, lambda
expressions, extension methods and anonymous types
. Standard query operators are introduced to allow
more familiar queries to be created, compared to
relational queries. As we can see in Fig. 1, LTS is
only one of several dialects that allow developers to
query different data sources.

Figure 1. LINQ architecture

LTS manages the mapping between objects and
tables with the use of an XML file and mapping
attributes. These attributes are used to map classes
and properties to the relational database, described in
the XML file.

Including own custom classes in LTS has proven
quite difficult. First of all, one needs to implement
some specific interfaces that manage change tracking.
Furthermore, mapping attributes and a starting point
for queries must be provided by developers.

3.2 NHibernate

NHibernate is an open-source framework, which was
ported from a Java framework called Hibernate to
the .NET framework. Hibernate has been the most
popular and widespread framework for O-R mapping
in Java for years. The development of the .NET
version of the framework began in 2004 and the first
final version was released a year later . NHibernate is
not purely the result of a code migration, because it
adds specifics of the .NET framework.

Figure 2. NHibernate architecture

Fig. 2 demonstrates a quick overview of the
architecture. We can see that the application doesn’t
depend on the persistence framework. Furthermore,
we can see that the framework relies only on a
configuration file like App.confing and XML
mappings. These mappings provide information on
how to map classes and properties to tables and
columns. These configuration files are also used to
create SQL queries and commands.

NHibernate offers two ways to create queries .
The first is the Hibernate Query Language. Although
it is very similar to SQL, it does not query the
relational, but the entity model. The other method to
create queries is the Criteria Query API. This method
is based on a more object-oriented method, because it
uses objects and methods to create queries.

3.3 ADO.NET Entity Framework

The last, and also newest, framework we would like
to present is the ADO.NET Entity Framework.
Although it was first presented at a conference in
2006, its final version wasn’t released until the .NET
framework 3.5 SP1 in August 2008. The ADO.NET
Entity Framework introduces some new features to
the world of O-R mapping. First of all, it uses an
Entity Data Model (EDM) that describes all of the
entities and relationships in the domain . Next it
builds on the EntityClient provider, which is
similar to an ADO.NET data provider. The difference
is that this provider works on EDM rather than the
relational database model. Another very important
component of this framework includes Object
services. They enable the use of strongly typed
objects as query results . All these components are
presented in Fig. 3.

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 358

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

Figure 3. ADO.NET Entity Framework architecture

Besides the previously mentioned EDM, which is
only one of the XML mapping files, the framework
used two other XML files. One describes the
relational data store and the other stores mapping
information between the other two.

The Entity Framework offers two methods for
querying data . The primary focus of its developers
was on Entity SQL. This is a query language very
similar to SQL. With the arrival of LINQ, the
developers had to make a shift and adopt a new way
of querying. A new dialect called LINQ to Entities
was developed to offer the ability to query the EDM
using LINQ.

4 Classification of comparison
criteria

It is very important to choose the right criteria for a
comparison. In our case, we did not include the more
obvious criteria, like the ability to use stored
procedures or transactions, because we think that
those are standard characteristics for every ORM
framework. In this section, we will present some of
the more viable criteria with a special focus on
persistence ignorance.

Graphical and supporting tools - For the first
criteria, we will show what kind of support the
framework offers when it comes to graphical or
command line tools. In the time of modern IDEs, we
have grown accustomed to having a graphical
representation of the domain model. This is very
important in the case of O-R mapping, because all
three frameworks use XML as metadata and it is
important to have a visual representation of that data.

Inheritance mapping - As we mentioned in a
previous section, it has proven difficult to map an
inheritance hierarchy to a relational database. For this
criterion, we will research the ways the selected
frameworks support inheritance mapping. We will
also research which inheritance mapping patterns are
supported by each framework.

Support for multiple RDBMS - Today there are
a multitude of relational database management
systems on the market. Because of this, an ORM
framework must offer support to integrate these
systems. The purpose of this criterion is not to
evaluate the number of supported database systems,
but rather to research how databases can be
incorporated into the framework.

Caching - Caching is well known in computer
hardware, where processors use a cache to store the
last accessed memory blocks. In our case, a cache
would hold objects that represent database entries in
memory to enable better performance of queries.

Locking - When accessing data from a database
we encounter the problem of data consistency. The
problem is that we do not know if an entry has been
changed after it has been acquired. To counter this
problem, two alternatives have been developed. These
are called optimistic and pessimistic locking. The first
does not physically lock an entry, but deals with an
inconsistency when saving data back to the database.
The other method uses a physical lock to prevent
changes to an entry while it is in use . We will
research what kind of locking mechanism is being
used by the compared frameworks.

Persistence ignorance - We already presented
persistence ignorance explicitly in this paper. Because
we find that the seven criteria describe the decoupling
of the domain model from the ORM framework well,
we have chosen to include these criteria in our
comparison. The result will give us a finding on how
much effort is needed to join a custom domain model
with an ORM framework.

Efficiency - The final criterion we have chosen is
framework efficiency. In this criterion, we will
research the performance and memory efficiency of
each framework. For the purpose of this criterion, we
will build a simple test application, which will
measure the time needed to accomplish queries and
CRUD operations.

5 Analysis and comparison of O-R
mapping frameworks

We conducted our analysis and comparison based on
LINQ to SQL, released with the .NET framework 3.5,
NHibernate 2.0.1. GA and ADO.NET Entity
Framework released with the .NET framework 3.5
SP1. As a common data source for all three
frameworks we chose Microsoft’s Adventureworks
database. This is a sample database for Microsoft’s
SQL Server, which represents a bike manufacturing
and retailing company.

Graphical and supporting tools - While
analyzing the frameworks we discovered that only the
two Microsoft frameworks offer a graphical
representation. This is a huge disadvantage for
NHibernate. Despite scouring the internet, we were
unable to find a tool to visualize NHibernate’s

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 359

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

mapping files. The most what we can expect from this
framework is IntelliSense support inside the Visual
Studio development environment for writing and
validating xml mapping files.

The use of a tool is unavoidable with the Entity
Framework. The mapping file, which consists of three
schemas, is not manageable by hand. On the other
hand, the simplicity of NHibernates mapping files has
its advantages.

While providing a high quality graphical interface
included in Visual Studio 2008, both Microsoft
frameworks also feature command line tools for
generating mapping files form a database or classes
from a mapping files.

Inheritance mapping - We discovered that all
compared frameworks offer some kind of inheritance
mapping support. From the described scenarios on
how to map inheritance, only NHibernate and
ADO.NET Entity Framework support all three. LINQ
to SQL supports only the table per class hierarchy
solution.

Support for multiple RDBMS - Support for
multiple RDBMS is dependent on the frameworks
architectures. NHibernate and Entity Framework
build on ADO.NET data providers to connect to a
data source. While NHibernate uses standard data
providers, the ADO.NET Entity Framework needs
those to be Entity Framework enabled . This means
that the current providers need to be updated for this
framework. At the time of writing, many data
providers have been updated to support the new
framework.

LINQ to SQL does not offer support for databases
other than the SQL Server. The reason for this is that
it has been developed on Microsoft’s SQL Server data
provider, known as SqlClient.

Caching - Caching is a weak point in Microsoft’s
frameworks, because neither of them supports it. Only
NHibernate offers the ability to cache objects. To
fully understand how NHibernate uses caching we
have to look at its architecture. This framework offers
two levels of cache. The first level cache is used by
the session and identity map to store references of all
objects. The second level cache is what we are
interested in. This cache does not store entire objects,
but rather uses a hash table to store objects properties.

When querying, the framework first checks if the
object is located in the cache. If a result is found, an
object is materialized from the hash table and
returned. Otherwise the query is sent to the database
and the results are then written to the cache.

Locking - When analyzing the frameworks, we
learned that all of them use optimistic locking by
default. This means that the frameworks handle
concurrency exceptions when updating entries in the
database. Pessimistic locking is available only in
NHibernate. This allows developers to not only fully
lock, but also to restrict access to a database entry.

Persistence ignorance - For evaluating the
persistence ignorance criteria we decided to use three

values. The first, which is represented by a tick (),
means that the framework fulfills the condition. On
the other hand, a cross () means that a framework
does not fulfill the criterion. We decided to also
employ a third value (-), which is in the middle. It
means that a framework only partially fulfills a
condition.

The first framework to be evaluated using the
persistence ignorance criteria was LINQ to SQL. This
ORM framework performed well in the evaluation. It
fails only in two criteria. The first is that it uses
special classes for collections. Also, the persisted
classes need to implement some interfaces in order to
support change tracking. Because this is not
mandatory we decided to assign it a middle value.
The other weak point of this framework is that it uses
mapping attributes and this is why it fails the last
criterion in Tab. 1. Overall we can say that this
framework provides a good mix between functionality
and a weak dependency of the model.

NHibernate achieved the highest level of
persistence ignorance in our comparison. This is not a
surprise, if we consider that this framework is ported
from Hibernate, which is known to provide a high
level of PI. The reason for this is certainly the use of
XML-files to describe the mapping. The framework
only relies on these files to provide the O-R mapping.
This leaves the domain model free of any unwanted
constructs. Developers are free to choose any kind of
collections they want. The only limitation of this
framework, as far as PI is concerned, is the use of a
default constructor and the mandatory keyword
virtual on all properties. Furthermore, the use of
the reserved keyword readonly is prohibited.

As previously concluded, LINQ to SQL achieved
a moderate level of PI. Now we will discuss how its
advanced version, the ADO.NET Entity Framework,
tackled the PI criteria.

The first thing we noticed when researching the
Entity Framework was that all entity classes derive
from an EntityObject class. This is the default way
the framework’s generator creates classes from the
entity data model. The other way to achieve
persistence is the use of interfaces -- what Microsoft
developers call IPOCO . That means POCO with the
use of interfaces. Although this is certainly a way to
provide persistence, it is not the way most developers
will use it. Because of this, we decided to evaluate the
first criterion with a middle score. The other deficits
are the need to store an EntityKey object and lots of
code to provide change tracking.

Table 1. Criteria persistence ignorance
Criterion LTS NH EF
Inherit form a certain base class   -
Instantiate only via a provider
factory   

Use specially provided data types,
such as for collections   

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 360

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

Implement a specific interface -  
Provide specific constructors - - 
Provide mandatory specific fields  - -
Avoid certain constructs and usage
of certain constructs   

LTS – LINQ to SQL, NH – NHibernate, EF – ADO.NET Entity
Framework

Overall, we can say that NHibernate is the
standard in persistence ignorance in the field of ORM
frameworks. Neither LINQ to SQL or Entity
Framework can reach it.

Efficiency - The efficiency of a framework is
what most users will probably be interested in. For
this criterion, we measured the time needed to load
(TTL), perform a simple query (SQ), a complex query
(CQ), a query with eager loading (EL) and create,
update and delete operations (CUD). All the
benchmarks were performed on a computer with 3.0
GHz, 3 GB RAM, Windows Vista SP1 and SQL
Server 2008. As mentioned before, we used the
Adventureworks database, from which we imported
all of the tables. The results of these benchmarks are
presented in Tab. 2. In all benchmarks, we used only
the standard components of each framework with no
caching or anything that could compromise our
results. We also performed a reference measurement
with the standard components of ADO.NET and SQL.

First, we performed a simple query (SQ) on one
table that returned approximately 30.000 entries. To
achieve realistic results we ran the query 100 times.
At this point we have to mention the time to load
(TTL). This is the time between the benchmark’s start
and the execution of the first query. This time has to
be considered when only a few queries will be made.
As we can see from Tab. 2, NHibernate has a very
high TTL. The reason for this is the creation of the
session object. Because this process takes up a lot of
time it is recommended to do this only once in a
lifetime of an application.

To return to the results of the simple query, we
can see that the fastest framework for this task is
LINQ to SQL, followed by NHibernate and
ADO.NET Entity Framework. When comparing these
results with our reference measurement, we see that
LINT to SQL is approximately 20% faster than SQL.
This can be brought back to the use of patterns,
especially the identity map.

In the second run, we used a complex query (CQ),
which included projections, joins, grouping and
sorting. The results were similar to the previous test.
LINQ to SQL is still in the lead, followed by
NHibernate and the Entity Framework. Only the
criteria query of NHibernate performed poorly in this
test. When comparing these results with our reference,
we discovered that now two frameworks had
performed this task quicker than SQL. These are
LINQ to SQL and NHibernate with HQL.

To demonstrate eager loading, a third test was
devised. We queried the employee table and told the

frameworks to eager load the manager, which is a
relation to itself. Because LINQ to SQL threw an
exception saying that we cannot eager load a relation
to the same table, we measured only the other two
frameworks. We were not surprised to see that
NHibernate completes this task faster than the Entity
Framework.

The last benchmark we ran was to determine the
performance of execution on basic operations like
insert, update and delete (CUD). The test created and
filled an object with data, inserted it, updated some
properties and updated those in the database. Finally
we deleted the entry from the database. We repeated
this procedure 10,000 times to achieve a
representative average value. The results show a
surprisingly poor performance of LINQ to SQL. The
framework that dominated so far, suddenly finished
last. The fastest framework, NHibernate, was almost 6
times faster and even the second placed Entity
Framework was 2.5 times faster.

Table 2. Framework efficiency

LTS
NHibernate Entity Framework
HQL CQ ESQL LTE EC

UM

TTL 140 2700 2700 230 230 - [ms]

SQ 27,4 49,5 102,4 104,0 104,0 - [s]

CQ 28,5 30,6 73,0 44,6 35,0 33,8 [s]

EL - 50,2 49,9 100,0 102,0 - [s]

CUD 19,5 3,3 7,5 [ms]

CPU 65,0 93,3 94,2 98,6 98,5 - [%]

RAM 31,2 60,3 60,8 61,9 64,8 - [MB]
LTS – LINQ to SQL, HQL – Hibernate Query Language, CQ –

Criteria Query, ESQL – Entity SQL, LTE – LINQ to Entities, EC –
Entity Client

Finally, we would like to present some data that
we gathered during our benchmarks. We measured
the average CPU usage time and memory usage,
which are shown in Tab. 2. We can see that the best
performing framework, which is LINQ to SQL, also
uses the minimal amount of system resources. This is
impressive, because it shows that although it is
already the fastest framework it still has not reached
its maximum potential. The other two frameworks are
at the same level with a high CPU usage and a
moderate memory acquisition.

To sum up, we discovered that LINQ to SQL
proved itself to be the fastest framework. The only
weak point was its poor result in the CUD test. It is
closely followed by NHibernate, which scored good
results in all of the performed benchmarks. The
ADO.NET Entity Framework was a disappointment.
These benchmarks have proven that the framework is
fresh on the market and therefore not mature enough
for a serious business application.

6 Conclusion

The choice of a persistence framework is vital for
assuring the quality of an information system. This

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 361

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

paper introduced object-relational mapping as a
suitable solution to overcome the impedance
mismatch. We covered three main topics: object-
relational impedance mismatch, object-relational
patterns and persistence ignorance. We also described
the three most frequently used ORM frameworks on
the .NET framework. Based on this, we defined
comparison criteria and evaluated all three
frameworks.

Based on this comparison, we can conclude that
NHibernate has proven itself to be the best. It proved
itself with a high level of PI and consistently good
performance in our benchmarks. Although it uses
simple xml files to describe the mapping, it doesn’t
include a graphical interface, which is a major weak
point of this framework. LINQ to SQL has presented
itself as surprisingly good. Its solid points are a
graphical interface, a moderate level of PI and good
benchmark results. On the other hand, we have the
ADO.NET Entity Framework, which is the more
advanced ORM framework. Based on our comparison
we can say that this framework is not mature enough
for business applications. Although it comes with an
advanced mapping system and powerful GUI, these
factors alone cannot outweigh its weaknesses.

References

[1] J. Nilsson: Applying Domain-Driven Design
and Patterns, Addison-Wesley, 2006

[2] C. Bauer, G. King: Java Persistence with
Hibernate, Manning, 2007

[3] E. Evans: Domain-Driven Design: Tackling
Complexity in the Heart of Software, Addison
Wesley, 2003

[4] M. Fowler: Patterns of Enterprise Application
Architecture, Addison Wesley, 2002

[5] V. P. Mehta: Pro LINQ Object Relational
Mapping with C# 2008, Apress, 2008

[6] C# 3.0, The Evolution Of LINQ And Its Impact
On The Design Of C#, available at
http://msdn.microsoft.com/sl-si/magazine/

cc163400(en-us).aspx, Accessed: January 2009

[7] F. Marguerie, S. Eichert, J. Wooley: LINQ in
Action, Manning, 2008

[8] LINQ to SQL, Code Generation in LINQ to SQL,
available at http://msdn.microsoft.com/en-
us/library/bb399400.aspx, Accessed: January
2009

[9] Hibernate, Relational Persistence for Java and
.NET, available at http://www.hibernate.org/,
Accessed: December 2008

[10] NHibernate Forge, NHibernate 2.0 Architecture,
available at
http://nhforge.org/wikis/reference2-0en/a

rchitecture.aspx, Accessed: February 2009

[11] P. H. Kuate, T. Harris, C. Bauer, G. King:
NHibernate in Action, Manning, 2009

[12] J. Lerman: Programming Entity Framework,
Manning, 2009

[13] A. Adya, J. A. Blakeley, S. Melnik, S.
Muralidhar: Anatomy of the ADO.NET Entity
Framework, International Conference on
Management of Data, 2007, pp. 877 – 888

[14] J. Blakeley, D. Campbell, S. Muralidhar, A. Nori:
The ADO.NET Entity Framework: Making
the Conceptual Level Real, SIGMOD Record,
2006, Vol. 35, No. 4, pp. 31-38

[15] MSDN, EDM Generator, available at
http://msdn.microsoft.com/en-

us/library/bb387165.aspx, Accessed: February
2009

[16] MSDN, Understanding Concurrency Control,
available at http://msdn.microsoft.com/en-
us/library/ms378709(SQL.90).aspx, Accessed:
February 2009

[17] ADO.NET team blog, Entity Framework-Enabled
Providers Lists, available at
http://blogs.msdn.com/adonet/archive/2009
/01/26/entity-framework-enabled-

providers-lists.aspx, Accessed: February
2009

