
Proceedings of the 20th Central European Conference on Information and Intelligent Systems 349

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

Testing workflow-enabled applications

Uroš Goljat, Marjan Heričko

Faculty of Electrical Engineering and Computer Science

University of Maribor

Smetanova 17, SI - 2000 Maribor, Slovenia

{uros.goljat, marjan.hericko}@uni-mb.si

Abstract. Business processes are a part of every
company and are becoming increasingly more
complex. Due to this, the need for workflow-based
applications has never been more apparent. The
Windows Workflow Foundation (WF) provides a
simple and consistent way to model and implement
complex problems that arise in workflow-enabled
applications. Because of the increased use of such
applications, we also need supporting tools and
frameworks to enable the quality assurance of
workflows that present the core of workflow-enabled
applications.

In this paper, we will present approaches on how
to enable the testing of workflows built using WF
inside .NET applications.

Keywords. Windows Workflow Foundation,
Testing, Unit-testing

1 Introduction

In last few years, companies and governmental
institutions have been paying increasing attention to
automation and the management of business
processes with the use of IT technologies. To
accomplish these tasks, we use workflow
management systems, like the Windows Workflow
Foundation (WF), which provide new techniques for
modeling business processes as workflows. Typical
usage scenarios are document-centric applications,
ordering systems, hiring/payroll applications, etc.

Workflow-based applications are designed (and
existing applications are reengineered) so that the
main business logic resides inside workflows.
Software testing is, at the moment, the most important
and most often-used quality assurance technique.
Consequently, we need to ensure quality assurance for
these workflows by testing them with appropriate
techniques (for example: unit-testing) and testing
tools.

This paper is organized as follows: Section 2
provides a brief overview of WF. Section 3 discusses
unit-testing workflow–based applications. Section 4
presents tools for testing WF-based applications. In
Section 5, we compare unit-testing workflow-based
applications and the use of WorkflowInspector tool
for testing workflow-based applications. Section 6
concludes the paper.

2 Applications based on WF

It is important to note that WF is a framework for
developing workflowbased applications, and not a
fullfeatured product that can be immediately used by
end users. WF provides a foundation on which to
build workflowbased systems. All the pieces required
for building workflows and manipulating the
workflow infrastructure are provided. The rest is up to
developers. For example, WF does not include a full
featured tool for monitoring workflow execution but it
exposes the information needed for developing such
useful and often required tools.

WF provides a programming model, an engine and
tools that then allow developers to build and deploy
workflowbased applications on the .NET
Framework. It was first released in November 2006 as
part of .NET 3.0 [1].

2.1 Basic/Key concepts

To build workflow-enabled applications with WF one
needs to be familiar with some key concepts that are
fundamental for the development of WF applications.
These key concepts are :
- Workflow Designer: a graphical tool to visually
design and model workflows. Workflows are
designed inside Visual Studio but the tool can be
integrated into any Windows application.
- Activities: these are the basic building blocks of
every workflow built with WF. They are standalone

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 350

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

pieces of functionality that can be reused across
multiple workflows. The work an activity implements
can be very simple (e.g. a send e-mail activity) or
quite complex (e.g. a composite activity that executes
nested activities in a transaction).
- Workflow: a group of activities that represent the
implemented business process or its parts. The type of
activities contained in a workflow defines its type.
- Base activity library (BAL): a set of activities that
range from the most basic workflow control to more
complex activities, such as invoking WCF services.
Activities are building blocks for defining workflows.
BAL includes nearly 30 different activities .
- Runtime engine: a WF component that is
responsible for executing workflows. It also manages
the addition, removal and execution of runtime
services that are vital for workflows to properly
execute.
- Host process and Run-time services: The host
process is needed to host and manage the run-time
engine that executes workflows. The host process is
also responsible for providing run-time services that
are responsible for providing services such as
transactions and persistence to the run-time engine. A
host process can be any type of .NET application such
as console applications, web applications, web
services or Windows SharePoint Services.

The relationship between the described concepts is
shown in Fig. 1.

Figure 1. WF fundamental components

2.2 Types of workflows

The Windows Workflow Foundation provides three
different ways to model workflows: the finite state
machine (state machine workflows), sequences of
single activities (sequential workflows), and data-
driven workflows (special types of sequential
workflows).

The three types of workflows are discussed briefly
in the next sections.

2.2.1 State machine workflows

State machine workflows (Fig. 2) are defined as a set
of states and application events. The transition
between these states is triggered by application

events, which occur when a workflow is in a specific
state. Each state machine workflow has exactly one
initial state and one or more terminal states in which
the workflow completes. In most cases, workflows
modeled as state machines are non-deterministic. This
type of workflow is ideal for business processes
where the workflow itself includes a lot of user
interactions.

2.2.2 Sequential workflows

Sequential workflows (Fig. 3) are defined as a series
of steps that are predefined and executed in a
prescribed order. Hence, the path through the
workflow is deterministic. The flow of control within
workflow is defined through well-known constructs
such as if-else branching and while loops. They are
ideal for modeling business processes. This type of
workflow is used mainly when little or no user
interaction is needed.

2.2.3 Data-Driven workflows

Data-Driven workflows are usually presented as a
special type of sequential workflow that contains
constrained activity groups and policies. In data-
driven workflows, activities are executed in an order
that is determined by conditional expressions.
Conditional expressions are presented by rules that
check external data to determine the path of a
workflow instance.

Figure 2. State machine workflow

3 Unit-testing workflow based
applications

In this section, we will describe the approaches and
issues that arise during unit-testing workflow-based
applications. As a unit-testing framework, NUnit can
be used. NUnit is a general unit-testing framework for
the .NET framework that was ported from Java .
Alternatively, Visual Studio could also be used for
unit-testing workflow built using WF.

Because workflows implemented using WF are
basically .NET classes, we can use the unit-testing
approach to test them. When unit-testing such

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 351

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

applications built using WF, there are several
components that need to be tested. These components
are: custom activities, workflow rules and workflows
as a whole.

Common issues arise when developers test these
components, such as managing workflow runtime,
providing appropriate run-time services, running
workflow instances and waiting for them to complete,
etc. For managing runtime, for example, there is a
good practice for using the test setup and teardown
methods to initialize the runtime and gracefully shut it
down when the test method executes .

Because unit testing of WF workflows adds
additional complexities to unit-testing code, custom-
unit testing libraries have been developed. These
libraries hide the complexities mentioned above and
can be used in conjunction with any unit-testing
framework.

Figure 3. Sequential workflow

3.1 Unit testing custom workflow activities

Although BAL includes a wide range of activities,
there are always situations when developers need to
develop their own custom activities. An example of a
custom activity would be an activity for sending e-
mails based on its properties.

Because custom activities are classes in the code,
they can be unit tested. When developing unit tests for
custom activities, developers must do this in isolation
by providing inputs and testing expected outputs .
This means that they must be tested as individual
components rather than testing inside a whole
workflow. What is advantageous is the architecture of
classes involved in the development of workflows.
Every workflow in WF is also an activity. This means
that the WF runtime can execute any activity as a
workflow, even if this activity is as simple as an
activity that writes a line of text to a console window.
So when unit testing custom activities, developers
need to provide a workflow instance with a single
tested activity, which the workflow runtime executes.

When writing unit tests, developers also need to
test the behavior of a tested component with
exceptional cases. The NUnit testing framework, in
our case, has the ability to declare expected
exceptions to simplify test development (“failure as
success”). But when unit-testing custom activities,
developers must use another approach. The reason
behind this is that the WF runtime catches raised
exceptions and passes them to the host through the
use of events (when an exception is thrown by any of
the activities inside the workflow, a
WorkflowTerminated exception is raised). So the
approach for taking advantage of the expected
exceptions mechanism is to handle the appropriate
event trigged by WF runtime and then re-throw the
exception. When re-throwing the exception there can
be three problems: either the exception type is lost,
the call stack is lost, or both. So when re-throwing the
exception developers need to be careful that this
important data is not lost.

In many cases when testing activities, developers
need to check the values of different properties on
tested activities. This presents another problem with
unit testing custom workflow activities. As such,
direct access to an instance of a tested activity is not
directly available. Again, the reason for this is the WF
runtime that is responsible for creating an instance of
an activity class and hides a created instance inside a
workflow instance. Hence, a workaround is needed to
get access to an instance of a tested activity.

3.2 Unit testing workflows

After all custom activities involved in a workflow
have been tested separately, workflows as a whole can
be tested.

Developers face even greater challenges when
unit-testing entire workflows. This is due to the fact
that workflows often model long-running processes
that interact with many different services and
applications and also often people. A given workflow
can, for example, call several web services using the
Windows Communication Foundation (WCF) and
display the results. Then, it can require the user to
confirm the acquired data, in which user confirmation
is required to continue the process. This simple
scenario has two potential unit-testing challenges:
calling external services using WCF and user
interaction.

Those challenges are discussed in the next two
sections.

3.2.1 External services calls using WCF

When unit-testing workflows involving web service
calls, interactions need to be handled by using
mocking frameworks (such as), which inject mock
objects to replace real service calls.

BAL includes an activity for calling web services
using WCF (Send activity), which uses the

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 352

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

ChannelManagerService class to resolve web service
endpoints. A test class can easily add named
endpoints (through the ChannelManagerService
class) that match those expected in the workflow, so
that they match with a local service implementation .

3.2.2 User interaction

When workflows involve user interactions, we need a
way to mimic user’s choices to continue the execution
of a workflow. Two separate problems need to be
addressed: how do we know that the workflow is
waiting for user input and how do we collect data
from the user and then input it into workflow from a
running test?

To determine when the workflow is waiting for
user input, we need to keep track of the workflow’s
execution path so that we know at every moment
which activity is currently executing inside the
workflow. The WF tracking infrastructure and
services provide the facility to monitor and query the
execution of a workflow instance. This allows us to
query a running workflow if it is currently executing a
HandleExternalEvent activity, which is used to model
user interactions.

When we are sure that the workflow is waiting for
user input, we need to display a user input form
through which the user can enter appropriate
information. This form has to be built dynamically
based on the data that is needed by the user
interaction. Which data is needed to continue a
workflow execution can be obtained from the
HandleExternalEvent activity’s properties.

To enable automation, we have to consider saving
the user input to a persistence medium (relational
database, XML file, etc.) and automatically enter the
saved data into an appropriate user input form when
running automated tests.

4 Tools for testing workflow based
applications

Without appropriate tools, testing a workflow-based
application is a tedious and time-consuming task.

Although workflow-based applications are more
and more popular, there is still a lack of tools that
enable the testing of workflow-based applications
built using WF. In the next section, we will describe
the WorkflowInspector as a tool that enables the
testing of workflow-enabled applications in the .NET
Framework.

4.1 WorkflowInspector

WorkflowInspector (WI) is a custom tool developed
by the University of Innsbruck, the research group
Quality Engineering and world-direct eBusiness .

WI helps developers conduct early testing of
workflows to enable the verification of modeled

workflows by end users. The main goals of the WI
tool are :
- Enable automated workflow testing, without the use
of development environments (such as Visual Studio),
debuggers, etc.
- Enhance WF in the field of testing workflow-
enabled applications by adding development specific
features (for example, a path coverage test).

The tool is developed as a standalone Win32
application that allows the testing of workflows
without a development environment. Workflow
definition is loaded from an assembly. This means
that workflows are not altered for testing purposes,
which was a fundamental requirement when the tool
was being developed.

4.1.1 Implemented test types

WI implements three coverage test types that provide
metrics about workflow execution. The three
implemented coverage test types are :
- Activity Coverage test type: This reveals which
activities have been executed during a test run. Full
activity coverage is achieved when every activity in
the workflow is executed at least once.
- Branch Coverage test type: This includes the
activity coverage test and is used to reveal which
edges of the workflow’s control flow graph were
executed at least once. Full branch coverage means
that all edges have been executed at least once.
- Path Coverage test type: This is used to enable the
coverage of all possible paths through the workflow.
This type of test is introduced because of workflows
that contain loops. In such cases, Activity and Branch
coverage tests are not sufficient.

4.1.2 Main features

To give an overview of WI capabilities, some of the
major components should be described. The described
features are summarized from .
- Testing of State Machine Workflows: WI is
designed to support testing state machine workflows.
But sequential workflows can also be tested because
state machine almost always include nested sequential
workflows.
- Workflow and Data visualization: WI provides a
compelling graphical user interface that inherits the
graphical notion of the workflow designer in Visual
Studio. On the other hand, WI also includes the
possibility of displaying tracked data (this data is
acquired through tracking the workflow execution
during a test run) in a user-friendly way, and as
detailed as possible.
- Generic way to input test data: through this
feature, WI removes the need of building basic user
interfaces and input forms for each workflow
separately. When WI is running a test and external
data is required to continue workflow execution, WI
dynamically creates an input form. This form contains

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 353

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

all the input fields that are needed to resume
workflow execution.
- Graph Visualization: WI provides an additional
view of the workflow. This view displays the
workflow as a directed graph of activities. It provides
a better view of the entire workflow and can also be
used for presentation purposes.
- Pre- and Post- condition Validation: with the use
of the Pre- and Post- condition validation, WI enables
a simple verification of test runs. Basic boolean
constraints for workflow parameters can be defined.

4.1.3 Testing workflows with WI

The testing procedure used by WI is quite simple and
easy to use. 1) The workflow that is defined in Visual
Studio is compiled into an assembly. The compiled
assembly contains the definition of the workflow. 2)
Inside the workflow inspector, a new test suite is
added where an assembly with a workflow definition
must be provided and pre- and post- conditions can be
defined. 3) Perform coverage tests (Activity, Branch
or Path coverage test). Once the workflow is in a test
run, its behavior cannot be modified. Executing
different paths inside the workflow are achieved by
providing different input values when the workflow
requires external input. 4) After the test run, test
results are displayed through the WI’s graphical user
interface.

5 Comparing NUnit and
WorkflowInspector

In this section, we will present the differences,
advantages, and disadvantages between unit-testing
workflows and testing workflows using the WI tool.

Table 1 shows the main differences between the
presented approaches for testing workflow-based
applications. It shows that both types of workflows
can be tested with either approach. But real-world
workflows always include either human interaction or
external partner interaction through web service calls.
From Table 1 we can see that only WI supports the
testing of such workflows.

When modeling complex, real-world processes,
there is always the need for custom activities. When
we create custom activities, they need to be tested in
isolation with providing inputs and testing outputs
with positive and exceptional cases. Only NUnit
supports this scenario.

Automated testing is also an important feature,
especially when continuous integration is used.
Automated testing can be run on the integration server
whenever changes in a workflow definition are
submitted to the code repository. Both the NUnit and
WI tool supports automated testing.

Testing workflows as a whole is supported by both
approaches. But when testing workflows, its graphical
representation and the path through which the
workflow has been executed (whose activities were

executed and were not) are also important. The
graphical workflow representation and workflow
execution path are only supported by WI tool.

Last but not least is test coverage. With unit
testing, we can only do test coverage based at the
code. With the use of the WI tool, test coverage can
be measured on the level of activities or workflow as
a whole.

When it comes to real-world scenarios where
business processes become more and more complex
to model. Hence, both approaches need to be
combined to deliver quality workflows.

Table 1. Comparison of test capabilities

NUnit
Workflow
Inspector

Testing sequential workflows
Testing state machine
workflows

Testing-human based
workflows

Support for web service call
interception

Automated testing
Testing of a single activity in
isolation

Testing of a workflow as whole
Visual representation of tested
workflow

Visual representation of test
execution path

Test coverage at the code level
Test coverage at the activity
level

Test coverage at the workflow
level

6 Conclusion

In this paper, WF has been presented as a technology
that enables the modeling of business processes as
workflows.

Because workflows present the core of workflow-
enabled applications, they have to be properly tested
to ensure their quality assurance. For this reason,
techniques and challenges for unit-testing workflows
have been presented. The WorkflowInspector tool has
also been described, which enables the testing of
workflow-based applications and extends the WF
framework in the field of testing workflow-enabled
applications in .NET.

To achieve the best quality for workflows, both
techniques need to be used: Unit-testing for custom
activities and other business logic that resides in other
classes outside of the workflow; and the WI tool to
perform visual workflow testing and coverage tests.

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 354

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

References

[1] Microsoft: Windows Workflow Foundation,
available at http://msdn.microsoft.com/en-
us/netframework/aa663328.aspx, Accessed: 31st

March 2009

[2] Chappel D: Introducing Windows Workflow
Foundation, available at
http://download.microsoft.com/download/f/
3/2/f32ff4c6-174f-4a2f-a58f-ed28437d7b1e/

Introducing_WF_in_NET_Framework_35_v1.doc,
Accessed: 3rd April 2009

[3] Kitta T: Proffesional Windows Workflow
Foundation, Wiley Publishing Inc., Indianapolis,
USA, 2007

[4] Lechner A, Breu R: Workflow Inspector - A
Test Tool for Microsoft Workflow Foundation,
Proceedings of the 2008 international Conference
on Software Testing, Verification, and
Validation, 9th–11th April, Lillehammer, Norway,
2008, pp. 498-501.

[5] Breu R, Lechner A, Willburger M, Katt B:
Workflow Testing, Proceedings of the
Leveraging Applications of Formal Methods,
Verification and Validation Third International
Symposium, ISoLA 2008, 13th–15th October,
Porto Sani, Greece, pp. 709-723

[6] NUnit.org: NUnit, http://www.nunit.org/,
Accessed: 28th April 2009

[7] Milner M: Unit Testing Workflows And
Activities, available at:
http://msdn.microsoft.com/en-us/magazine/

dd179724.aspx, Accessed: 28th April 2009

[8] Kennedy M C: Significant Advances in Unit
Testing Windows Workflow, available at: http://
www.michaelckennedy.net/blog/2009/01/18/Sign
ificantAdvancesInUnitTestingWindowsWorkflo
w.aspx, Accessed: 30th April 2009

[9] Ayende.com, Rhino Mocks, available at:
http://ayende.com/projects/rhino-

mocks.aspx, Accessed: 3rd May 2009

[10]Gristwood D: Windows Workflow
Foundation: Tracking Services Introduction,
available at: http://msdn.microsoft.com/en-
us/library/bb264459(vs.80).aspx, Accessed:
5th May 2009

