
Proceedings of the 20th Central European Conference on Information and Intelligent Systems 267

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

Cryptographic routing protocol for secure
distribution and multiparty negotiatiated access

control

Tonimir Kišasondi, Željko Hutinski

Faculty of Organization and Informatics

University of Zagreb

Pavlinska 2, 42000 Varaždin, Croatia
{tonimir.kisasondi , zeljko.hutinski}@foi.hr

Abstract. Standard key distribution protocols cannot
distribute keys or content with respect to multi-party
defined access rules or multi-party negotiated access
or resource granting. Other possible requirements
are full user anonymity or partial votes that grant
access to a resource with respect to the content or key
requesting side. In such systems the access rules can't
be centralized and can change per host basis. We
designed one such protocol that allows multi-party
negotiated access control and in this work we give the
suggested protocol design implementation and
analysis.

Keywords. Onion routing, secure key
distribution, cryptographic protocols

1. Introduction

One of the most common requirements in corporate
infrastructure is the application of multiple access
control systems. For example if a client wants access
to a resource like a document, a cryptographic key or
any other protected element, he needs to acquire a
grant for the specific element. The granting model can
be simple, for example: a single password is needed
to access a document, or complex like in
infrastructures where we use multiple authentication
elements to secure a element, like multimodal
biometrics that use multiple biometric characteristics
to increase the chance of identification of a person
that claims to be who he represents himself to be. Our
model takes the multiple element idea and expands it
to another level: Trust or multiple party identification
or authentication. The implementation of the protocol
contains two main parts: onion routing and multiparty
authentication.

2. Onion routing protocols

Onion routing protocols unlike standard routing
protocols route the packet with the help of encrypted
routing layers. Onion routing is extensively used in
privacy and anonymity software like [5], where we
use the software for anonymity and privacy. The
general idea used in the [5] system is to download a
list of known Tor routers, and send packets through
layers.
For example, if we have a packet P and we randomly
selected routers R1, R2 and R3 we would construct
our packet in the following way:

R1 {R2 [R3 (P)]} (1)

Where we see, that when Router 1 receives the packet
and unpacks it, he must route it to router 2 which
unpacks it to send it to router 3 which finally unpacks
the final packet and sends it to its destination. Also it
is important to note that in this implementation each
routing packet is encrypted, and the routing node can
only decrypt his layer of communication so that he
can know where to route the packet after decryption.
That is the reason why such algorithms are called
onion routing algorithms, because they work in layers.
After routing in the context of anonymity, the server
that received the packet would only receive the
information that the packet originated from server R3,
which has a plausible deniability, because he could
send the data, or any other user on the Tor network
[5] could have sent the same data.

From the standard architecture described above which
is used by the Tor project [5], we see that the only
vulnerability in the entire protocol is linked to the exit
node, if the packet P is unencrypted on its way to its
destination.

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 268

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

3. Multiple party access control,
trust and verification

The next component we will use in our protocol is
multiple party access control. The general idea behind
the implementation is simple: considering decision
makers d1, d2, d3 and d4, we want to enable access to
resource R depending on the decision makers’ vote. In
such system there are two types of voting: unanimous,
where we want all the decision makers to vote for the
same, or partial voting where we need a specified
amount of votes to reach a congress. In scope,
decision makers can be users or network services
voting for the access to data or any other resource
based on trust or any other identifying measure.

In standard systems, we can use the standard 3
type identification model: “Something you know”
which is usually by passwords or cryptographic keys,
“Something you have” which is mostly associated
with smart cards, key fobs and similar devices, or
“Something you are” which is associated by
biometrics. In the information systems security
domain one robust and often naturally used method of
identification is discarded, which is identification by a
trusted mediator.

In our everyday human interaction we can be
identified to a third party by a person that identified
us. The same concept can be extended to information
systems. Here we can suggest two approaches that we
can implement. The first one is implementation with
unanimous voting and the second one is
implementation with partial votes that can be
generalized as unanimous votes.

Both of those approaches present two ways we can
approach resource granting, key distribution and
content or knowledge dissemination, and other
implementations that we will describe in part 5 of this
paper, the implementations we discuss in detail are
there just to clarify the protocol.

4. Protocol integration and description

The protocol we want to implement must
adhere to certain requirements:

The right to access is defined by the decision
makers where decision makers are users, end systems,
network services or any combination of above.
Therefore, each decision maker is a holder of a shared
symmetric cryptographic key of the resource. This
reasoning is based on the idea that you cannot
withhold information about a resource if you exposed
the user to it, because the user can write down,
photograph, copy or disseminate the information in

other, non computer means. Therefore if we allow a
person access to a certain piece of data once, it is
allowed forever until the person is cut out from the
user base that can reach the information system again,
when he actually cannot use any resource of the
information system.

AAA ability (Authentication, Authorization
and accounting) is handled by decision makers and is
synchronized centrally for improved auditing and
backuping. Each authorization or access is audited
and can be traced.

The first variant is the implementation of a
unanimous protocol. The implementation is as
follows:

Assume a tuple:
{d1, d2, d3, d4... dn}

Where each d is a decision maker: a user,
end system, network service or any other interested
party. We see the unanimous vote as a vote where
each decision maker is consent with the vote.

Our implementation requires a trusted third
party, who we can identify at any time. Our
suggestion is that we use PKI and LDAP
infrastructure to implement a keyserver. The
keyserver does not hold the resources and his identity
can be verified with help of a signed certificate from a
known certificate authority, and he is a repository for
the knowledge about decision makers who hold the
cryptographic keys to the resource. The data that the
keyserver stores can be a tuple:

{r,desc,d1,d2,d3.....dn}

Where “r” is a unique identifier of a
resource. Our suggestion is that the unique identifier
is created by hashing the resource with two
cryptographic hash functions and then appending their
output for the sake of reducing collision possibility
and for the sake of covertness of the transmitted data.
“desc” is a description of the resource, which is a
string we can search or by which we search the base
for the required resource.
“d1” to “dn” are the decision makers, which are
keyholders for the resource or we can identify them
with the use of keyid-s like in PGP or GPG systems.
That way, we only need to trust the keyserver which
is a trusted third party. The trust relationship can be
enforced with digital certificates.

For the requirements of our work, we will
use the following notation for the single type of
protocol packet that the protocol uses:

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 269

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

ASE[A,X,M,Y] → Asymmetrically encrypted
message M that needs to be send to A encrypted with
public key of X and digital signature of the packet
with secret key of Y. Also any other applicable
cryptographic algorithm can be used like [4] or [1] but
we used the ASE shorthand in our example, because
the algorithm depends on the implementation.

The unanimous protocol is as follows:

1. Client Cl checks the authenticity of Ks1
2. Client Cl sends the message to Ks1:

ASE[Ks1,Ks1,(Need R),Ds(Cl)]
3. Keyserver Ks1 verifies the identity of the client Cl,
if it is valid it continues
4. Ks1 looks up his database, finds the keyholders
Kh1,Kh2 and Kh3
5. Ks1 creates a 2048 bit random sequence Q, and
stores it in a base as a tuple {Q,Cl,R,t}, where t is the
time of the requesting. Q is used as a nonce to protect
Ks1 against packet replay or packet forgery attacks
6. Ks1 pings each Kh to see if their hosts are online
7. Ks1 checks if each Kh is able to interpret messages
(listener check)
8. Ks1 Constructs a packet:

ASE[Kh1,Kh1,(Auth Cl for access on R?;
ASE[Kh2,Kh2,(Auth Cl for access on R?;
ASE[Kh3,Kh3,(Auth Cl for access on R?;
ASE[Ks,Ks,(Q) , Ds(Ks1)]) ,Ds(Ks1)]),
Ds(Ks1)]), Ds(Ks1)]

9. The packet is routed to Kh1
9.1. Kh1 verifies the authenticy of the packet
9.2. If Kh1 accepts Cl1's access to R he routes the
packet to the next node (Kh2)
9.3. If he rejects Cl's access to R he sends a message
to Cl1: ASE[Ks1,Ks1,(Deny Cl to R), Ds (Kh1)]
And drops the packet, effectively breaking the
authorization chain.
10. Each of the other nodes that receive a packet act
in the same manner
11. When a keyserver receives a packet that is routed
for him, he decrypts it and compares Q to his Q in the
database, and if they match he finds a random Kh, and
constructs and sends the following packets:

ASE[Kh2,Kh2,(Accept Cl),Ds(Ks1)]
ASE[Cl,Cl,(Get key from Kh2),Ds(Ks1)]
Also, he adds Cl as a keyholder in the database

12. Cl can then receive the key from Kh2 and access
the resource R

The following implementation is quite
robust, the difficulty of subverting it in the best case
depends on the key factorization of the keyholder key.
That way we differentiate security from the server
side, into the client side where it should actually
matter.

The partial voting algorithm is similar to the
previous algorithm, but has a different packet creation

design. In this variant, we only need a partial number
of votes to allow access to a resource,

1. Client Cl checks the authenticity of Ks1
2. Client Cl sends the message to Ks1:

ASE[Ks1,Ks1,(Need R),Ds(Cl)]
3. Keyserver Ks1 verifies the identity of the client Cl,
if it is valid it continues
4. Ks1 looks up his database, finds the keyholders
Kh1,Kh2 and Kh3
5. Ks1 creates multiple 2048 bit random sequence Q1,
Q2 and Q3, and stores it in a base as a tuples.
6. Ks1 pings each Kh to see if their hosts are online
7. Ks1 checks if each Kh is able to interpret messages
(listener check)
8. Ks1 constructs three packets, each for one Kh:
ASE[Kh1,Kh1,(Auth Cl for access on R? ;
ASE[Ks1,Ks1,(Q1),Ds(Kh1)],Ds(Kh1)]
ASE[Kh2,Kh2,(Auth Cl for access on R? ;
ASE[Ks1,Ks1,(Q2),Ds(Kh1)],Ds(Kh2)]
ASE[Kh3,Kh3,(Auth Cl for access on R? ;
ASE[Ks1,Ks1,(Q3),Ds(Kh1)],Ds(Kh3)]

9. The packet is routed to Kh1
9.1 Kh1 verifies the authenticy of the packet
9.2 If Kh1 accepts Cl1's access to R he routes the
packet to the KS
9.3 If he rejects Cl's access to R he sends a message to
Cl1: ASE[Ks1,Ks1,(Deny Cl to R),Ds(Kh1)]
And drops the packet, effectively the keyserver
looses one vote from that person.
10. Each of the other nodes that receive a packet act
in the same manner
11. When a keyserver receives a packet that is routed
for him, he decrypts it and compares the recieved Q to
his Q in the database, and counts the votes. If the
votes exceed a specified threshold, he finds a random
Kh, and constructs and sends the following packets:
ASE[Kh3,Kh3,(Accept Cl),Ds(Ks1)]
ASE[Cl,Cl,(Get key from Kh3),Ds(Ks1)]
12. Also, he adds Cl as a keyholder in the database
13. Cl can then receive the key from Kh2 and access
the resource R

The most complex part of the
implementation depends on how does the keyholder
decides that he wants to grant access to a resource.
The first and most simple implementation is to create
a simple application that asks the user if he wishes to
grant that access. This is more involving for the
keyholder and is recommended in areas that require
high security. Our recommended way is to implement
a decentralized security policy, therefore if someone
is allowed an resource access, only one keyholder
must deny the user the access to the resource. That
way, we can instantly enforce an access policy
without the additional haste or complications with
syncronization, which can be done for example: once
a day.

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 270

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

5. Suggested protocol
implementation

In the shown protocols, it is evident that the
unanimous protocol offers better benefits over
standard protocols or protocols like the partial voting
protocol described above. The most important benefit
is the traffic requirement and state tracking
requirement. The unanimous protocol requires n+2
transmissions where a normal centralized protocol
would require at least a minimum of 2n transmissions.
This is important in distributed environments where
we have different link types and we simply want to
keep as little communication overhead and state
saving as possible. The onion routing scheme enables
this benefit.

Distributed auditing can be trivially achieved if
each client and the keyserver keep their audit trails
and synchronize them with the keyserver or any other
auditing server for quick validation. Of course, the
centralized auditing is optional, but all clients keep
their auditing trails and can see exactly who gave
access to who and to which resource was the access
granted.

The partial voting algorithm can be generalized
into a unanimous voting protocol if we reduce the
routing layers to 1. Therefore, we create multiple two
layer packets instead of one multiple layer packet.
With that in mind, we show that each partial voting
problem can be generalized as a multiple unanimous
voting problem and that with the generation of such
packets we can create any number of combinations
that accommodate to our authorization needs.

This gives us the idea that the noted algorithms
can be used perfectly for key management or content
distribution in terms of knowledge or content
management. Assuming each resource is protected
with a random generated cryptographic key, we can
use the unanimous algorithm to handle the key
distribution tasks. The security of the entire protocol
is based on the cryptanalytic difficulty of the used
symmetric and asymmetric algorithms that are chosen
in the implementation. We suggest the use of AES256
and 384-bit prime modulus for ECC per NSA suite B
cryptographic recommendations for Top Secret level
traffic. [9]

6. Conclusion

In this work we have shown a cryptographic
routing algorithm for key distribution or resource
granting. Additional research would include
implementation of the algorithm with [6] or [7]. That
way a transparent authentication framework can be
implemented with good reliability. Also, additional
implementations with webs of trust and keysigning
protocols can be sought which would prove even
better trust relationships, but with greater overhead.

Our main focus was to develop a lightweight,
simple protocol that would require as little
communication as possible. Our future research will
be focused on implementing this algorithm as a
overlay for web of trust implementation like in [8].
That way, we could improve the access control
system with a distributed asymmetric key system.

7. References

[1] T. ElGamal, "A Public-Key Cryptosystem and a
Signature Scheme Based on Discrete Logarithms",
IEEE Transactions on Information Theory, v. IT-31,
n. 4, 1985, pp469–472

[2] L. Eschenauer, V.D. Gligor: A key-management
scheme for distributed sensor networks Proceedings
of the 9th ACM conference on Computer and and
Communications Security, 2002

[3] M. Hooks, J. Miles, F. Css, P. Reynolds, O.
Astrachan: Onion routing and online anonymity, 2006

[4] R. Rivest, A. Shamir and L. Adleman. A Method
for Obtaining Digital Signatures and Public-Key
Cryptosystems. Communications of the ACM, 21
1978.

[5] http://www.torproject.org/ (Acc: 11.05.2009)

[6] http://www.kernel.org/pub/linux/libs/pam/ (Acc:
11.05.2009)

[7] http://www.openldap.org/ (Acc: 11.05.2009)

[8] http://www.gnupg.org (Acc: 11.05.2009)

[9]http://www.nsa.gov/ia/programs/suiteb_cryptograp
hy/index.shtml (Acc: 11.05.2009)

