
Dynamic Management of User Interface of Business

Application System

Stjepan Vidačić

Neven Vrček

University of Zagreb

Faculty of Organization and Informatics Varaždin
stjepan.vidacic@foi.hr, neven.vrcek@foi.hr

Abstract. Today there is a discrepancy between the

available resolutions of modern screens and the

ability of standard windows applications to

automatically adapt their user forms to those

resolutions (resizing forms). Another problem is the

justified aspiration and need of individual users of

client/server applications to dynamically and

permanently adapt user forms of the application to

their personal creativity and needs, in accordance

with the available options of the PC's screen

resolution.

 The mentioned problems are reflected as a flaw in

a number of the existing business windows

applications developed in various development

systems, and they may result in pronounced

dissatisfaction of users.

 This paper presents a model of a solution to the

mentioned problem. It is based on the addition of a

separate object control (class) to each form of the

client/server windows application. That class enables

dynamic and permanent adaptation of every form and

all of its objects to the active resolution of the PC

screen in the business network, and also the recording

in the data base of the form coordinates is adapted on

the PC for each user of a form of the client/server

application. In fact, it is a system of dynamic

generation of the personal user interface of the

application.

 As a result, an entirely new and extremely useful

option has been created for the users of standard

client/server windows applications..

 The model uses a modified, generally licensed

object class (http://www.activewebsoftwares.com,

WebIntel@Webintel.net, VFP Form Resizer Source

Code V-3) that is developed for the MS Visual FoxPro

7.0 - 9.0 development system.

 The implementation of the mentioned model in the

MS Visual FoxPro 9.0. development system in this

particular type of client/server windows applications

provides a high-quality and new visual dimension, and

also significantly contributes to users' satisfaction.

In view of the above, this paper is aimed at promoting

the concept of the need to develop a generally closed

AktiveX Controls of the class that will allow dynamic

management of the user interface that may be

integrated into a variety of OS Windows development

systems intended for the development of client/server

business applications, which would solve the above

described problem.

Keywords. client/server windows application,

personal user application interface, screen

resolution, resizing forms class, AktiveX

Controls

1 Introduction

The idea for this paper resulted emerged

from author's extensive experience in the

development of standard client/server

business applications in the MS Visual

FoxPro 6.0 - 9.0 development system over

the past dozen years, the implementation of

those applications in the information systems

of various companies, as well as from

continuous dealing with requests of the users

to be provided with automatic and dynamic

adaptation of the application form to the

active screen resolution on the PCs in a

business network.

 One of the paradigms of the current level

of development of the information systems

and business applications is in the ever-

growing possibilities of the information

technology and in the existence of a large

number of development systems, numerous

applications developed to support those, or

similar information systems, and great

differences in the capabilities of those

applications from the users' point of view.

 The possibility of automatic adaptation of

the user forms of application to the user's PC

active screen resolution is just one of those

pronounced differences.

 This particular problem and the concept of

its solution are not new. They have been

present since the very beginnings of the

development of the object development

systems in the OS Windows environment,

and the information industry has been

investing great efforts in creating a basis for

its solution [2, 3].

 Of course, the problem does exist and it

affects only the standard windows

applications, whereas in the systems for

development of web applications it has

already been solved and it no longer exists as

such.

 However, the fact is that standard

windows applications are still predominant

within the business information systems that

support business processes, and that we can

still see on modern PC big screens a business

application whose forms occupy only its

smaller part and thus provide much less

amount of information than possible, or

required.

 As a result, the user is frustrated, because

he invested substantial funds into a new and

modern screen, whose features he cannot use

in his standard business application which is,

from his point of view, unacceptable.

 The search for possible solutions to the

mentioned problem as far as the Microsoft

Visual FoxPro 9.0 (VFP9.0) development

system worked out by this author is

concerned, resulted in obtaining the license

for the developed system of ClassLibrary

Resizer.vcx ('VFP Form Resizer Source

Code V-3' [1]). After enlarging the object

classes contained in the ClassLibrary

Resizer.vcx and its implementation in the

VFP9.0 development system, a new system

has been created that ensures dynamic

management of user forms of client/server

VFP9.0 applications whose amazing features

are the subject of this paper.

 The system is implemented in the

client/server application known as

TRENIS [7] that was developed on the

basis of the *VISTEL* [5] application, and

by converting the static forms of the

application into dynamic forms on the local

user level. To the great satisfaction of users,

it allows full exploitation of graphic

possibilities of the screen in all forms of

application, from the screen resolution 1024

X 768 onwards.

2 Dynamic system of user

client/server interface of business

application

In terms of dynamic adaptation to the screen

resolution, the user interface of the

application is scrutinized in this paper

primarily from the point of view of the user

in terms of ergonomics.

 That means that user's standpoint is

defined through his expectation that the

forms of the existing applications relative to

the entering of and browsing through data,

should be adapted in a standard way to the

graphic possibilities and the available space

on the screen, so as to enable maximum

amount of information.

 Unfortunately, that standard could be met

only in the classical textual format of DOS

applications and it was met in the systems of

web applications, whereas in the standard

windows applications this problem calls for

different solutions.

 If we define the user interface form as an

elementary and open dynamic system with

feedback, then we can present its structure as

an object diagram shown in Fig. 1

.

Fig. 1. Dynamic system of application's user

 interface

 The input vector X in Fig. 1 refers to the

data that users can enter into the base via data

entry forms, while output vector Y refers to

the data and information that users can read

on the active forms, and also to the data and

information that are created as a result of

data processing and activation of certain

functions on the active form of the

application.

 In that sense the application form may be

considered as a system on the first level,

which consists of two subsystems. The

subsystem for data entering encompasses

field and functions of the form intended for

data entry, while the subsystem for data

reception contains options of the form to

receive, process and browse the database.

 The feedback between the two mentioned

subsystems of the application active forms is

very important, as it proves the adaptability

and power of the form as a complex object,

which is often burdened with a large number

of fields, control functions and textual

descriptions of the fields and functions.

 The more complex the application form is,

and the more objects of various types it

contains (Table 1) – the problem of its size,

its objects and fonts of textual information

are more pronounced and, naturally, it calls

for dynamic adaptation of the form to the

active screen resolution and expansion of the

form over the entire screen.

Table 1. Form application objects that are

 dynamically adapted to the screen resolution

Type of object
'Commandbutton', 'Optionbutton',

'Pageframe', 'Container',

'Listbox', 'Grid', 'Textbox',

'Label', 'Editbox', 'Checkbox',

'Combobox', 'Spinner', 'Line',

'Shape', 'Image', 'Olecontrol',

'Oleboundcontrol', 'Page',

'Commandgroup', 'Optiongroup'

3 ClassLibrary Resizer.vcx system

for dynamic adaptation of Visual

FoxPro forms to the active screen

resolution

The original ClassLibrary Resizer.vcx for

dynamic adaptation of Visual FoxPro forms

[1], was created for the standard desktop

windows applications, installed on the local

computer, and in its original structure it can

not be implemented in the system of

client/server applications. The structure of

the Resizer.vcx system with a list of

functions is shown in a UML diagram in Fig.

2.

Fig. 2. UML diagram of ClassLibrary

 Resizer.vcx

 The implementation of the standard

ClassLibrary Resizer.vcx [1] within the

framework of the client/server application

starts from the assumption that the local

dynamic management is an option, as well as

occasional or permanent adaptation of

selected application forms on the local user

level.

 In the sense of the above, the relational

database model of the application needs to be

enlarged with an additional relation of

'UserForms' whose attributes are described in

Table 2.

Table 2. Description of attributes of 'UserForms'

 Relation

Attribute Description

of attribute

Status of

attribute

Org -

standard,

New - new

UserName Application

user mark

New

Cname Name of

application

form

Org

Nwidth Form width

in pixels

Org

Nheight Form height

in pixels

Org

Nleft X form

coordinate in

pixels

Org

Ntop Y form

coordinate in

pixels

Org

UserNameCom Name of

application

user

New

 The standard, and by the author of this

paper modified Visual FoxPro code of some

functions of the 'Resizer' class given in Fig.

2, is shown in Table 3.

Table 3. Modified Visual FoxPro code of some

 functions of 'Resizer' class [1]

Function Visual FoxPro Code

PARAMETER lRestore

private aResize

IF parameter()!=0

this.lRestore=m.lRestore

ENDIF

*

PRIVATE cSelect

if this.nOrigH=0 or this.nOrigW=0

this.nOrigH=thisform.Height

this.nOrigW=thisform.Width

ENDIF

cSelect=alias()

Init

(Rectified

function)

*

this.nProp=0

this.getobjprop('thisform.objects')

this.save

*

IF this.lRestore

IF !used('UserForms')

SELECT 0

USE UserForms ALIAS UserForms SHARED

ELSE

SELECT UserForms

ENDIF

CURSORSETPROP("Buffering",5,"UserFor

ms")

SET ORDER TO index1

SEEK xUserForms + thisform.Name

IF FOUND() .and. xResizeUserForms =

.T.

thisform.width = UserForms.nWidth

thisform.height = UserForms.nHeight

thisform.top = UserForms.nTop

thisform.left =

UserForms.nLeftthis.resize

ENDIF

ENDIF

*

Destroy

(Rectified

function)

private cSelect

IF this.lrestore

cSelect=alias()

IF !USED('UserForms')

SELECT 0

USE UserForms ALIAS UserForms SHARED

ELSE

SELECT UserForms

ENDIF

CURSORSETPROP("Buffering",5,"UserFor

ms")

SET ORDER TO INDEX1

SEEK xUserForms + thisform.name

IF xResizeUserForms = .T.

IF !found()

APPEND BLANK

RLOCK()

REPLACE UserForms.UserName WITH

xUserForms,;

UserForms.cName WITH

thisform.name,;

UserForms.Korisnik WITH

xyzUserMod

ENDIF

RLOCK()

REPLACE UserForms.nWidth with

thisform.width,;

UserForms.nHeight with

thisform.height,;

UserForms.nLeft with

thisform.left,;

UserForms.nTop with

thisform.top

unlock

TABLEUPDATE(.t.)

ENDIF

IF !empty(m.cSelect)

IF ALLTRIM(m.cSelect) != "USERFORMS"

select (m.cSelect)

ENDIF

ENDIF

ENDIF

parameter cObject

private i,cObjectI

if !empty(cObject)

i=1

cObjectI=cObject+'(i)'

do while type(cObjectI)='O'

with &cObjectI

do case

case .baseclass$'Commandbutton

Optionbutton'

this.savewhlt()

GetObj

Prop

(Standard

Function)

this.aProp(this.nProp,5)=.fontsize

case .baseclass='Pageframe'

this.savewhlt()

this.getobjprop(cObject+'('+allt(str

(i))+')'+'.pages')

case .baseclass='Container'

this.savewhlt()

this.getobjprop(cObject+'('+allt(str

(i))+')'+'.objects')

case .baseclass$'Listbox'

this.savewhlt()

this.aProp(this.nProp,6)=.columnwidt

hs

case .baseclass$'Grid Textbox Label

Editbox Spinner Checkbox Combobox'

this.savewhlt()

this.aProp(this.nProp,5)=.fontsize

case .baseclass$'Line Shape Image

Olecontrol Oleboundcontrol '

this.savewhlt()

case .baseclass='Page'

this.aProp(this.nProp,5)=.fontsize

this.getobjprop(cObject+'('+allt(str

(i))+')'+'.objects')

case .baseclass$'Commandgroup

Optiongroup'

this.savewhlt()

this.getobjprop(cObject+'('+allt(str

(i))+')'+'.buttons')

endcase

endwith

i=i+1

enddo

endif

Resize

(Standard

Function)

PRIVATE I

IF this.nOldWidth!=0 and

this.nOldHeight!=0

IF thisform.Width!=this.nOldWidth or

thisform.Height!=this.nOldHeight

this.nDifW=thisform.Width/

this.nOrigW

this.nDifH=thisform.Height/

this.nOrigH

IF abs(this.nDifW)>.5 or

abs(this.nDifH)>.5

this.nProp=0

this.resizeform('thisform.objects')

this.save

thisform.refresh

ENDIF

ENDIF

ENDIF

Resize

Form

(Rectified

function)

PARAMETER cObject

PRIVATE

i,cObjectI,nCol,cCOlWidths,nColWidth

i=1

cObjectI=cObject+'(i)'

DO while type(cObjectI)='O'

WITH &cObjectI

DO case

CASE .baseclass$'Commandbutton

Optionbutton'

this.resizewhlt()

CASE .baseclass='Pageframe'

this.resizewhlt()

this.resizeform(cObject+'('+allt(str

(i))+')'+'.pages')

CASE .baseclass='Container'

this.resizewhlt()

this.resizeform(cObject+'('+allt(str

(i))+')'+'.objects')

CASE .baseclass$'Listbox'

this.resizewhlt()

cOColWidth=this.aProp(this.nProp,6)

IF !empty(cOColWidth)

nCol=1

cColWidths=''

cCol=this.strtok(m.cOColWidth,m.nCol

,',')

DO while !empty(cCol)

nColWidth=max(int(val(m.cCol)*this.n

DifW),0)

cColWidths=m.cColWidths+allt(str(m.n

ColWidth))+','

nCol=m.nCol+1

cCol=this.strtok(m.cOColWidth,m.nCol

,',')

ENDDO

.columnwidths=cColWidths

ENDIF

CASE .baseclass$'Grid Textbox Label

Editbox Listbox

Checkbox Combobox Spinner'

this.resizewhlt()

CASE .baseclass$'Line Shape Image

Olecontrol

Oleboundcontrol '

this.resizewhlt()

CASE .baseclass='Page'

IF this.lResizeFont

nFontSize=max(ceiling(this.aProp(thi

s.nProp,5)*this.nDifW),7)

.fontsize=m.nFontSize

ENDIF

this.resizeform(cObject+'('+allt(str

(i))+')'+'.objects')

CASE .baseclass$'Commandgroup

Optiongroup'

this.resizewhlt()

this.resizeform(cObject+'('+allt(str

(i))+')'+'.buttons')

ENDCASE

ENDWITH

i=i+1

ENDDO

 The 'Resizer' class shown in Fig. 2

functions in the following algorithm:

1) Expanding the form all over the screen

in active resolution, or manual

positioning of the form by the user to

the desired location on the screen;

2) Memorizing of the active form

coordinates of the individual user in

the relational fields of 'UserForms':

Nwidth, Nheight, Nleft, Ntop;

3) After each subsequent activation of a

certain application form on the part of

the individual user, and based on

previously memorized form

coordinates, the 'Resizer' class

dynamically adapts all fields, fonts

and controls mentioned in Table 1 in

line with the active screen resolution.

 Activation/deactivation of classes 'Resizer'

and 'ShellExecutive' on the selected form of

the client/server application is obtained by

using the 'drag and drop' method within the

Fig. 3. Example of a form with activated 'Resizer' and 'ShellExecute' classes

Fig. 4. Initial form of *TRENIS* application

framework of the project of the development

system of the application (Fig. 3), which

then requires compiling and re-installing of

the application.

 Fig. 3 shows the classes set up in the

upper left corner of the form. They are

activated by applying the 'drag' method from

the standard 'ToolBars' system.

4 Some aspects of the

implementation of the dynamic

system of managing the user

forms of the VFP client/server

application

A paradox in implementing the option of

dynamic adaptation of the client/server

application form to the screen resolution is in

that there are always users who refuse to

accept new and advanced options and insist

on the classical way of management of the

application forms.

 This implies that, apart from the option of

the dynamic local customization of

client/server application forms by each

individual user within the business network,

there must exist an option of off/on

switching of the basic 'Resizer' class on the

local level taking into account the needs of

individual application users.

 In the *TRENIS* client/server application

that particular option is built in the initial

form of the modular application system and

is marked as 'Automatic adaptation of form',

(Fig 4).

 Installation of the 'Resizer' class into

Visual FoxPro application of *TRENIS* has

made the user interface system of that

application dynamic and independent of the

screen resolution, which is has been met

with great satisfaction of the users. As such,

it is one of the most relevant advantages in

comparison with the similar business

windows applications currently applied.

5 Conclusion

As has been pointed out earlier in this paper,

the problem of dynamic adaptation of the

forms of user interface windows applications

to the active screen resolution goes back to

the very beginnings of the development of

object development systems in the OS

Windows environment. Failure to find an

efficient solution to that problem led to a

discrepancy between the graphic options of

modern screens and the user interface of the

application forms and, consequently, to

serious discontent of the users. Among other

things, this too contributed to the surprise

and shock of users when the process of

abandonment of DOS applications and

transition to windows applications began.

 Given that standard desktop and

client/server business applications are still

prevailing in the business systems, the

described problem is highly pronounced, and

it requires a solution considering the

pressurizing of discontent application users.

 One of the possible solutions to the

problem of client/server application

developed within the Visual FoxPro 9.0

development system has been presented in

this paper. It actually upgrades one of the

general commercial solutions [1]. The

upgrading of the ClassLibrary Resizer.vcx

system and its successful implementation in

the project Visual FoxPro of the *TRENIS*

application substantiate the quality of that

solution.

 Given the relevant experience with the

ClassLibrary Resizer.vcx, the authors of this

paper deem that the future work on the

problem of dynamic adaptation of the user

forms of business applications should be

focused on the development of the universal

and closed ActiveX Control class that can be

integrated in all existing systems intended

for the development of standard client/server

business applications, which would solve the

described problem.

References

[1] http://www.activewebsoftwares.com,

 WebIntel@Webintel.net, VFP Form

 Resizer Source Code V-3.

[2] http://www.sharewareconnection.com/

 titles/resizer-activex-control.htm

[3] http://www.programurl.com/software/

 activex-control.htm

[4] Microsoft Visual FoxPro 9.0 SP2,

 MSDN – Help.

[5] Vidačić, S.: Some Models of the

"VISTEL" Program Used to Support

the Management of the Business

Processes of a Trading Company,

Proceedings of the 14
th

 International

Conference of information and

Intelligent Systems - IIS'2003,

september 24-26, Varaždin, 2003, str.

263-272.

[6] Vidačić, S.: The use of Information

 System in The management of Business

 Rules, Proceedings of the 16
h

 International Conference of Information

 and Intelligent Systems - IIS'2005,

 september 21-23, Varaždin, 2005, str.

 145-151.

[7] Vidačić, S., Brumec, S.: Project

 Software package TRENIS –

 MOBTRENIS, ordered by Ellabo

 d.o.o., Zagreb,

