
DATABASE COMPLEXITY MEASURING METHOD

Mile Pavlić

Sveučilište u Rijeci, Odjel za informatiku, Adresa, 51000 Rijeka, Croatia

mile.pavlic@ris.hr

Marin Kaluža

Veleučilište u Rijeci, Trpimirova 2/V, 51000 Rijeka, Croatia

mkaluza@veleri.hr

Neven Vrček

Fakultet organizacije i informatike, Pavlinska 2, 42000 Varaždin, Croatia

Abstract:
There are so many methods on the market that could

measure or estimate different aspects of an

information system. When the information system is

finished and it is in use for some time, redesigning of

the existing one or making a new one has to be done.

To make the estimation of investment as precise as

possible, and to manage the development and

implementation of the new information system, there

is a need for measuring or estimation of the

complexity of the existing information system.

Information system complexity measuring methods

show correct complexity measure, but their

enforcement is very hard and slow. This paper

represents a method called DC (Database

Complexity). DC can obtain a measure of the

database complexity very fast.

Key words: complexity, information system,

measuring, database complexity, FP.

1. Introduction

Software development is an engineering discipline.

The engineering approach implies that the planning

and design phases precede the software development

phase [18]. The engineering approach in software

development allows for a project in which customer

requests are collected and which develops the

application respecting the "business rules". In the

beginning of the software development project, very

often, a software cost weight has to be estimated or

measured. A logical consequence of the engineering

approach toward software development is a need for

introducing different types of measuring methods and

quality estimation. We could measure the complexity

of an information system (IS) [7], its productivity

[14], cost [15], functionality [16][17], and so on. The

measuring methods and metrics are constantly

analyzed and upgraded to make the software measure

or estimation as objective as possible [3].

A large number of software products were

developed as a renewal (reengineering) of the existing

one. Very often, there is a request for new software

solutions on the market as a replacement or upgrade

of existing (legacy) software. It is necessary to predict

the real cost, expenses and development time of the

new software. The cost and time depend on software

complexity. The more complex the software is, the

more time it will require to develop it.

This paper will present how software complexity

could be estimated by measuring the complexity of

different database concepts. Database concepts

included in measuring are: attributes, keys, indices,

database references – all used in software. This

paper's objective is to present a method which could

be used to make quick database complexity

estimation.

The presented method will be applied on a

business software that represent the IS (whole or

partial) of an organization. The measured software is:

car assurance, home assurance, fire assurance, etc.

Specialized software will not be considered, for

instance, multimedia software, software used as

support to automated product processes, software with

complex mathematical algorithms, and so on. Only

the IS of a business organization will be analyzed

[19].

2. Estimating and measuring methods

If there is an objective to develop whole software,

there is also a very logical request: how could we

measure software complexity. Software complexity

could be measured or estimated by different methods.

We have to emphasize, that essential factor in

measuring or estimating process is, also, a software

type. Software type defines its relation toward inputs

and outputs, interaction with customer, customer

interface, independent learning, and so on. In other

words a software type defines its placement in three-

dimensional vector space by Genetic taxonomy [1].

There are so many methods which could measure

or estimate software complexity. Some of them are:

Method of functional points analyses [4][7], Delphi

[8], COCOMO [9], NVC [10], PND [5]. Some

methods could measure, but some of them could only

estimate software complexity.

Accepted referent method for measuring software

complexity is method of functional points analyses

(FP). The other methods are in generally reclined, or

they are derived on FP. Propriety of some methods is

proved by correlation with FP (PND [5]). Let’s

describe FP and PND methods.

2.1 Functional point analyses method

FP (Functional Point Analyses) method appeared

by the ending of 70’s. The objective was to give, as

result, a number which will represent software

complexity, and that number should be of importance.

In other words, for two different software, a number

of functional points could be given, and it could

represent a real and objective difference between

them. FP is a number without dimension defined in

functional points that represents an effective relative

measure of functional value delivered to the customer

[2]. Regarding to the IFPUG, a FP model is consisted

of transactional (EI, EO, EQ) and data (ILF, EIF)

elements [3]. EI represents an External Input, EO

External Output, and EQ represent an External

Inquiry. ILF represent Internal Logical File, and EIF

External Interface File.

There are defined rules, and by them some registered

elements in the system are appended to transactional

and/or data elements. The method is performed

through the five steps, and gives a number of

maladjusted functional points. After that follows

relatively subjective calculating an adjusting value

factor, and calculating adjusted functional points. The

method is comprehensive, and it takes much effort

and time to be performed [5].

To facilitate complexity measuring process, some

methods for software complexity estimation has been

created. Estimations are less correct, but measuring is

faster and easier. Estimation methods could be proved

by correlation level with FP (referent complexity

measuring method). Estimation methods, in generally,

could be categorized in two categories: direct

estimation methods, and derived estimation methods

[4]. Direct estimation methods are usually known as

methods of expert’s opinion and experience. Experts

could directly estimate software complexity, but there

is no mathematical evidence. Derived estimation

methods gives complexity estimation like function of

some variables which refer on some project attributes

[5].

2.2 PND

Data on documents (PND) is a method which

could be used for IS designing complexity estimation

[5]. A method is performed in ten steps. All system

documents have to be collected, and than continues

computation of relevant data on each document.

Summation of different data types gives a number

which represents a system complexity. This method

statistically correlates with referent measuring method

FP [7]. PND could very fast accomplish system

complexity estimation, and foresee measuring results

by using FP method.

3. DC method

This paper defines a method called “Database

Complexity” (shortly DC). DC method could be used

for database complexity measuring. Every business IS

is composed of database and software. DC doesn’t

measure IS complexity, but it only estimate it. When

measuring IS complexity, all its composed elements

have to be measured. IS is composed of: hardware

components, software, orgware, lifeware and netware.

DC measures only logical structure of physical

database used in its IS. A size of database itself will

not be performed in measuring process. DC can, from

data point of view, estimate software complexity. By

measuring database complexity, DC method can

foresee software complexity, and also IS complexity.

Physical database development is only one step

within IS designing and developing methods [18].

Before database construction, there have to be made

at least two different data models which represents

some data relations. These models are entity-

relationship (ER) model [11], and relational model

(RM) [12]. ER represents appearance types on

semantic level, with their properties (attributes), and

their each other connections [11]. RM could be made

by using some defined translation rules from ER

model [18]. RM, beside attributes, also represents

keys, and foreign keys in each relation.

Mentioned models will ensure as less (minimum)

redundancy as possible in future database. If relation

has some redundant attributes, there are anomalies

also present. Anomalies could be occurred in insert,

update and delete processes with tuples [13].

If IS has database modeled and normalized to

minimally 3NF, DC method could easily estimate an

IS complexity. Un-normalized relations in database,

generally un-normalized databases, could not be

measured and will not be measured by DC.

3.1 Method definition

Let’s define basic measurement elements. To

make calculation of database complexity, all relations

in database have to be counted. For each relation all

relevant elements have to be counted, and given

number represents relation complexity, or relation

weight W. Let A be a number of counted attributes in

relation. Let K be a number of keys in relation. Key

sum represent counting of primary and secondary

keys. Let I be a number of counted indexes in

relation. I imply only a number of un-unique indexes

in relation. Unique indexes were still counted in K.

Let F be a number of foreign keys in relation. Weight

W of each relation is a sum of counted elements, and

could be shown by formula (1).

FIKAW +++= (1)

Respecting a formula (1), W (weight-complexity)

of each relation could be performed. To calculate

complexity C for whole database, each relation W has

to be summed. This is shown by formula (2). In

formula, n represents a number of relations in

database. W represents each relation weight, and C

represents database complexity. i is variable that vary

from 1 to n.

∑
=

=

n

i

i
WC

1

 (2)

For every relation in database worth that each

relation weight W is equal to sum of counted

attributes A, keys K, counted indexes I, and counted

foreign keys F.

W is relation weight, because it represents its

complicated development and exploitation. This

requires some labor which is in correlation with

elements quantity, that database is consisted of. Each

relation obtains its weight. Based on obtained weight,

relations could be compared. Every single weight

contributes in altogether database complexity.

4. Method enforcement

Let’s define method appliance steps. DC method,

on database of its IS, has to be enforced in eight steps:

1. Relation selection in database

2. Attributes counting – A

3. Keys counting – K

4. Indexes counting – I

5. Foreign keys (references) counting – F

6. Calculating total weight W – by using a formula

(1)

7. Steps 1-6 perform on each database relation

8. Weight W summary of all counted relations – by

using a formula (2)

Step 1. implies relation selection in database and

its marking and preparing for next steps. Before this

step it is possible to sort relations in database by

particular argument (e.g relation’s name). This will

facilitate controlling whether each relation is treated

by DC method.

Step 2. implies all attributes counting in relation.

This also includes those attributes that are in database

construction added, and represent unique identifiers

so called ID attributes or surrogate keys [6]. Each

attribute has its own semantic value. Even those

attributes that are by different modifications (ID

modification) added in database, also carry some

semantic value. As system complexity directly

depends on a number of stored and easy to use

attributes, because every data could give information

or at least a part of information, certainly each

attribute has its own informative value 1. It isn’t

necessary to make a different scoring (evaluation) for

every single attribute. Each attribute has equal

importance to all others, and it carries equal quantity

of information, and this is 1. So, by counting

attributes, the attributes quantity A will be obtained.

Step 3. Keys counting – a primary key, and all

secondary key will be counted. Relation’s secondary

keys are defined like unique indexes. Primary key and

all secondary keys are preserving uniqueness of

attribute values that are made of. Keys preserve un-

repetition of some attribute’s values in different

relation’s tuples. Duplication impossibility of

particular appearance is preserved by keys. Key also

has some semantic value. When looking at

appearance (tuple) in relation, then key semantic

value could be 1. Every appearance in relation could

be managed in relation only once. By counting keys,

relation key quantity will be obtained.

Step 4. Indexes counting – all relation’s un-unique

identifiers (indexes) are been counted. Those indexes

that are created on database because of future foreign

keys are not counted. Indexes are used on database for

accelerating answers on sent queries. Indexes are

incorporated in queries that are used in IS’s software.

Indexes do not have any semantic value like two types

(attribute, key) mentioned above, but they accelerate

more complex system’s work. A need for using

indexes could be later pointed out. Index and its usage

arises system complexity. As indexes are used in a

different places in a system, and probably many

times, it is necessary to make evaluation on them

when estimating IS complexity. Indexes do not have

any semantic and information weight, but they allow

faster accessing to the needed information. Every

index should have weighting 1. By counting indexes,

the index quantity I will be obtained.

Step 5. Counting foreign keys (references) – all

foreign keys in relation have to be counted. Foreign

key ensures that the tuple in relation A on attribute(s)

that represent foreign key FK, will have a value which

is additionally described and defined in another, by

foreign key, connected relation B. FK ensures that

some appearance (tuple in relation) in A will be

described with predefined values (appearance – tuple

in second relation) in B. FK also carries a semantic

value. A tuple in A which has FK is additionally

described by tuple (other attributes) from relation B.

So, a tuple in A could be described by using reference

on the other tuple. Using a FK allows obtaining

“enhanced”, but predefined information from B of

about tuples in A. So, every FK should also have a

weighting 1. By counting foreign keys, the foreign

key quantity F will be obtained.

Step 6. Calculating a total relation weight – a

summation of values obtained from last 4 steps (steps

2-5). Results A, K, I and F are of equal importance. A

is not more important than I, and F is not more

important than K, neither is vice. Every single result

carries equal weight to the others. If the results could

be of different importance, when calculation is

performed, some results should have participation

coefficients in relation weight W. All counted results

(A, K, I, F) have equal coefficient in calculation of W.

So the weighting is 1. A W will be obtained, by using

a summation operator over obtained results.

Step 7. Steps 1-6 have to be performed on every

relation in database. Database also has, so called,

system relations. Such relations are used by software

for some user customization on database views. Such

relations could store some system settings for

software which is using the database. So in generally,

relations that exist on database, and if they are not

created from data model, they do not have any

semantic value. Such relations could be called

“Semantic Ballast”. Such relations are not included in

counting process.

Step 8. Every relation weight summation obtains

total relations weight. It is not necessary to give

different coefficients to each relation’s weight. Every

relation, depending on its weight, has some

percentage participation into total system weight.

Absolute relation weight shows it informational

importance. Relations, generally, do not have equal

informational importance. Because of that, their

weights are distinct. Each relation weight will be as

high as the summation of possible “information” is,

carried by attributes, keys, indexes, and foreign keys.

This clearly makes difference in information quantity

carried by each relation. Summation of relations’

weights will give a total system weight. This obtained

weight could represent a measure for information

quantity and technical operations by which the

information could be quickly reached. Total system

weight, should represent a measure of system

complexity.

5. Method application results

Measuring with SBP method has been performed

on 9 (nine) projects. Every single project has its own

software and represents IS, or its part, in companies

business. Measured projects are: glass breakage,

earthquake, fire stocks, machinery breakage,

household, burglary and robbery, fire

summed/contracted, car all-risk insurance, car

insurance.

Hereafter, there is a part of ER model of one

system measured by SBP method. A model is part of

the original project documentation [20]. Picture 1

represents a part of ER model of Car all-risk

insurance system.

Picture 1 - ER model part – System Car all-risk insurance

System represented by Picture 1 is measured by DC method. Table 1 represents measured system results.

Table 1 – Relations of system – Carr all-risk insurance

RELATION A K I F W

IMS_ATRIBUT 8 1 9

IMS_ATRTVO 6 1 2 9

IMS_DJEL_OS 15 1 2 18

IMS_DOD_OPR 22 2 3 27

IMS_DODATOPR 6 1 7

IMS_DOP_KASK 10 1 2 13

IMS_GR_KASKO 29 2 2 5 38

IMS_GRUVOZ 8 3 2 13

IMS_KAS_NEZ 15 1 2 18

IMS_KATVOZ 14 2 2 18

IMS_KVOATR 9 1 2 12

IMS_MARKA 6 1 1 8

IMS_NAMJENA 6 1 7

IMS_OSIG_DOK 104 2 15 17 138

IMS_POP_KASK 10 1 2 13

IMS_PROIZVOD 6 1 7

IMS_PROIZVOZ 6 1 1 8

IMS_REG_PODR 6 1 7

IMS_REG_TABL 8 1 1 1 11

IMS_REG_VOZ 10 2 2 14

IMS_ST_KASKO 41 2 1 3 47

IMS_STATIOBI 14 1 4 2 21

IMS_TIPVOZ 6 1 7

IMS_VOZILO 25 1 3 4 33

IMS_VOZPROIZ 7 2 2 11

IMS_VPROPR 9 1 2 12

IMS_VRDOP_K 7 1 8

IMS_VRPOP_K 7 1 8

IMS_VRS_REG 6 1 7

IMS_VRSVOZ 7 1 8

 Complexity-C 557

Table 1 represents measured values A, K, I, F, and

results W and C for project Car all-risk insurance,

whose model is showed on Picture 1. Table shows

that A significantly affects on W. When A is bigger,

W is also bigger. Other values K, I and F are

significantly smaller and its effect on W value is also

smaller.

Table 2 shows measuring results on 9 (nine)

systems. In columns A, K, I and F are by order

counted so called elements of DC method. Now

column represent results from all counted relations in

project. Column C now represents a summation on

elements (A+K+I+F), or in other words, it represents

a summation of each relation W.

Table 2 – DC method measuring results

PROJECT ACRONYM A K I F C C-A

Glass breakage LSA 1822 133 128 259 2342 520

Earthquake POT 1840 134 129 259 2362 522

Fire stocks POZ 1883 138 128 265 2414 581

Machinery breakage LST 1887 139 128 266 2420 533

Household KU 1939 145 130 274 2488 549

Burglary and robbery PKR 1945 145 130 275 2495 550

Fire summed/contracted POS 1984 149 130 280 2543 559

Car all-risk insurance KA 2090 164 139 289 2682 592

Car insurance AO 2179 160 157 296 2792 613

Table 2 shows that Glass breakage system is the

least complex system with attributes quantity 1822

and weight 2342. The most complex measured system

is Car insurance with attributes quantity 2179 and

weight 2792.

A graph of results is shown on Picture 2 and it

represents relationship between counted elements A,

K, I and F, and weight W. It is very easy to figure that

a large part of weight is consisted of A. The other

elements significantly less consist a W. In the other

words could be said that an A proportionally

correlates with K, I, and F. If number of relations in

system is growing up, logically number of the other

parts each, is also growing up.

0

500

1000

1500

2000

2500

3000

LSA POT POZ LST KU PKR POS KA AO

A

K

I

F

W

Picture 2 – DC elements of measured systems

Picture 2 shows that amount of W is consisted of

counted attributes. Number of K’, I’, and F’ is

significantly low. It is not good to say that this

number is insignificant, because it carries some part

of W, and by that affects total system complexity. As

K, I, and F significantly less affect to total system

complexity, and they significantly less carries a

measure of total system complexity. Every mentioned

element carries some semantic weight, and by that

affects on total system complexity. In total system

complexity measuring process, elements A, K, and F

have equal weighting and it is 1.

Looking at a curve A and W, it could be

concluded that values from a curve A could relatively

precisely describe values on curve W. That has some

implicated meaning, system weight and its complexity

could be estimated, by counting only attributes in

database.

Also could be concluded that relationship between

value A and all other values (K, I, and F) is 3.5:1.

That means that database has more than 3 times more

attributes than all other elements together. There is a

question: How it is in the other projects? If relation is

the same or similar, then this relation could be rule in

general.

6. Conclusion

This paper has represented a DC method which

measures database complexity. The complexity can be

easily measured. All available DBMS systems have

the ability to get information from the data dictionary

by standard SQL queries. If DBMS can get data

dictionary information, then it can get all the required

elements for the enforcement of the DC method.

Hence, getting particular counted elements (A, K, I, F,

and also W) could be very easily and quickly

performed. Also, total database complexity C could

be easily reached.

The database is used by its belonging IS. DC

method could be used for fast IS complexity

estimation. If the method is used for IS complexity

estimation, DC method constraints have to be

considered.

The measured results have shown that the number

of attributes has a significant effect on database

complexity. A number of keys K, un-unique indexes

I, and foreign keys F, has significantly less effect.

Further research could be in a way to examine DC

method applicability in other genetic taxonomic

arrays. Also, it could be shown that for calculating

database complexity, there is no need to count keys,

non-unique indexes, and foreign keys. Counting could

be reduced to only counting attributes. Also, assigning

a coefficient participation for each element (A, K, I

and F), when calculating relation’s weight W, could

be considered. Relation’s type could also give a

coefficient, when calculating database complexity C.

We believe that the presented DC method could

give a great contribution to the software development

companies, and also to companies that are software

consumers. To the first category, it could estimate

how much it will take to finish the software

development for the existing database, and plan the

resources accordingly. To the second category, based

on the existing IS parts and databases, it could

estimate a cost for the other parts of IS, or the cost of

software reengineering.

Bibliography

[1] Brumec, J., Vrček, N.: Genetic Taxonomy: the

Theoretical Source for IS Modelling Methods, in

Proceedings of the ISRM 2002 Conference, Las

Vegas, NV, USA, 2002

[2] Abran, A., Robillard, P.N.: Identification of the

structural weaknesses of Function Point metrics,

3
rd

 Annual Oregon Workshop on Software

Metrics, Portland, Oregon, 1991

[3] Beyers, C.P.: Estimating Software Development

Projects, IT Measurement: Practical Advice from

the Experts, IFPUG, Addison-Wesley, Boston,

2002, p. 337-362

[4] Meli, R. Santillo, L.: Function point estimation

methods: A comparative overview, FESMA 99,

Amsterdam, 1999

[5] Poščić, P.: Metoda procjene složenosti

projektiranja poslovnih informacijskih sustava,

Doktorski rad, Varaždin, 2007

[6] Kaluža, M., Čubranić, D.: Modifications on Data

Model, IIS, Varaždin, 2007

[7] Garmus, D., Herron, D.: Function point analysis

– measurement practices for successful software

projects, Addison-Wesley, 2001

[8] Gordon, T. J.: The Delphi Method,

http://www.futurovenezuela.org/_curso/5-

delphi.pdf (pristupano dana 27.04.2008.)

[9] Gu, H., Tang. J., Shanmugasundaram, V.:

Estimation of a Software Development project

using COCOMO II, The Midwest Instruction and

Computing Symposium,

http://www.micsymposium.org/mics_2004/Gu.pd

f (pristupano dana 27.04.2008)

[10] Ahm, S.I., Baker, S.: The NVC Method of

Software Project Estimation, Jackson Open

Kilobyte, Enterprises,

http://www.tribalsmile.com/nvc/ (pristupano

dana 27.04.2008.)

[11] Chen, P.P.: The Entity – Relationship Model –

Towards a Unified View of Dana, ACM TODS,

Vol. 1, No. 1, 1976

[12] Lyngbaek, P., Vianu, V.: Mapping a semantic

database model to the relational model, ACM,

SIGMOD, Vol. 16, Iss. 3, 1987, pp. 132 – 142

[13] Tkalac, S.: Relacijski model podataka, DRIP,

Zagreb, 1993.

[14] Hamilton, S., L. Chervany, Norman: Evaluating

Information System Effectiveness - Part I:

Comparing Evaluation Approaches, MIS

Quarterly, Vol. 5, No. 3, 1981, pp. 55-69

[15] Poppo, L., Zenger, T.: Testing alternative

theories of the firm: transaction cost, knowledge-

based, and measurement explanations for make-

or-buy decisions in information services,

Strategic Management Journal, Volume 19 Issue

9, 1998, pp. 853-877

[16] Parasuraman, A., Zeithaml, Valarie A., Berry,

Leonard, L.: SERVQUAL: A multiple-item scale

for measuring consumer perceptions of service

quality, Journal of Retailing, Vol 64(1) 12-40,

1988

[17] Leyland, F. P., Richard, T. W., C. Bruce Kavan:

Service Quality: A Measure of Information

Systems Effectiveness, MIS Quarterly, Vol. 19,

No. 2, 1995, pp. 173-187

[18] Pavlić, M.: Razvoj informacijskih sustava, Znak,

Zagreb, 1996

[19] Jakupović, A., Pavlić, M.: The Meaning and

Relationship of Relevant Elements in Business

Organisation Structure, Cavtat, 2008

[20] Pavlić, M.:”IMIS”, RIS, 2001.

