Reverse Engineering Unknown Protocols

Tonimir Kisasondi; Zeljko Hutinski, Vesna Dusak
Faculty of organization and informatics
{tkisason, zhutinsk, vdusak}@foi. hr

Abstract. In this work we will present our method
for analyzing and reverse engineering unknown or
proprietary protocols for the purpose of analyzing the
protocol security or gaining more insight into the
protocols inner operation. We created a method that
can be executed manually or can be packed into a
Sully automatic algorithm.

Keywords. Reverse engineering, protocol analysis,
black box analysis

1. Introduction :
reverse engineering

The need for protocol

When installing or implementing a third party
solution that employs proprietary protocols for
communication, there is a need to analyze and assess
the strength of the implementing communication
protocol at the application layer regarding to the
manufacturers claims. Since only some manufacturers
which are a minority in todays corporate realm
specify the protocol and give out the whole
documentation that is needed for an independent audit
or an implementation with a in-house solution that
needs to interconnect with the original manufacturers
solution. For example, one such situation is if the
manufacturer is not available because he went out of
business.

Therefore, with security auditing primarily in
mind, we developed a method for analyzing closed-
source protocols and simply trying to assert as much
as possible information from only observing and
analyzing the outputs with regard to manipulation of
the input data of the analyzed object in a systematic
way, where we analyze the object as a “black box”.

The complexity of testing such systems is
high because we don't know anything about the
internal functions or internal interactions of the
observed system, like the protocol sentence
semantics and syntax of the raw data we receive on
the output. But we can soften this situation because
we know something about the part of the input we
send in the system. Those parts can be user defined
(usernames, passwords, data) or some internal state
that we can assert or edit from the device like time,
date, timezones, ip address, current state and similar
settings that can be changed or simply read from the
machine. If we are dealing with unencrypted output

which is mostly the case from our practice, we can
disassemble the output data with our described
method. If the data is encrypted, we can also assert
some information about the properties of such
encryption. Also, there are a number of common
design patterns that can be assumed and that aid us in
our analysis, as we will show in the following
chapters.

The property we need to note is that we
cannot effectively and hastily analyze a protocol with
a single output. This assumption leads to a analyzing
process which is difficult and unfeasible. We need to
manipulate the device or software to give as much
data output possible to create a valid dataset so we
can observe and note emerging patterns.

2. Analyzing content and patterns

When beginning the analysis, we must note as
much data as we can from the starting state of the
object (meaning a device, software output, unknown
network protocol or anything which we analyze and
want to reverse and understand it's internal
functioning). We must note as much data as we can,
and in case of changing data, like time for example
we must be able to note that data also. An analysis
starting state is the state when we are starting our
analysis, and for the collection of the starting data, we
can even manipulate the object or physically
disassemble it. For example, such starting data can be
and is not limited to:

1. Time and date
a) Time and date formats
2. Timezones
a) Timezone formats
3. Default users and user ID's
4. Serial numbers
a) Device serial number
b) All integrated circuit, CPU's and other
serial number or observed ID data.
5. Internal settings or related settings
a) IP or protocol addresses
b) Open TCP/UDP ports
c) ICMP responses
6. Software version
a) Firmware versions and revisions
b) Internal, proprietary versions
¢) Standard software or firmware versions



All variable custom input data or variables

Encryption hardware, accelerators or IC's

that help in facilitating and indentifying

encryption mechanisms.

9. Calculating the whole input data size
(approximation) and Measuring output data
size and correlating to known input elements.

10. Fragmentation in other protocols (IP, TCP)
a) Specific flags in different protocol

implementations
b) Responses to malformed packets

11. Additional properties and anomalies in other
protocols and other layers because the object
uses the proprietary protocol stack

12. TCP stack ISN sequence
(Zalewskian attractors [1])

13. Possible design patterns or errors
a) Usage of open-source implementations
b) Known proprietary implementations
c¢) Previous and similar vendor or

implementation vulnerabilities

14. Implementation specifics and uniqueness

15. Port scanning the hardware device and trying

to fingerprint all running services.

a) Standard penetration testing methods if
the device is running services on
TCP/UDP

o N

graphing

Also, it's important to note that this is not the only
data we can assert from the starting state, and
depending on the object, more or less data that is or is
not stated here can be available, it is important to try
and obtain and identify as much data as we can from
the starting state, even if some piece of data seems
irrelevant as that starting data will aid us later in our
efforts to reverse the protocol.

3. Pattern and content identification

After the initial data collection from the starting
state, which is a snapshot of the system at its steady
state we can start collecting data for the initial
analysis. We select an initial set of user passed data to
the object and simply run 10 or 20 runs which we
record as the exit protocol dump. It is important to
note that it is helpful that the picked set has as many
distinct and ordered elements as possible. Our
suggestions recommend the usage of a single letter or
number per each field, so that the same letters or
numbers can be easily identified on the output.
Protocol sentence output captures can be done with
Wireshark [2], Netcat [3], tcpdump [4], logical
analyzers connected to the data buses and other
methods depending on the analyzed object. After we
have collected about 10 or 20 dumps (grouped in
timed intervals and spaced in distinct patterns (5
outputs in within 1 minute, 5 outputs after 10 minutes
and 5 after one hour for example) we can analyze the
internal patterns.

Our preferred method of comparison is with
comparison of hex and/or binary representations of
the output. Since those outputs all have the same
internal and user supplied data except timestamps
which we simplified by mapping the outputs within
predictable and regular time intervals that can be
easily ascertained. Hex or binary dumps can be
analyzed in two ways depending on the endianness of
bit/byte data. The problem of endianness depends on
the creators general design of the object. Network
protocols prefer the big-endian order, but some
designers prefer creating storing their data in little-
endian order. So, if the standard big-endian order
analysis cannot deliver any results, we can try
analyzing the whole data in little-endian order, which
is usually the case when we know that the data is not
encrypted and we cannot ascertain any information
from the protocol.

Assuming the default big-endian order, we can
group all our outputs vertically and simply simplify
the whole protocol by simply observing the changes
in the substrings. For example, we will show a subset
of a hex dump from an simple password logging
aplications analyzed protocol to illustrate the point:

Aplication layer protocol hex dump:

1af02007092101200133000004d25f

1af02007092101200134000004d25f

1af02007092101210135000004d25f

1af02007092101210136000004d25f

1af02007092101210136000004d25f

Table 1. App layer protocol hex dump

While with grouping we simplify it in:

A B C D
200 | 133
200 | 134
1af02007092101 210 | 135 000004d25f
210 | 136
210 | 137

Table 2. Vertical simplification of outputs for Table 1.

We can see that from the output, that when
we group and simplify the resulting hex dump, that
we actually have 2 changeable parameters (marked
with B and C in Table 2) in our output hex dumps.
The next step in simplifying the output is to see how
the output parameters behave. In this example, we see
that the parameter B is positive increasing, although
not linearly, and that the parameter C is linearly
increasing. This gives us the variant that C is most
likely some counter. To analyze B or any other such



unrelated and unknown parameter we can try two
methods: the first one is trying to parse the output
protocol sentence and try to find a corresponding
match between the encoded or plaintext input which
we collected in our starting state and the output
sentence. Such searching can be done manually which
is the most thorough and slowest solution or more
hastily and automatically with classic string searching
algorithms like Knuth-Morris-Pratt and similar ones
in a effective manner which we will describe later. If
we cannot find a plaintext match, we can try and
encode the data with various encodings. All
encodings specified in this work are common and
well known, and are well documented in their RFC's
and their corresponding standards. Some of those
encodings are:

1. Timestamps
1. Plain, unencoded time
1. Standard “ddmmyyyy” variants
2. Reverse “yyyymmdd” variants

2. UNIX/POSIX timestamps

3. UTC

4. TAI/TAI64NA

5. GPS encoded time (NMEA time or
sentences)

6. Other 32 or 64 bit second encodings
2. Representations, encodings and encoders
1. ASCII, unicode and others character

encodings
2. Base64
3. uuencode
4. yEnc
5. MIME

If the segment we are trying to understand is located
at the end of the protocol sentence or is totally
random with maximum entropy with the respect to the
observed segment we can check redundancies or error
corrections from the rest of the protocol segment.
Such redundancy or error correction codes can be:

CRC/CRC32
Checksums
Hamming codes
Turbo codes
Space/Time codes
Reed Solomon codes

A e

Also, if the analyzed entropy from the
segment is maximal then we can also assume that
some kind of encryption or hashing is used.
Cryptographic mechanisms can be usually identified
by perfect randomness, high entropy and some
predictable block size like 128, 256, 512 bits and any
multiplier of such blocks. Encryption can be possibly
cracked if we can supply information to the analyzed
object, therefore creating an partial adaptive chosen
plaintext attack. Doing cryptoanalytical work on an
fully unknown protocol, with partial known plaintext

and known ciphertext is extremely difficult, so in case
of a hardware object, disassembly and trying to read
the keys from EEPROM, flash memory or directly
from the data bus with a logic analyzer would likely
be more feasible and is usually more efficient. For
software objects, classic disassembly or software
reversing would be feasible if obfuscation techniques
haven't been used or if weak obfuscation is used.
Chosen plaintext attacks can be mounted if the object
uses authentication elements like passwords, PIN's
and other similar content. That way, we can hash the
authentication element and see if the output contains
the hash result. Also, hashes can be used for data
integrity. Since it is less likely that a protocol will use
hash functions for data integrity, but we can try to
mount a chosen plaintext attack by hashing the
authentication element at the input and then searching
the output sentence for the hash. This can usually be
the case if the protocol transmits a large portion of
data and then verifies the integrity of a point to point
transfer with a hash function. Such popular hash
algorithms are:

1. MD family

1. MD2
2. MD4
3. MDs5

2. SHA family
1. SHA-1
2. SHA-2
3. SHA-256
4. SHA-384
5. SHA-512

3. Adler32

4. Haval

5. RipeMD family

1. RipeMD-128
2. RipeMD-160

Also, if full protocol layer encryption is
used, it will be mostly implemented with some wide
known open source method like SSL or TLS. Also an
effort in reversing can focus on trying to crack the
protocol if a weak implementation is used like SSL
version 2, or if a random generator used is taking his
entropy pool from a limited source which can be the
case since embedded systems usually don't rely on
good random generators but mostly on most simple or
quick ones.

It is important to note, that all mentioned
patterns, algorithms and encodings are not the only
ones that can be present in an analyzed protocol
dump. The mentioned patterns and algorithms here
are the most common from our practice and
experience. If comparison to standard patterns cannot
yield any information we can try several things like
treating the parameter if it is increasing per each
sentence output as an mathematical sequence and try
to identify patterns by calculating differences in



increases or decreases. Another helpful method can be
graphical plotting the parameter in two or three
dimensional space with some plotting program like
gnuplot [5]. Also, attractor analysis like in [1] can be
extremely helpful. Other helpful insight can be gained
with calculation of entropy per substrings in the
whole output. That way we can see which part of the
output has the maximum randomness and can be
assumed to be a redundancy code or other encoding.

Guided by the example shown on table 2.
We can see that C is a counter and from A and B we
can get the timestamp: 200709210120 which is
2007.09.21.01:21(yyyy.mm.dd.hh.mm format). Also
with searching for the input data (password: 1234) we
can see that hex format of the data is: 0x4d2 which we
can find in the string with indexes of 26 to 28. That
way we have a partial reverse, also we can try to
search for other input data to try and do a full reverse.

4. Reverse protocol modeling

Since we know how to ascertain the output
protocol format, for the purpose of interconnection
with other systems we usually need to reverse the
whole protocol to a useful level. Since semantics are
clearly not enough, we need to reverse the entire
protocol structure. Protocols behave differently to
signal various states they can be found in. Those
states are usually:

Boot up phase (B)

Connection start (setup phase) (St)

Data transfer (transfer phase) (Tr)
Signaling phase (special cases) (Sg)
Connection closing (teardown phase) (C)
Shutdown phase (E)

AN

We can show the relation of those common
protocol phases with a state simple diagram:

Diagram 1. Generic protocol states

States shown in diagram 1 usually define the states
most common or proprietary protocols can find
themselves in. Some protocols do not use all states,
but most analyzed protocols can group their outputs
based on the shown generic state diagram. While
reversing, if we suddenly get a different output that is

different from the rest of the output sentences, we can
assume that we entered a different protocol state. We
can analyze states in the same way as we analyzed
outputs the only difference is that we have to acquire
multiple outputs per same state like multiple boots,
starts, teardowns and errors so we can ascertain
patterns from grouped states. That way, with fully
identified patterns with every protocol state we can
recreate the protocol state machine and make an
interconnecting service or the audit we are doing can
be more complete. Of course, reversing the protocol
states and the meaning of specific fields in the output
doesn’t need to be full or complete, it is only
important that the reverse either finds enough flaws
that state the protocol is not fit for use, or enough
knowledge that we can create our interconnecting
service.

5. Automating the process into an algorithm

From the concepts outlined in this paper, we
can simply pack the methods into an automatic
algorithm. Since manual analysis does not require any
automatic input or output our suggested procedure can
be done manually. Packing the methods into an fully
automatic algorithm is mostly straight forward and
can be used effectively in combinations with fuzzers
or as a part of a fuzzer and other tools to help with
protocol security testing. If we are analyzing software,
input data and output data collection and insertion can
be automated with ease. If we are analyzing hardware
objects, the problem is with the input data is internally
regulated like timestamps. Internal hardware tapping
is difficult because it usually requires the modification
to the object or complex tapping or directly soldering
taps to data buses. If we wanted to automate a great
deal of the process we would use the following
algorithm:

First we need to tap into all inputs and outputs in
the object, so that we are able to send and receive data
from the object. Next, we input all static starting data
shown in part 2 of this paper, including clock
synchronization from the analyzed object to facilitate
easier variable and timestamp identification. After
that, we choose a distinct set for our input variables of
input data, and request multiple outputs. Our
recommendation is 10, 20 or more. After that, we
simply do a vertical difference based on the outputs
we have, which helps us in identifying static data.
After that, we start testing all known encodings as
shown in part 2 with our input data variables. It is
helpful if our input data is unique and specific so that
the identification is simple. Searching the output
protocol sentence can done with standard string
searching algorithms. The different outputs that can't
be identified can be clustered into groups for analysis
as different states. The algorithm for pattern matching
can be applied multiple times on different states, in
order to ascertain the semantics of the outputs. Also,



the algorithms effectiveness is determined by the base
of known encodings and representations because if we
have a bigger base then we can identify the encoding
or representation which the creators of the protocol
used. Therefore we need to try and populate the base
with as much known algorithms as possible. Also if
we didn't get any senseful results, it is helpful that we
try to analyze the whole protocol in different endian
order, which is usually little endian order. Application
and optimization on multiple core processors is
simple, because string searching can be easily
parallelized.

6. Conclusion

In this paper we shown the general method which
can help with protocol reverse engineering. Since
most scripting languages like perl or ruby have most
encodings, hashing functions available in libraries,
and all functions are well documented we recommend
implementing the protocol dissector in a scripting
language. A simple dissector for protocol dumps
stored in files and for extraction of passwords from
example in part 3 can be done in perl using the
unpack and hex functions with ease. Also, protocol
dissectors can be written for popular applications like
Wireshark [2].

Also, with the rising popularity of internet services
and internet enabled devices, we believe that
independent security auditing of closed source
protocols and devices will become more and more
popular, because the users will want to know what
kind of device they are implementing in their network
and how will that device impact their whole network
security, which in a general picture will force the
developers to take interest into placing security as one
of the foremost concerns in their designs.

7. References

[17 http://lcamtuf.coredump.cx/newtcp/
(Accesed 10.6.2008)

[2] http:// www.wireshark.org/
(Accesed 10.6.2008)

[3] http://netcat.sourceforge.net/
(Accesed 10.6.2008)

[4] . www.tcpdump.org
(Accesed 10.6.2008)

[5]www.gnuplot.info

(Accesed 10.6.2008)

[6] RFC 1319

[7] RFC 1320

[8] RFC 1321

[9] FIPS 180-2

[10] RFC 1950

[11] http://labs.calyptix.com/haval.php
(Accesed 10.6.2008)




