
An Overview of Modern Software Development

Methodologies

Krešimir Fertalj, Marija Kati
Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia

{kresimir.fertalj, marija.katic}@fer.hr

Abstract. Business activities are rapidly changing

nowadays and there are increasingly complex
requirements set on programming solutions. That puts

traditional software development methods behind and

leads to the need for different approaches. Modern
approach is called agile. This paper presents the

process of software development and the methods that

are applied to the process. An overview and
comparison of traditional and modern methods of

software development is given. Finally, there are
some thoughts about modern research of software

development methods and their application.

Keywords. Software process, development

methods, agile development

1 Introduction

Software development process comprises some

key activities that cannot be avoided and should

be implemented in phases. These are analysis,

design, implementation, testing and maintenance.

Different methods that apply this process have

evolved so far. The sequence of given activities

actually constitutes the software development

life cycle (SDLC). Each method is characterized

by its own life cycle which, except for specific

techniques, makes the basis for major differences

between the methods. Different life cycles have

affected some basic aspects that have to be

considered discussing each method. Besides the

process, these are the structure of a project team,

documentation developed during the project,

practices applied by a method, software types

and tools that can be used.

First of all, this paper gives a short history of

development methodologies leading to the

modern, i.e. agile software development

methodologies. The following chapter presents a

comparison of the traditional and modern

methodologies. Four agile methodologies

(extreme programming, scrum, dynamic system

development methods and adaptive software

development) are presented and compared

according to the above mentioned criteria:

process, project team structure, documentation,

practices, software types and tools. Finally, there

is a conclusion about the new breed of methods

and contemporary research concerning them.

2 Why modern software

development methodologies?

2.1 The history of emergence of software

development methodologies

Numerous models for team and plan software or

application development have been used over

time. These are so called software development

methods or methodologies. According to Avison

and Fitzgerald [6], methodology is a collection of

procedures, techniques, tools and documentation

aids which will help system developers in their

efforts to implement a new information system.

In accordance with the conditions about 30 years

ago and at the same time when software

engineering was in inception, business activities

were not influenced by frequent changes. It was

logical that the development process should be

deterministic and predictable. Such models are

called traditional. A well known representative is

the waterfall model. The process progresses

linearly from analysis to the maintenance phase.

Project plan is created in the analysis phase and

all plans are strictly documented as well as

results from the design phase. Developers are

supposed to build the system according to the

design documentation. They are not supposed to

have contact with the end customer, which

means that customer’s requests can easily be

misunderstood.

Endeavouring to understand customer’s

requirements, new models evolved, such as

prototyping and the spiral model, which are

iterative. Iterative means to build functional

application in short cycles, based on incremental

development. Evolutionary prototyping, as part

of the spiral development model, tends to clarify

misunderstandings between customer and

developer through prototypes evaluated by

customers. This approach enables refinement of

the product in finite number of iterations.

Introducing the iterative and prototyping

approach as well as rapid application

development (RAD), has resolved some but has

also introduced some new problems in software

development. Iterative model has introduced a

segmentation of the system, but linearity and

predictability have remained applied in cycles.

Prototyping has improved communication with

the customer, while RAD has introduced fast

system delivery, trying to avoid changing

requirements.

The real modern methodologies are agile,

trying to solve problems by changing software

engineering approach. Traditional methodologies

will not be replaced with the new ones, but it is

necessary to rethink the conditions of software

development and choose an appropriate method.

2.2 Agile software development

methodologies

Although the emergence of agile methodologies

relates to the time before 2000, their expansion

was indicated in 2001 by the group of software

consultants and experts. They created the Agile

manifesto which recommends values and

principles common for all agile methods. The

most important values are [7]:

individuals and interactions over

processes and tools

working software over comprehensive

documentation

customer collaboration over contract

negotiation

responding to change over following a

plan;

It is easier to respond to conditions in the

dynamic global market if applying these values.

There are several items that need to be discussed

in the context of the new methodological

approach: process, project team structure,

documentation, practices, software types and

tools.

Process: Agile is focused on flexibility and it

is not linear and deterministic. Basically, it tends

to develop software in short time periods,

actually iterations, doing refinement and

reprioritization in every iteration. Iteration

produces a new version of software which means

that agile is incrementally oriented. It might

seem like this kind of developing software is

messy, because there is no fixed plan at the

beginning of the project, but that is not true. The

fixed plan does not exist, but the plan is

continuously updated as the project progresses.

Project team structure: Project teams have to

adopt different rules and apply different

practices. These arguments lead to the necessity

for a new team organization. For example, it can

be the case when people work in pairs and use

the same computer to solve difficult issues.

Documentation: Modern approach has

changed the way the documentation is

developed. The documentation is written

throughout almost all phases of the life cycle and

because of that it is subject to often changes. The

significance of documentation is definitely

reduced and therefore some agile methods

produce little documentation. The most

important fact which replaces this absence is the

human being and ability to communicate and

share knowledge.

Practices: There are sets of practices that

agile methods use. It is important to state them

because they refer to the process itself.

Software types: Agile methodology consists

of methods that basically apply to different kinds

of software, e.g. commercial, research, web or

some other type. Suggestions as well as

experiences concerning the most used methods

are presented later in this work.

Tools: Agile movement does not necessarily

require tools. It is possible to be agile and

employ no more technology than a command

line interface, a unit tester and some index cards

on which to write requirements [13]. However, a

lot of tools have evolved in order to accelerate

the process cycle. Agile teams focus their

investments on tools that the whole team can use,

layering agile project management tools on top

of testing tools on top of build management tools

on top of software configuration management

tools [9].

2.3 The comparison of the traditional and

modern methodologies

Agile methods, with values and practices

together, bring a new way of developing

applications. However, a single methodology

cannot work for the whole spectrum of different

projects. Project management should identify the

specific nature of project at hand and then select

the best applicable development methodology

[1]. Mostly, experts in this area share the same

opinion that there is a need for both, traditional

and modern methodologies, as there is no one-

size-fits-all software development model that

suits all imaginable purposes [1].

The main difference between agile and

traditional approaches is that traditional methods

tend to develop working software at the end of

the process, while agile do it continuously, with

support of continuous integration and test driven

development. Test driven development is so

important that removing a defect is the only type

of work that takes priority over any new features,

functionality or production [3]. Table 1 describes

the differences between traditional and modern

methodologies according to previously defined

criteria.

Table 1. A comparison of traditional and modern methodologies

Process Practices Project team
structure

Documentation Software types Tools

Traditional
approach

Heavyweight:
defined plan in
the beginning of
the process
which is frozen
at that point –
plan driven;
Linear and
predictive.

Not defined.
Construct
gradually and
deliver once.

Distributed or
collocated
teams. Mostly
big teams with
strictly defined
roles.

Well
documented.
First document
then develop
according to
documents that
were frozen at
some point of
time.

Any type, but
with an
increased risk;
engineering and
scientific
software types;
Big or small
projects.

Different tool
for each
phase, with
later
integration.
Eclipse,
Toad,
Microsoft
Project.

Modern
agile

approach

Lightweight:
No frozen plan,
but planning
throughout the
cycles –
planning and
test driven;
Non-linear and
adaptive;
Incrementally
oriented

Seven basic [3]:
self-organizing
team, deliver
frequently, plan
to learn,
communicate
powerfully, test
everything,
measure value
and clear the
path

Rather small
than big
teams. Rather
collocated
than
distributed
teams.

Little or no
documentation.
Focused on
tactic
knowledge –
sharing
knowledge
between team
members.

Rather business
software types
with variable
requirements.
Rather small
than big
projects.

Integration
tools from the
beginning of
the process.
Microsoft
Visual Studio
Team
System.
Spreadsheets
and wiki.

3 The most known agile

methodologies

Agile methods that appeared first are eXtreme

Programming, Crystal methods, Adaptive

Software Development, Scrum and Dynamic

Systems Development Method. Feature Driven

Development, Lean Development, Open Source

Software Development and others evolved

afterwards. Four of them, the most frequently

used, are discussed below.

3.1 Extreme Programming – XP

Extreme programming designated the expansion

of agile software development methodologies. It

has evolved from the traditional planning

approach moving towards an adaptation

approach. First of all, it is focused on the

developer who makes technical decisions, while

the customer makes business decisions. This is

achieved by intensive customer and developer

interaction. Extreme programming introduces a

new way of applying some existing practices. XP

strives for simplicity and not investing into

future unless immediately needed [8].

XP life cycle is based on the evolutionary

prototyping and consists of six phases:

exploration, planning, iterations to release,

productionizing, maintenance and death.

The process begins with the exploration phase

where the customer writes out the story cards and

iteratively continues to the planning phase.

Developer and customer both use story cards.

According to them, developers plan the time

needed for their realization and customers do the

prioritization and reprioritization. Development

is time boxed and performs in increments from

fifteen minutes to a couple of hours. It allows for

reprioritization within a time box.

XP as a high-discipline methodology that

calls for tight adherence to strict coding and

design standards, strong unit test suites that must

pass at all times, good acceptance tests, constant

working in pairs, vigilance in keeping the design

simple, and aggressive refactoring [4]. XP is a

test driven method and the developer is

responsible for unit tests, while the customer is

responsible for acceptance or functional tests.

Unit tests verify the functionality of units of code

like classes or components in object oriented

development. XP is considered one of the

lightest of the Agile approaches for managing the

projects and therefore there is lot of research on

blending these methods with the other agile

methods such as Scrum, DSDM or Crystal

methods.

Recently, XP has been used in combination

with the other agile methods such as Scrum or

ASD. A lot of case studies have been done in the

area of XP applicability on web projects showing

that XP can be adopted for such projects, but that

is not trivial and it can easily fail if not adopted

well [14].

3. 2 Scrum

The Scrum method has evolved by recognizing

that fundamental empirical changes cannot be

solved with the traditional approach. The term of

Scrum appeared in 1986 when H. Takeuchi and

I. Nonaka observed that small, cross-functional

teams are often the best performers, and likened

these teams to the Scrum formation in rugby

[10]. That is adaptive, fast, self-organizing

method focused on project management

originating from Japan. It does not include

specific system implementation techniques.

Scrum life cycle is based on time boxed

development and consists of three phases: pre-

game, development and post-game. In pre-game

phase there is a constantly updated list of

requirements named Product Backlog.

Development phase is an agile part of Scrum

method [1] in which the system is being

developed throughout iterative cycles so called

30 Day Sprints. Integration, testing and other

activities required for system delivery are

accomplished in the post-game phase.

Because it is concentrated on management,

this method is successfully used in combination

with extreme programming which is technically

oriented. It is better documented than XP, but

still not too much. There is a person - technical

writer who is responsible for documentation

writing. He or she follows the development from

scratch and keeps an eye on the big picture - that

is, how all the pieces fit together [10].

Schwaber and Beedle [1] identify two types

of situations in which Scrum can be adopted: an

existing project and a new project. These projects

are usually small, but it is possible to apply it in

big structures if teams are reduced and isolated.

According to the recent research on project for a

complex Integrated Library System (ILS) similar

to a vertical market ERP system, where over 50

developers from U.S., Canada and Russia were

involved, the Scrum methodology was used [12].

This practice showed that distributed teams can

be very successful if they follow the Scrum

principles. Some of the best practices for

distributed Scrum observed on the ILS project

are the daily Scrum meetings of all developers

from multiple sites, hourly automated build from

one central repository and seamless integration

of XP practices like pair programming with

Scrum [12].

3.3 Dynamic Systems Development

Method – DSDM

Non-profit organization DSDM Consortium has

developed a framework for RAD development

because of high increase of various development

tools what had changed the development process.

The main idea is to determine the time and

resources and subsequently adapt the system

functionalities, so that it would not be done more

than could be done.

DSDM life cycle is based on evolutionary

prototyping and consists of five phases:

feasibility study, business study, functional

model iteration, design and build iteration and

implementation. The first two phases are

sequential and done only once, while the others

are iterative and incremental [1].

DSDM is focused on business processes and

therefore is successfully used with XP that puts

emphasis on programming. Both DSDM and XP

include continuous user involvement resulting in

more precise user requirements. Combining the

two, gives a controlled framework with robust

programming practices [5]. In an organisation

already familiar with Scrum but struggling to fit

development into a more traditional corporate

culture, a blending of the two approaches might

be the best solution [5].

DSDM is also better documented than XP

because each life cycle phase produces specific

documents, but still the documentation is absent.

This method is appropriate for small and large

projects where the accent is on speed. When

considering application domain, Stapleton [1]

observes that DSDM is more easily applied to

business systems than to engineering or scientific

applications.

3.4 Adaptive Software Development –

ASD

ASD has evolved as an attempt to solve the

problem of developing complex and large

systems where is necessary to integrate markets,

organizations, development and customers.

Fundamentally, ASD is about “balancing on the

edge of chaos” – its aim is to provide a

framework with enough guidance to prevent

projects from falling into chaos, but not too

much, which could suppress emergence and

creativity [1].

ASD life cycle is based on evolutionary

prototyping and consists of three phases:

speculate, collaborate and learn. Speculation is

the discussion of what is to be done in an

iteration. Collaboration means component based

development through adaptive development

cycles. A review and a preparation for the next

phase are being done in the learning phase. Each

iteration, called adaptive cycle, has the following

properties [8]:

it is mission-driven, based on the project

vision;

it is component rather than task-based

(result-driven);

it is limited in time;

each time-box is only one iteration in a

larger set of iterations;

it is risk-driven;

it is change-tolerant.

This method is appropriate for complex and

big systems that are influenced by often changes,

but it might be most effective in combination

with other methods. For example, because ASD

is focused on collaboration practices, it is

successfully used with XP which puts emphasis

on software development practices.

ASD uses a new programming approach to

develop software that can adapt to an

environment of rapidly changing user

requirements. This is adaptive programming as a

special case of aspect oriented programming. In

contrary to object oriented programming, which

encapsulates data and functionality in classes

where applications may suffer from frequent

changes under class hierarchy, adaptive

programming encapsulates class hierarchies

using traversal strategies and visitors so enabling

the applications to have an interface to the class

hierarchy [2].

4 The comparison of agile

methodologies

Although all agile methods basically apply

some common concepts such as intensive

communication with the customer, test driven

development, iterative and incremental

development, and minimalistic documentation,

Table 2 shows differences among some of them.

Not all of them are applicable to the same project

types, but they can be combined, allowing for

wider usage.

There is some research indicating that

methodologies may learn from each other. D.

Riehle [8] has done the research comparing ASD

and XP on the value system; actually a system of

beliefs, what constitutes the fundamental aspects

of software development. He has made the basis

for comparing further methodologies with ASD

and XP and with each other. D Strode [11] has

also performed research on combinations of agile

methods. She proposed DSDM as a framework

that can be used with any other agile method, XP

with Scrum and Crystal, and that Scrum, ASD

and Crystal can be used with any techniques as

long as they achieve the goals of the

methodology.

The agile methodology is definitely the future

of software development, and as Steve

McConnell said: “The future of Agile with a

capital "A" is the same as the past of Object

Oriented or Structured“.

Table 2. A comparison of agile methodologies

 Process Project team
structure

Documentati
on

Practices Software types Tools

XP (Kent
Beck, 1999)

Evolutionary
prototyping
– iterative
and
incremental;
short cycles;
time boxed;
test driven

Small to
medium
collocated
teams from 3
to 20
members; 7
possible roles

Absence of
documentatio
n is replaced
with tactic
knowledge
and different
CASE tools

14 practices; The
most important
are: pair
programming,
test-driven
development,
simple design,
coding standards
and on-site
customer

Object oriented
projects; web
applications

Refactoring tools for
Java, C++,
relational
databases, object
database,
concurrent systems.
CM tools for fast
builds; unit testing
framework e.g.
Junit, HttpUnit;
planning tools e.g.
Xplanner

Scrum (Ken
Schwaber,

1999)

Evolutionary
delivery
(time boxed
– 30 day
Sprint);
iterative and
incremental;

Small teams,
but recently
applied to big
distributed
teams; 6
possible roles,
scrum master
is the most
responsible –
as project
manager

Each iteration
produces a
document; it is
developed
from the
bottom up;
written by
technical
writer; it is not
emphasised

Product Backlog,
effort estimation,
Sprint, Sprint
planning meeting,
Sprint backlog,
daily scrum and
Sprint review
meeting

Object oriented
projects; web
applications;
business
oriented
applications

Integrated suite of
lifecycle tools e.g.
Conchango Scrum
plug-in for Microsoft
Visual Studio Team
System; planning
tools e.g. Xplanner;
lifecycle
management tools
e.g. ScrumWorks

DSDM
(DSDM

Consortium,
1995)

Evolutionary
prototyping
(time
boxed);
iterative and
incremental;
test driven

Small teams
from 2 to 6
members; 15
possible roles:
ambassador,
visionary,
advisor…

Each iteration
produces
specific
documents,
but not
necessarily

9 practices; some
of them: active
user involvement,
empowered
teams; frequent
deliveries;
continuous
testing;

Large-scale
enterprise
systems; any
analysis, design
and build
techniques;
eBusiness,
eCommerce

CASE tools, rapid
development tools,
suite of lifecycle
tools for Eclipse
e.g. composer plug-
in (new)

ASD (James
A. Highsmith

III, 2000)

Evolutionary
prototyping
(time
boxed);
iterative and
incremental;
risk driven;

Small teams,
but structure
not completely
defined; no
need for
collocated
teams; some
roles:
executive
sponsor,
customer,
facilitator

Each iteration
produces
specific
documents,
but not
necessarily

Not focused on
practices, but
there are some:
component based
development,
customer focus
group reviews

systems
that involve
interaction with
an external
environment
that are hard to
model
accurately;
adaptive
programming
approach

Project
management and
collaboration tools,
rapid development
tools; Demeter tools
for aspect-oriented
programming

5 Conclusion

Agile methods provide different ways of

developing software. In lots of cases they proved

to be more successful than traditional ones, but

the problem is in increased emergence of

different methods, and still there is not sufficient

research on their application. Therefore, they are

often exposed to criticism, especially due to

absence of documentation and due to their

flexible process structure.

This paper gives a brief overview of agile

methodology as a whole comparing it with the

traditional one, and also a brief overview of four

agile methods and their mutual comparison. A

brief comparison between agile and traditional

approaches demonstrates opposite directions

within all of the compared criteria. A comparison

of agile methods proves similarity in

evolutionary development, small teams, and

reduction of documentation. On the other hand,

software development techniques and supporting

software tools make the difference between these

methods.

6 References

[1] Pekka Abrahamsson, Outi Salo, Jussi Ronkainen

& Juhani Warsta: Agile software development

mehods: Review and Analysis, VTT Publications

478, 2002

[2] Adaptive programming, available at

http://www.datakon.cz/datakon04/d04_it_kroha.p

df, Accessed: 10th 2008

[3] Mishkin Berteig: The Seven Core Practices of

Agile Work, available at

http://www.agileadvice.com/archives/2006/09/pr

actices_of_ag.html, Accessed: 10th June 2008

[4] Alistair Cockburn: Agile Software Development,

Addison Wesley, Boston, USA, 2000

[5] DSDM Consortum, available at

http://www.dsdm.org/, Accessed: 10th June 2008

[6] Juhani Iivari, Jari Maansaari: The usage of

systems development methods: are we stuck to

old practices?, Information and Software

Technology, 1998, Linnanmaa, Finland, 1998,

pp. 501-510

[7] Manifesto for Agile Software Development,

available at http://agilemanifesto.org/, Accessed:

10th June 2008

[8] Dirk Riehle: A comparison of the value systems of

adaptive software development and extreme

programming: how methodologies may learn

from each other, Addison-Wesley Longman

Publishing Co., Inc. Boston, MA, USA, 2001,

pp. 35-50

[9] Carey Schwaber, Gene Leganza, David D'Silva:

The Truth About Agile Processes, available at

http://www.forrester.com/Research/Document/0,

7211,41836,00.html, Accessed: 10th June 2008

[10] Christine M. Sigman, Adapting to Scrum:

Challenges and Strategies, available at

http://www.stc.org/intercom/PDFs/2007/2007070

8_16-19.pdf, Accessed: 10th June 2008

[11] Diane Strode: An analytical comparison of five

agile methods and an investigation of their target

environment, available at

http://www.slideshare.net/StrDia/agile-methods-

101-bar-camp-2007-196957, Accessed: 10th June

2008

[12] Jeff Sutherland, Anton Viktorov, Jack Blount,

Nikolai Puntikov: Distributed Scrum: Agile

Project Management with Outsourced

Development Teams, 40th Annual Hawaii

International Conference on Software Systems,

Big Island, Hawaii, 2007, pp. 274a-274a

[13] Jack Vaughan: Agile tools for agile development,

available at

http://searchsoftwarequality.techtarget.com/news/

article/0,289142,sid92_gci1287345,00.html,

Accessed: 10th June 2008

[14] XP123 - Exploring Extreme Programming,

available at http://www.xp123.com/, Accessed:

10th June 2008

