
Possibility of applying fuzzy logic in the e-Learning

system

Dragan Perakovi , Vladimir Remenar, Ivan Grgurevi
Faculty of Traffic and Transport Sciences

University of Zagreb
Vukeli eva 4, 10000 Zagreb, Croatia

{dragan.perakovic, vladimir.remenar, ivan.grgurevic}@fpz.hr

Abstract. The four-year application with sustainable

development of the e–Learning system at the Faculty

of Traffic and Transport Sciences resulted in the
possibility of applying the aforementioned in various

processes, which appear in the education of the

technologists in traffic and transport sciences, based
on the Bologna System and the previous higher

education processes. Almost 10,000 seminar paper
topics have been turned in using the module which

monitors the development of seminar papers. In order

to provide sustainable monitoring of the development
of a seminar paper and to avoid plagiarisms,

searching through seminar paper topics has to be of

the highest quality which is extremely complicated
and demanding. Methods that have been used so far

have given either incomplete or incorrect results,

especially when an incorrect concept has been input.
Searching requires the usage of fuzzy logic. Even

though there is a vast number of fuzzy logic

algorithms, none of them are adapted to Slavic
languages or terms which feature diacritical marks. A

special methodology has been developed for

searching through the e–Learning system of the
Faculty of Traffic and Transport Sciences. Based on

this methodology a search algorithm which uses one’s

own created word database has been implemented.

Keywords: e-Learning, fuzzy logic, search

1 Introduction

One of the possibilities provided by the

information systems is the possibility of

searching the data. A vast amount of data

manipulated by the information system requires a

good search module that has to be capable of

correcting the users’ mistakes, finding the right

and relevant information and present it in an

intuitive manner. The search module also has to

have the possibility of determining the relevance

of the information in order to assign them higher

or lower weight value in relation to all the other

information in the information system.

The Learning Management System (LMS) of

the Faculty of Transport and Traffic Sciences has

until now supported the development of about

10,000 seminar papers. The search of these

papers without a good search module is almost

impossible, and even if it is possible it is very

time consuming when the right information or

document has to be found.

In order to make it easier for the teaching

staff and the students to find the relevant

information, using the phonetic and distance

algorithms, a methodology has been developed,

and based on it, also a fuzzy logic algorithm for

searching the LMS system of the Faculty of

Transport and Traffic Sciences.

2 Phonetic algorithms

Through the history of researching phonetics and

computers, a rather large number of phonetic

algorithms have been developed that compare

words and terms. The phonetic algorithms have

been used for different purposes, ranging from

the tools for spell-checking to antivirus tools and

tools for studying and comparing the DNA

sequences.

The algorithms for the fuzzy logic

comparison of words appeared in the 1980s. The

concepts of fuzzy logic for searching are mostly

based on the conversion of characters into

numerical codes or on the “distances” between

two terms.

In spite of a rather large number of phonetic

algorithms, for the research and development of

the search methodology for the LMS

requirements at the Faculty of Transport and

Traffic Sciences, the possibilities of two

algorithms have been used. The drawback of the

majority of the search and comparison

algorithms lies in the possibility of using

exclusively the English language and complete

absence of diacritical marks. The usage of these

algorithms results in completely meaningless

search results and their usage is therefore

insufficient. Thus, e.g. using the Soundex

algorithm to search for the word “promet” will

return the following as the most relevant results:

“prometni”, “pyramid” and “prometnice”. If one

makes a mistake and inputs “rpomet” as the

searched item, the algorithm returns the

following as the most relevant results:

“ravnoteža”, “ravnoteže” and “refundiranje”. In

1985the Daitch-Mokotoff Soundex (D-M

Soundex) algorithm was designed, which greatly

improved the quality of the comparisons of terms

for the Slavic languages. However, it still

features an insufficient knowledge of the

diacritical marks.

For the purpose of term comparison, along

with the mentioned algorithms, usually the

algorithms Metaphone, Double Metaphone,

various “distance” algorithms and q-gram

algorithms are used.

2.1 SoundEx algorithm

Soundex algorithm was designed and patented in

1918. It was patented by Robert Russel and

Margaret Odell. The Soundex is currently the

best known algorithm and is used in numerous

database management systems, and it has also

been implemented in almost all the versions of

programming languages.

The idea of the Soundex algorithm results

from the fact that in the English language the

words with minor differences in spelling are

pronounced almost identically, after which the

name Soundex was given, i.e. “Sounds like”.

A word encoded by the Soundex algorithm

contains the first letter followed by three

numerical characters. The first letter is identical

to the first letter of the encoded word and the

numerical characters are the word consonants.

Phonetically identical consonants share the same

number, and so e.g. labials such as B, F, P and V

are assigned the numerical value 1. Consonants

and characters “w” and “y” are not encoded, or

encoded only if they occupy the first place in a

word. Characters “c”, “g”, “j”, “k”, “q”, “s”, “x”

and “z” are assigned the numerical value of 2,

characters “d” and “t” the value of 3, character

“l” the value of 4, characters “m” and “n” the

value of 5 and the character “r” is assigned the

value of 6. If two adjacent characters have the

same numerical value, all except for the first

character are left out. Eventually, the Soundex

encoded word is formed by taking the first

character and adding the three numerical signs,

and if the word is shorter than 4 characters, the

numerical values of 0 are added.

For instance, the word “promet” has the

Soundex value “P653” the same as the word

“pormet” since the letter “o” is not encoded at

all. Whereas e.g. the word “sustav” will be

assigned the value “S321” which are completely

different values.

A big disadvantage of the Soundex algorithm

is in case the error occurs on the first place in the

word then the result of its application will be

completely wrong.

2.2 Difference algorithm

The addition to Soundex algorithm with the

possibility of defining the word “similarity” is

the Difference algorithm.

The Difference algorithm is in principle

identical to the Soundex algorithm, i.e. the

principle of comparing the words functions

according to the same principles. The difference

between Soundex and the Difference algorithm

lies in the possibility of defining the weight value

of “similarity” in the range from 1 to 4 in

increments of 1. The setting of the Difference

algorithm parameter to 1 allows wide search, i.e.

comparison of words from those completely

different to those almost identical ones, whereas

setting the parameter to the value of 4 will result

in the search of only the most similar words.

2.3 Levenshtein distance algorithm

 In the theory of information and the computer

science the Levenshtein distance is an algorithm

for the calculation of the differences between

two values. By using the calculation of

differences between two words the Levenshtein

distance algorithm calculates the number of

differences between two words, which includes

the differences such as inserting, deleting or

switching the character places.

The application of the Levenshtein distance

algorithm in the programming language for

calculating the number of substitutions includes

the usage of (n+1) x (m + 1) matrices where n

and m are the lengths of two strings of

characters. The algorithm passes through several

steps in calculating the “distance”, and in order

to explain how the algorithm operates, the

following expressions will be used:

1. n – length of the first word;

2. m – length of the second word;

3. s – the first word;

4. t – the second word;

5. i, j – index of the element;

6. s_i – mark of the word s of index i;

7. t_j – mark of the word t of index j;

8. d[i, j] – matrix;

9. dist – total distance;

10. cost – distance.

The first step sets “n” and “m” variables in

the dependence of the word length “s” and “t”. If

“n” is variable 0 then dist = m, if “m” is variable

0 then it is dist = n. Matrix “d” changes

according to variables “m” and “n” i.e. d[n,m]. In

the first row the values from 0 to n are entered,

and in the first column the values from 0 to m. A

loop is used to pass through every character of

the word “s” and the loop is used to pass through

every character of the word “t”. If “s_i” equals

“t_j” the value “cost” is set to value 0, and

otherwise to the value 1. The current position in

matrix d[i,j] is set at the calculation value of the

least value of d[i-1,j]+1, d[i, j-1]+1, d[i-1, j-

1]+cost.

The calculation of the total distance (dist) is

on the last place in matrix d[n,m].

3 Model of applying fuzzy logic in

searching

The drawback of the phonetic algorithm that

could be used in the Croatian language even

including the usage of diacritical marks makes a

simple and efficient search of large amounts of

data almost impossible.

The designed model and the fuzzy logic

algorithm of data search in the LMS system of

the Faculty has been developed on the principle

of “off-line” comparison of the required term

with the corpus specially created for the Faculty

LMS needs. The corpus has been created and put

into the database, and includes the terms and the

number of their occurrences.

3.1 Word index

As mentioned earlier, a corpus was created for

the needs of developing the fuzzy logic method

in searching. Since the created corpus includes

also other parameters apart from the word itself,

the correct expression is the word index.

The need to create one’s own word-base lies

in the fact that some words are used more often

than others. Thus, e.g. the word “promet” will

occur more frequently in the vocabulary of

traffic technologists than in the vocabulary of a

doctor of veterinary medicine, for example. The

more frequently used words have greater

significance (weight value, ponder) and are thus

marked as more relevant for the needs of

comparison with the required term.

Indexing of almost 10,000 seminar papers and

other information as part of the LMS system of

the Faculty is a very demanding process for the

hardware equipment. However, since this

module was subsequently introduced into the

operation of the existing LMS system, the initial

indexing of all records needs to be performed

only once, i.e. somewhat prior the very search

algorithm starts running. After starting this

module, every subsequently input information

will be indexed at the moment of input and no

further indexing of the records will be necessary.

Figure 1. Indexing algorithm model

Figure 1 shows the model of data indexing in

the LMS system of the Faculty. Every record is

input and all the special marks deleted. If, after

all the special marks have been deleted, the

checking shows that there are no other marks, the

next record is taken. If there is a textual record,

the entire record is divided into separated words.

Every word for itself is checked. The check

consists of checking the length of the word

which must not be less than 3 characters and

should not be found in the list of words that are

not indexed such as words: “ili” (or), “ako” (if),

etc. The model of the algorithm checking words

is presented in Figure 2.

Figure 2. Algorithm model checks the words

If the word matches the indexing criteria, its

existence in the indexed word base is checked. If

the word does not exist, it is added in the base

with the repeat value 1. If the word exists in the

indexed word base, the value +1 is added to the

current number of repeating of this word.

The word index contains almost 40,000

words, and the interesting thing is that the ten

most frequently used words are: “prometa”,

“prometu”, “sustava”, “tehnologija”, “mreža”,

“mreže”, “Zagreb”, “Internet” and “Wikipedia”.

3.2 Fuzzy logic algorithm in searching

Since there is no developed fuzzy logic

algorithm for the Croatian language, for the

needs of the paper, i.e. search of the LMS system

of the Faculty of Transport and Traffic Sciences,

a methodology and fuzzy logic algorithm have

been developed based on it for data search in the

LMS system of the Faculty.

The algorithm is based on the comparison of

the searched term and the word index, and uses

the known phonetic algorithms Soundex,

Difference and Levenshtein distance algorithm

by providing the possibility of searching and

correction of the Croatian words with and

without diacritical marks.

There are several reasons why the

combination of the three previously mentioned

algorithms has been chosen. Soundex and

Difference algorithms have been chosen because

of satisfactory results when compared to other

language specific algorithms such as DM –

Soundex and Metaphone. A major advantage of

Soundex and Difference algorithms is the fact

they are integrated into SQL server application

which provides a very reliable performance.

Robustness, relatively simple implementation

and insensitivity to language area are the most

important reasons for using Levenshtein’s

distance algorithm.

Start

Split search term into

words

No words

Word exits

For i to n of

words

FindCorrectWord

Is last word

CreateSQLQuery

Load results

Sort by relevance

Show results

End

Yes

No

Yes

No

Yes

No

Figure 3. Search algorithm model

The search algorithm model does not differ

much from the other already known search

algorithms. The searched term, which can consist

of one or several words, is divided into separate

words. If no words have been input, the

algorithm ends. If there are input words, each

word is checked for its presence in the word

index. If the word exists in the word index, it is

considered that the word has been correctly

input. If the word has not been correctly input it

is necessary to find the correct word. The

essence of the fuzzy logic search algorithm lies

in the “FindCorrectWord” procedure. The

algorithm finds the phonetically closest word and

corrects the incorrect user’s input. Then the SQL

query towards the database is generated and the

results from the database are sorted according to

their relevance. Since it is not possible to find

links between the students’ papers, the only

method of determining the relevance is according

to the number of occurrences of the searched

term in the data from the database. The

assumption is that the more relevant information

is where the searched term occurs more times.

Finally, the results are presented to the user.

The most relevant part of the developed

algorithm is contained in the correction of the

incorrectly input term. The developed

methodology is presented in Figure 4.

Figure 4. Model of correction algorithm of the

searched term

Before the search it is necessary to check the

existence of the searched term, and if the

searched term does not exist in the word index, it

means that the user may have made a mistake

while inputting the term. In that case it is

necessary to correct the user’s input.

To find the correct term the use of fuzzy logic

is necessary, and this includes the phonetic

algorithms. In order to find the correct term the

algorithm searches and compares the input term

with the word index and finds the correct term.

In the first step, the length of the searched

term is determined. This is followed by the word

search using the Soundex algorithm that will

yield best results in case the searched term is in

the English language. The research has found

that the Soundex algorithm shows poor

performance in searching for terms in the

Croatian language so that it is necessary to

expand the search by the Difference algorithm

setting the “similarity” parameter to the value of

3 which sufficiently expands the results.

Since the largest number of input mistakes is

in a single character only, i.e. either a character

has been missed or one character more has been

input, or two characters have been switched, the

algorithm defines to search the words with one

character more or one character less than the

searched term.

If the number of the results is greater than

100, it is necessary to limit the number of the

found terms to the 100 most frequently used

terms so as to make the algorithm hardware-

efficient, and therefore also fast.

For each of the found terms the “distance”

from the original term is determined by means of

the Levenshtein distance algorithm. The

maximum possible distance is set to the value of

10 and the “distance” for every term is

determined. If the calculated “distance” is lower

than the current one the calculated value is set as

the new minimal “distance”, and the word for

which it has been determined that it has the

minimal “distance” is taken as the correct term.

When all the words from the word index are

checked, the procedure yields as the result the

word which has minimal distance from the

searched term, and in case several words have

equal distance value, the word with greater

number of occurrences is assumed to be more

relevant and is therefore taken as the end result

of the procedure.

4. Further development and

conclusion

The aim of the development of the described

algorithm was an efficient search of the Faculty

of Traffic and Transport sciences’ e – Learning

data base. The results of using the algorithm

justify the research and its implementation. As

the algorithm is based on word corpus in which

terms have assigned weight, it is the most

efficient in specific areas. Algorithm can also be

adapted and used in a wider area which enables

further scientific research in that area.

Although the developed algorithm is more

than satisfactory, and the search results

extremely good, there are possibilities for

improvements and upgrading of the algorithm.

An additional possibility in searching the

terms by means of the LMS system could be the

new form i.e. structure of submitting seminar

papers at Faculty of Transport and Traffic

Sciences, that would contain two elements of the

scientific and professional papers: the abstract

and the key words. Like the scientists who

submit their scientific papers by submitting

abstracts first, providing the key words in order

to classify them into a certain group of topics, the

students would also use this form.

When writing seminar papers (optionally –

diploma papers) the students and mentors should

take care of adequate key words so that the LMS

system would contain papers whose key words

actually do represent a certain student paper. The

mistakes in the selection of key words have

resulted in difficulties in subsequent search of

papers in a certain area i.e. papers on a certain

topic. The mentioned possibility and expansion

of the existing LMS system, taking into

consideration what has been said before, would

be in the function of eliminating plagiarism and

preventing multiple submission of the same or

similar topics, and the students would be

additionally instructed about the form of writing

scientific and professional papers.

Although the algorithm has the possibility

now of finding words with the same root, e.g.:

“sustav”, “sustava”, “sustavu”, it is still

necessary to upgrade the system in order to

provide the possibility of recognizing the words

of the same root (lemmas), such as:

„informacija“ and “informacije”.

A very useful possibility that needs to be

implemented is the search of related data. For

instance, the system would learn over time and

with the search of the term “inteligentni” it

would search also the related terms “inteligentni

sustav”, “inteligentni transportni sustav” and

similar. Of course, all searches of the related data

would have lower relevance than the exactly

searched term. Moreover, it is necessary to

develop an algorithm for sorting the search

results according to the relevance of the searched

term and according to the place of the word in

the term.

Currently the algorithm operates in the “off-

line” mode, i.e. it requires the word index

(vocabulary, corpus) so that it could feature the

decision-making capability by means of phonetic

algorithms. The use of phonetic algorithms on a

larger number of terms that have to be compared,

in case of extreme load on the system, may be

very hardware-demanding. In order to avoid the

usage of the word index and the indexing

requirement of all the records in the database, it

will be necessary to develop an algorithm that

will know all the grammatical rules and based on

these provide the possibility of correcting the

incorrect terms.

5 Literature

[1] Baeza-Yates R., Navarro G.: Text retrieval:

Theory and practice, 12th IFIP World

Computer Congress, Elsevier Science, 1992,

pp. 465-467

[2] Damerau F.: A technique for computer

detection and correction of spelling errors,

Comm. Of the ACM, 1964, pp. 171-176

[3] Levenshtein V.: Binary codes capable of

correcting deletions, insertions and reversals,

Sov. Phys. Dokl, 1966, pp 707-710.

[4] Levenshtein V.: Binary codes capable of

correcting spurious insertions and deletions of

ones, Problems of Information Transmission,

1965, pp. 8-17.

[5] Navarro G.: A Guided tour to approximate

string matching, ACM Computing Surveys,

Chile, 2001, pp .31-88.

[6] Navarro G., Baeza-Yates R.: A hybrid

indexing method for approximate string

matching, Journal of Discrete Algorithms,

2002, pp. 205-239

