

Dynamic Data Access Object Design Pattern

(CECIIS 2008)

Zdravko Roško, Mario Konecki

Faculty of Organization and Informatics

University of Zagreb

Pavlinska 2, 42000 Varaždin, Croatia

zrosko@yahoo.com, mario_konecki@yahoo.com

Abstract. Business logic application layer accessing
data from any data source (databases, web services,

legacy systems, flat files, ERPs, EJBs, CORBA

services, and so forth) uses the Dynamic Data Access

Object which implements the Strategy[1] design
pattern and hides most of the complexity away from

an application programmer by encapsulating its

dynamic behavior in the base data access class. By

using the data source meta data, it automates most of

the functionality it handles within the application.

Application programmer needs only to implement
specific „finder“ functions, while other functions such

as „create, store, remove, find, removeAll, storeAll,

createAll, findAll“ are implemented by the Dynamic

Data Access Object base class for a specific data

source type..

 Currently there are many Object Relational
Mapping products such as Hibernate, iBatis, EJB

CMP containers, TopLink, which are used to bridge

objects and relational database. Most of the time this

approach (Object Relational Mapping) makes one

more unnecessary layer of the complexity. Dynamic
Data Access Object helps application programmers to

avoid the usage of the Object Relational Mapping

when there is no benefit of using it. Dynamic Data

Access Object is an implementation of „pass

through“ instead of Object Relational Mapping

application behavior at the data access layer.

Keywords. Strategy, Data Access Object,

Sovereign Value Object, EJB, Value List

Handler, Result Set, Object Relational Mapping,

Caching, Meta Data, Transaction, Connection,

Business Object, Facade.

1 Introduction

This paper presents a pattern that help to desing the

data access layer for any data source (not just

relational) such as CICS, JMS/MQ, iSeries, SAP,

Web Services, and so forth. DDAO is an

implementation of the Strategy design pattern [1]

which defines a family of algorithms, encapsulate

each one, and make them interchangeable through an

interface.

Having many options available (EJB, Object

Relational Mapping, POJO, J2EE DAO, etc.) to use

while accessing a data source, including persistent

storage, legacy data and any other data source, the

main question for development is: what to use to

bridge the business logic layer and the data from a

data source ? Assuming that the data access code is

not coded directly into the business logic layer (Entity

Bean, Session Bean, Servlet, JSP Helper class, POJO)

to avoid tight coupling to the data source, the

Dynamic Data Access Object (DDAO) is an option to

use if one needs to avoid XML configuration,

complex environment setup, unnecessary code

redundancy.

If the data source get changed during the life time of

an application, there is no need to change the business

logic layer code, but to introduce a new DDAO class

for specific data source, which get attached to the

business entity object (BO).

Having separated DDAO and BO, it makes reuse of

the DDAO possible by other parts of the business

logic layer of an application.

DDAO also simplify the code development, unit test,

integration test, and simultaneous access of multiple

types of data sources such as relational, legacy and so

forth, from one BO.

2 Example

Figure 1. shows the implementation of the interface

which is used by the BO instead the usage of specific

DDAO. Interface is implemented by each DDAO

implementation for a specific BO, and represents the

implementation of the Strategy[1] design pattern.

Figure 1. Sample DDAO interface

Figure 2. shows an implementation of the DDAO for

a JDBC data source. All functionality such as

INSERT, DELETE, UPDATE, is implemented at the

base class level (J2EEDataAccessObjectJdbc) while

an application's DDAO implements a finder methods

only for handling specific SQL queries.

 Figure 2. Sample DDAO base class

3 Context

To make an application flexible, the creation of

DDAO is done out of BO. DDAO abstracts business

logic from the knowledge where the data resides, how

to access the data, where to cache the data, etc.

Figure 3. shows the context where the BO is used to

access the DDAO for the data manipulation purpose.

Typical Java application use the data entered by the

client or data retrieved from the data source. Data is

transfered from the model to the business object in the

form of value object [2]. From the presentation layer

the data is transfered by using a business logic proxy
which encapsulates the communication to the

business logic layer. It is not necessary that business

logic layers resides on the separate CPU process

context, which means that it can run within the same

process as the client presentation layer.

Communication from the proxy to the logical server
component is done by the J2EETransport component

(it will be the subject for a new paper form the

authors). Value object implements a command design

pattern which is used to invoke

SampleBankComponentFacde from the transport

layer. When BO get called it can use DDAO to do all
data source related logic, and return the data back to

the calling client.

J2EEBusinessObjectFactory

+ Hashtable _businessObjects

+ create ()

+ destroy ()

+ getBusinessObject ()

J2EEBusinessObject

+ boCreate ()

+ boRemove ()
+ boLoad ()

+ boStore ()

+ boFind ()

+ getDataAccessObject ()

- creates

BankAccountBO

+ boFindAllClosedAccounts ()

+ boFindValidAcconts ()

SampleBankComponentFacade

«interface»

SampleBankComponent

SampleBankComponentProxy

MVC Client Controller

J2EETransport(RIM, IIOP, HTTP,...)

MVC Client View MVC Client Model

- uses

0..1

- uses

0..*

- calls
0..1

- holds

*

- controls

*

- uses
*

J2EEApplication

Controller/J2EETransaction

Controller

Figure 3. The context for the DDAO usage

4 Problem

Hibernate, iBatis and other available implementations

of object relational mapping or Data Access Object

(DAO) pattern, relay more on programmers to

produce the data access code, then on the data source

meta data for SQL statement generation, or other meta

data sources if not JDBC data source is used. DDAO

does not require complex configuration files at all

except one for each data source destination to identify

the host, port, user and couple of other parameters.

DDAO has the default implementation for specific

data sources such as CICS, JMS, iSeries, etc.

hr.adriacomsoftware.app.server.account.dao;

public interface BankAccountDao {

 publicBankAccountRs daoFindClosedAccounts (

 BankAccountVo value)

 throws
J2EEDataAccessException;

}

hr.adriacomsoftware.app.server.account.dao.jdbc;

public final class BankAccountJdbc extends

J2EEDataAccessObjectJdbc implements

BankAccountDao {
public BankAccountJdbc() {

 setTableName("bank_account");

 }
Public BankAccountRs

daoFindClosedAccounts(BankAccountVo value) throws

J2EEDataAccessException {
 J2EEConnectionJDBC co = null;

 BankAccountRs j2eers = null;
 try {

 co = getConnection();

 Connection jco = co.getJdbcConnection();
 J2EESqlBuilder sqlstatement = new

 J2EESqlBuilder();

 sqlstatement.appendln("select * from
 bank_account where

 status = 'C' ");

 sqlstatement.append(" ORDER BY closed_date");
 PreparedStatement pstmt =

 jco.prepareStatement(sqlstatement.toString());

 pstmt.setMaxRows(0);
 ResultSet rs = pstmt.executeQuery();

 j2eers = new

BankAccountRs(getJ2EEResultSetFromJDBCResultSet(r
s));

 pstmt.close();

 return j2eers;
 } catch (Exception e) {

 J2EEDataAccessException ex = new

 J2EEDataAccessException("151");
 ex.addCauseException(e);

 throw ex;

 }
 }

}

 If we build the application which does

require simple and fast access to the data sources and

which uses a data source capabilities such as stored

procedures, CICS programs, JMS programmed logic,

we do not need an object relational mapping, but

instead we need to have a mechanism to handle

access, connection, transaction, caching, for each of

the specific data source types on a unique and

manageable way.

 The DDAO architecture enables the

transaction management for more then one transaction

destination (RDMS, CICS, JMS, etc.) at the same

time during a client logical unit of work. It is possible

to build a transaction by using DDAO to use CICS,

JMS and JDBC data source at the same logical unit of

work.

 During analysis you usually define the data

model of the application in third normal form.

However, the entire system performs poorly if you

also use third normal form as the physical table layout

[6]. Using EJB bean managed persistence or other

types of object relational mapping leads to a limited

tuning activities needed to achieve acceptable

performance.

 Most of the DAO implementations require a

set up of complex development environment which

includes containers and other specific environment set

up, depending on the DAO implementation being

used.

5 Solution

The DDAO access the data source while the BO is not

coupled to a specific vendor implementation or API.

DDAO contains all the source code developer needs

to change in case data source vendor or API get

changed. BO stays the same not depending on specific

data source.

The DDAO has the following functions:

� Contains logic to access a data source

� Uses connection from a connection pool

� Caches the data access statements (eg. SQL)

� Manages cached data from the data source

� Converts data from the data source to a

specific format such as Sovereign Value

Object (SVO) [2], Service Data Object

(SDO)[3], Data Transfer Object (DTO)[4],

and etc.

� Validates the fields lengths ant types for the

fields candidates for being stored to a data

source by using its meta data.

� Enables transaction management (flat

transactions only) for JDBC and not JDBC

data source (JMS, CICS, etc.). DDAO is

defined within the transaction context which

transparently handles the transaction, leaving

application programmer free from the

transaction handling complexity. DDAO can

handle JTA, JDBC, JMS, CICS, and other

transaction types during one logical unit of

work.

� Simplify the application development

environment set up. DDAO development

does not require any kind of containers or

other specific environment set up. Once the

DDAO is developed, unit tested, it could be

deployed to any thread safe environment

such as servlet container, EJB container or as

a Java application or Java Applet (not

recommended).

Figure 4. illustrates DDAO layer. DDAO layer

manages reading, writing, updating and deleting data

at the data source in both cases whether data is stored

or created by the data source at the run time.

Figure 4. DDAO layer perspective

While making decision which persistence method to

use, we can consider what needs to happen at the data

access object layer. Grading each persistence method

according to how well it achieves the goals, we can

use the following rating system[7]:

� High (best rating): Gets high marks toward

achieving the stated goal

� Medium (middle rating): Moderately

achieves the stated goal

� Low (lowest rating): does not achieve the

stated goal very well

Figure 5. lists the goals and ratings of DDAO and

several others persistence methods.

Goal JDBC
EJB/

BMP

EJB/

CMP
O/R DDAO

Minimize learning

curve
High Low Low Med High

Minimize code

and configuration

files written and

maintaeined

Low Low Low Med Med

Maximize ability

to tune
High Med Low Low High

Minimize

development effort
High Low Low Med High

Maximize code

portability
Med Med High High Med

Minimize vendor

reliance
High Med Med Low High

Maximize

availability and

fail-over

Low High High Low Med

Manageable via

JTA
High Low Low Med High

Handles other then

JTA transaction
Low Low Low Low High

Access other then

JDBC data sources
Low Low Low Low High

Figure 5. Ratings of data persistence methods

6 Structure

Figure 6. shows the class diagram for the DDAO

pattern.

J2EEDataAccessObjectFactory

+ getDataAccessObject ()

J2EEBusinessObjectFactory

+ Hashtable _businessObjects

+ create ()

+ destroy ()

+ getBusinessObject ()

J2EEBusinessObject

+ J2EEDataAccessObject dao

+ boCreate ()

+ boRemove ()
+ boLoad ()

+ boStore ()

+ boFind ()
+ getDataAccessObject ()

BankAccountBO

+ boFindAllClosedAccounts ()
+ boFindValidAcconts ()

BankAccountDao

+ daoFindAllClosedAccounts ()
+ daoFindValidAccounts ()

J2EEDataAccessObject

+ daoRemove ()

+ daoCreate ()
+ daoLoad ()

+ daoStore ()
+ daoFind ()

BankAccountJMS

+ daoFindAllClosedAccounts ()

+ daoFindValidAccounts ()

BankAccountJdbc

+ daoFindAllClosedAcconts ()

+ daoFindValidAccounts ()

- persists/query

- query

- creates - uses
- creates

J2EEDataAccessObjectJMS

+ daoFind ()
+ daoCreate ()

+ daoRemove ()
+ daoStore ()

J2EEDataAccessObjectJdbc

+ tableName

+ sqlStatementCache

+ daoFind ()

+ daoCreate ()

+ daoRemove ()
+ daoStore ()

Figure 6. DDAO class diagram

DDAO includes the following classes:

� J2EEDataAccessObjectFactory is a class that

is responsible for creating and returning

DataAccessObject instances for Business

Objects. It holds a mapping that BO query to

get the Data Access Object that handles its

persistence. The default mapping assumed by

the naming convention does not require any

programmers action at all or an entry to the

mapping configuration file. Just for the

specific naming of the data access objects for

particular BO, an entry needs to be entered to

the configuration file. The

J2EEDataAccessObjectFactory uses

Business Object name to choose a specific

class that subclass the DataAccessObject and

serves as a DDAO for the BO.

� J2EEDataAccessObject is a common abstract

class for all Data Access Objects. The

standard access methods daoStore, daoLoad,

daoCreate, daoFind, daoRemove,

daoRemoveAll, daoLoadNext, etc., are

defined within the class. DDAO method

naming and class structure by design are

ready to be converted to an EJB Bean

Managed Persistence class, in case it is

required by a specific application.

� J2EEDataAccessObjectJdbc is the JDBC

implementation of J2EEDataAccessObject

which defines all its base class methods

specific for the JDBC data source.

� J2EEDataAccessException is the Data

Access layer unchecked exception.

Unchecked exceptions may be thrown from

any method without being specified as part

of the method's public interface (and a

handler need not be present)[5]. It is

recommended that all DDAO inheriting from

J2EEDataAccessObject catch the other

types of the exceptions and throw the

J2EEDataAccessException. Business logic

layer need not to handle any other type of

exception while accessing data access layer.

� J2EEBusinessObject asks the

J2EEDataAccessObjectFactory class for an

J2EEDataAccessObject instance to which it

delegates persistence operations.

Figure 7. shows the DDAO data source access classes

for caching, connection management and

configuration properties access. Each DDAO inherits

from the specific data source class, which is

connected to its J2EEPersistenceService and has its

own configuration file attached. For example, if there

are two JDBC data sources and one JMS data sources

to be accessed, there needs to exist three

J2EEPersistenceService implementations which

inherit from the J2EEPersistenceService and have just

simple getConnection method implemented, plus a

configuration file for each of them configured.

J2EEDataAccessObject

+ daoRemove ()

+ daoCreate ()

+ daoLoad ()

+ daoStore ()

+ daoFind ()

J2EEDefaultJDBCDataService
J2EEPersistentService

+ connectionManager

+ serverConfiguration
+ cacheStorage

+ metaData

+ getConnection ()

+ initialize ()
+ getFromCache ()

+ addToCache ()

J2EEDefaultJMSDataService

J2EEDataAccessObjectJdbc

J2EEDataAccessObjectJMS

Default JMS data source property

(host, port, user, password)

Default Jdbc data source property

(host, port, user, password)

1

1

J2EEConnectionPool

- connects

*

J2EEConnectionPoolJDBC J2EEConnectionPoolJMS

Figure 7. DDAO data source access classes

7 Dynamics

Figure 8. shows the message flow between the objects

at the data access layer. BO is a pass-through entity

object which is being instantiated only once and used

by all clients on a thread-safe way during the time the

business logic layer is up and running. BO does not

keep the state even though this option exists for the

specific needs (not explained here). BO can keep the

state using thread specific storage design pattern [8].

BO asks J2EEDataAccessObjectFactory to create the

Data Access Object and use it to read and write the

data to the data source. Methods such as daoStore,

daoCreate, daoRemove, daoLoad and daoFind are

implemented by the base J2EEDataAccessObjectJdbc

class, while the rest of query methods are

implemented by the concrete (BankAccoutJdbc)

classs. BankAccountBO does not access

BankAccountJdbc class directly but using its

BankAccountDao interface, which makes the DDAO

replaceable by other data access class in case the data

source get changed.

 : BankAccountBO : J2EEDataAccessObjectFactory : BankAccountJdbc : J2EEDataAccessObject : BankAccountDao

1 : getDataAccessObject ()

2 : \create\

3 : daoCreate ()

4 : daoStore ()

5 : daoLoad ()

6 : daoRemove ()

7 : daoFind ()

8 : \daoFindCreditCardAccounts\

Figure 8. DDAO sequence diagram

8 Implementation

Figure 9. show a part of the source code from the

J2EEDataAccessObjectJdbc class. Methods

daoCreate and daoCreateMany are inherited by

application specific DDAO. daoCreate gets the JDBC

connection from the connection pool for it's target

data source, do prepares data specific for an

environment or locale (prepareSqlCreate), prepares
(just once per connection session) or retrieves from

the local cache the INSERT statement, checks the

fields length (validateFieldLength) using the meta

data column size information and maps the client data

from J2EEValueObject[2] to the table columns before
executing INSERT SQL statement.

public class J2EEDataAccessObjectJdbc extends

J2EEDataAccessObject{

public J2EEValueObject daoCreate(J2EEValueObject value)
throws J2EEDataAccessException {

 J2EEValueObject res = new J2EEValueObject();

 J2EEConnectionJDBC co = null;
 try {

 prepareData(value, getTableName());
 co = getConnection();

 Connection jco = co.getJdbcConnection();

 String sql = prepareSqlCreate(value, getTableName());
 PreparedStatement pstmt = jco.prepareStatement(sql);

 J2EEResultSet columnsInfo =
 co.getColumnsInfo(getTableName());

 Vector columns = columnsInfo.getRows();

 validateFieldLength(columnsInfo, value);
 Hashtable hashKeys =

 co.getPrimaryKeysInHashtable(getTableName());
 int i = 0;

 for (Enumeration e = columns.elements();

 e.hasMoreElements();){
 J2EEValueObject model =

 (J2EEValueObject) e.nextElement();
 Hashtable row = model.getProperties();

 if(co.isIdentityColumn(row))

 continue; //identity column
 String tableColumn =

 co.getColumnName(row);

 ……..

Figure 9. DDAO base class daoCreate method

Figure 10. shows the source code for creating many

objects of the same table to the JDBC data source.

public int daoCreateMany(J2EEResultSet valueList) throws

J2EEDataAccessException {

 J2EEValueObject vo;
 int rowCounter=0;

 Enumeration E = valueList.getRows().elements();

 while(E.hasMoreElements()){
 vo = (J2EEValueObject)E.nextElement();

 daoCreate(vo);

 rowCounter++;
 }

 return rowCounter;

}

Figure 10. DDAO base class daoCreateMany method

9 Applicability

DDAO could be used when

� Acces CICS, JMS, Web Services, CORBA

service and other data sources. DDAO

defines a common class for each of these

data source types, which inherits from

J2EEDataAccessObject and handles

connection and transaction logic for the

specific data source. By inheriting the same

base class as other DDAO classes, it is

possible to switch the data sources if they

get changed and it frees the application

programmer from the concerns about

connection pool and transaction logic.

� Building the application for the multiple

deployment options (pure Java application,

applet or an application server component

within a Servlet od EJB container).

� Using Eclipse or other IDE tools to develop

data access logic without the need to have a

container configured, but pure JDK

enviroment.

� Building a complex enterprise size

application to access legacy, RDBMS, and

other data sources for implementing a single

logical unit of work combined from many

differnet data source types.

10 Variants

DDAO method assumes one or more DDAO per

business entity object. If one BO needs to access more

then one data source destination, one needs to create

as many DDAO and configure

J2EEDataAccessObjectFactory to handle this

situation. Multiple DDAO are kept within a BO as a

list of DDAO and accessed accordingly when needed

by the BO. When CICS programs are called from

DDAO, COBOL copy books are used to produce

meta data which are used by the DDAO to handle

calls to a CICS programs. Similarly when accessing

iSeries programs from a DDAO, C include header

files are used to generate meta data used by iSeries

DDAO to access C programs.

11 Consequences

DDAO is very lightweight persistence solution which

ease the development of data-driven applications by

abstracting the low-level details involved in data

source communication (loading driver, managing

connections, managing transaction, etc.) as well as

providing higher-level capabilities (data type

conversion management, support for static and

dynamic queries or program calls, mapping attributes

to columns or other data source types, etc.). DDAO

includes a code generation tool which helps to

generate specific DDAO by using a data source meta

data (JDBC meta data, PDML, COBOL copy books,

etc.).

13 Related patterns

Figure 11. shows the message flow between the

objects at the data access layer.

 : J2EEConnectionPoolJDBCObject1 : J2EEDefaultJDBCData

Service

 : J2EEDataAccessObjectJdbc : BankAccountJdbc : BankAccountBO

1 : daoCreate ()

2 : \getConnection\ 3 : \getConnectionForCurrent

Transaction\

4 : \getConnectionFromPool\

Figure 11. DDAO data source access sequence

diagram

Transaction management, while using DDAO, is done

up front at the start of the business logic layer, by

using current thread identification as a technique for

separating client transaction contexts. There is no

need to transfer a connection or transaction objects

from business logic layer down to the data access

layer by sending it as an parameter. All connections

used by the dynamic data access objects are kept

within the transaction object for current client

invocation. At the end of the logical unit of work, the

transaction which could include JDBC, JMS, CICS,

etc., is closed by issuing a commit or rollback

command ouside of DDAO implementation.

 It is possible to use the transaction

commands directly inside the DDAO implementation,

but it rarely makes the sense. CICS, JMS and other

data source connection and transaction handling, is a

subject of a new paper which will be published by the

authors of this paper. DDAO supports JTA, EJB, or

its own flat transaction service. DDAO's own

transaction service does not support chained or nested

transaction types. If using DDAO transaction service,

it is up to the user to decide if some of the logical unit

of work needs to issue a transaction commit or

rollback command while inside an existing

transaction. In that case, the existing transaction needs

to be closed before a new transaction is opened.

DDAO uses Value List Handler [4] to return subsets

of the result to the client as requested.

References

[1] Eric Gamma: Design Patterns, Elements of

Reusable Object-Oriented Software, page 315,

Addison-Wesley Publishing Company, Reading,

USA, 1995.

[2] Zdravko Roško: Sovereign Value Object, Faculty

of Organization and Informatics University of

Zagreb, IIS 2007.

[3] BEA Systems, Inc., International Business

Machines Corp, Oracle, Primeton Technologies Ltd,

Rogue Wave Software, SAP AG., Software AG., Sun

Microsystems, Sybase Inc., Xcalia, Zend

Technologies, SDO 2.1.0,

http://www.osoa.org/download/attachments/36/Java-

SDO-Spec-v2.1.0-FINAL.pdf?version=1, November

2006.

[4] Deepak Alur, John Crupi, Dan Malks: Core J2EE

Pattern, Best Practices and Design Strategies,

page 286, Pearson Education, 2001.

[5] Kathy Sierra, Bert Bates: Java™ 2 Sun Certified

Programmer & Developmer for Java 2, page

250, McGraw-Hill/Osborne, New York, USA,

2003.

[6] Rebert C. Martin, Dirk Riehle, Frank Buschmann:

Pattern Languages of Program Design 3, page

315, Addison Wesley Longman, Inc., 1998.

[7] Derek C. Ashmore: The J2EE Architect’s

Handbook, pages 51,53,54 , DVT Press,

Lombard, 2004.

[8] Douglas Schmidt, Michael Stal, Hans Rohnert,

Frank Buschmann: Pattern-Oriented Software

Architecture, Volume 2, Patterns for

Concurrent and Networked Objects, page 475,

John Wiley & Sons, Ltd., West Sussex, 2000.

