

A formal system for automated reasoning about

retrograde chess problems using Coq

Faculty of Arts and Sciences

University of Rijeka

Omladinska 14, 51000 Rijeka, Croatia

marko.malikovic@ffri.hr

Abstract. This paper presents a formal system for

automated reasoning about retrograde chess

problems using Coq a formal proof management

system. The system is divided into two parts. The first

part describes the environment that includes the
axioms, definitions and hypotheses of chess objects,

and also the functions for computing changes in

states. The second part is developed for generating

tactics combined with the use of tacticals (elements of

Ltac - cs). All
of these tactics are defined as one Ltac function. This

approach enables reasoning about retrograde chess

problems with respect to reasoning about sequences

of retrograde moves. In the aforementioned Ltac

function, a number of heuristic solutions are

implemented with the aim of solving the problems
within a big search space such as retrograde chess

analysis. These heuristics, as well as tactics and

tacticals, are not the subject of this article.

Keywords. retrograde chess analysis, formal system,

Coq, automated reasoning

1 Introduction

Retrograde chess analysis is a method

employed by chess problem solvers to determine

which moves were played leading up to a given

position. These moves are called the history of
the position. Also, using retrograde chess

analysis sometimes it is possible to determine if

castling is disallowed, whether an en passant

capture is possible or if a particular position is

legal. Retrograde analysis is essentially a matter

of logical reasoning as we can see in the example

shown on diagram 1. The solver must deduce

what were the last three moves.

Diagram 1. What were the last 3 moves?

 # # # #

 # # # #
ä # à # #
À # # # #

É # #
 # # # #
è # #

Black king is in check but the bishop making

the check cannot have made the last checking

move. Therefore the white king must have

moved off b3 to discover the check. On b3 the

white king was in check by both the rook and the

bishop which is, at first thought, impossible. But,

if white had a pawn on c2 and black had a pawn

on b4
c2c4 b4xc3 en passant, white is

in double check. Since the black pawn is no

longer on the board, white must have captured it

in the last move. So, the solution to this problem

is 1. c2c4, b4c3ep 2. Kb3c3x and the position

before three moves is shown in diagram 1a.

We define a retrograde chess move as

follows:

Definition (retrograde chess move). If in

accordance with the laws of chess [4] position

Pn+1 arises from position Pn due to the move p of

piece f then the retrograde chess move of

move p is the movement of piece f due to the

position Pn arising from position Pn+1.

Diagram 1a. The position three moves before the

position in diagram 1

 # # # #

 # # # #
ä # à # #
À ë # # #

È # # #
 # Ê # # #
è # #

In accordance with the above mentioned

definition we can set up the rules of retrograde

chess moves into two main groups: those rules

which describe the retrograde moves of each

chess piece and common rules for all moves.

In this article we will not present all of the

rules for each piece because they clearly arise

from the definition of retrograde chess moves.

We give just one example: The retrograde move

of the king is the movement from the starting

square to one of the eight closest squares in the

same row, column or diagonal with the following

conditions: the end square is not near the

not been yet played with the moved king.

Common rules for all retrograde moves are:

I.
turn

II. After retrograde en passant capture, two

squares backwards by the retrograde

captured pawn must be played

III. The end square of the retrograde move

must be empty

IV.
appear

1
 on the starting square or the

square can remain empty, but the

following conditions must be satisfied:

a)
last row of the chessboard

b) In cases of retrograde capture by the

remain empty

c) In those situations of retrograde

moves by the pawn without

retrograde capturing (one or two

squares backwards), any retrograde

castling and any retrograde en

passant capturing, the starting square

must remain empty

1 We call this retrograde capturing.

d) In case of retrograde promotion with

retrograde capturing, the starting

V. After some retrograde moves, the

VI. After the move no players can have more

than eight pawns or more than sixteen

pieces

The Coq system
2
 is a computer tool for

verifying theorem proofs in higher-order logic.

These theorems may concern usual mathematics,

proof theory, or program verification. The

underlying theory of the Coq system is Calculus

of Inductive Constructions, a formalism that

combines logic from the point of view of -

calculus and typing. Objective Caml3
 is the

implementation language for the Coq.

Concerning a proposition that one wants to

prove, the Coq system proposes tools, called

tactics, to construct a proof, using elements taken

from a context, namely, declarations, definitions,

axioms, hypotheses, lemmas, and already proven

theorems. In addition, the Coq system provides

operators, called tacticals, that make it possible

to combine tactics and, in such manner, to build

more complex tactics. This paper presents a

formal system for automated reasoning about

retrograde chess problems using Coq.

2 Definitions

2.1 Definitions of the chess pieces, the

colors of pieces, types of retrograde chess

moves and the chessboard

We define the chess pieces, the colors of

pieces and types of retrograde chess moves as

enumerated inductive type [2, 137]:

Inductive pieces:Set:=P | B | R | Q | N | K | p | b | r | q | n | k | O | v.

Constructors of above mentioned enumerated

inductive type pieces and its meanings are shown

in table 1.

The definition of the colors of pieces has got

only two constructors:

Inductive colors : Set := white | black.

2 http://coq.inria.fr
3 http://caml.inria.fr

Table 1: Constructors of enumerated inductive type

pieces and its meanings

Cons. Piece Cons. Piece Cons. Piece

P Ê p ê
O

empty

square
B À b à

R Ä r ä

v

area
outside

the

board

Q Æ q æ

N Â n â

K È k è

We group the types of moves in accordance

with their properties:

Inductive type_of_move : Set :=
standard_move
| promotion
| promotion_cap_3
| promotion_cap_4
| castling_kingside_white
| castling_queenside_white
| castling_kingside_black
| castling_queenside_black
| p_1
| p_2
| p_cap_3
| p_cap_4
| p_ep_cap_5
| p_ep_cap_6.

The meanings of the above constructors are:

- promotion - retrograde promotion

- promotion_cap_3, promotion_cap_4 -

different retrograde promotions with

- castling_kingside_white - retrograde white's

kingside castling

- castling_queenside_white - retrograde white's

queenside castling

- castling_kingside_black - retrograde black's

kingside castling

- castling_queenside_black - retrograde black's

queenside castling

- p_1 - one square backwards by the pawn

- p_2 - two squares backwards by the pawn

- p_cap_3, p_cap_4 - two different retrograde

captures by the pawn (according to the

- p_ep_cap_5, p_ep_cap_6 - two different

retrograde en passant captures (according to

- standard_move - all other retrograde moves

On the other hand, we introduce both

coordinates of the squares (rows and columns) as

just one annotated inductive type [8, 39]:

Inductive coordinates : nat -> Prop :=
| coord1 : coordinates 1
| coord2 : coordinates 2
| coord3 : coordinates 3
| coord4 : coordinates 4
| coord5 : coordinates 5
| coord6 : coordinates 6
| coord7 : coordinates 7
| coord8 : coordinates 8.

Diagram 2. The coordinates of the squares due to the

orientation of chessboard

 Black

1 # # # #
2 # # # #
3 # # # #
4 # # # 4,6 #
5 # # # #
6 # # # #
7 # # # #
8 # # # #

1 2 3 4 5 6 7 8

 White

2.2 Definition of chess position

The

declare in a retrograde sense (who moved the last

piece) as the following declaration of global

parameter on_turn:

Parameter on_turn : nat -> colors.

This parameter has type nat -> colors where

nat is a type of current ordinal number of the

move. Also, we introduce hypothesis Hon about

the value of this number (at the beginning of

reasoning about a retrograde chess problem, the

value of this number is zero):

Parameter on : nat.
Hypothesis Hon : on=0.

The position of pieces on the board in the

moment on is a list of lists and we introduce it as

hypothesis (first we need to declare parameter

position with type nat -> list (list pieces)):
4

Parameter position : nat -> list (list pieces).

4 All hypotheses at the end of these sections correspond to problem
5 which will be considered in Section 4.3.

Variable H_position : position on =

nil.

In the given position the black king is in

check. This is because we can conclude that

white made the last move and we introduce this

fact as a hypothesis:

Hypothesis H_on_turn : on_turn on=white.

From the hypothesis H_position the

coordinates of the white and black kings arise, as

well as the number of white and black pawns and

the total number of white and black pieces. This

data is very important for the speed of our

system and we store them in separate hypotheses

in the following way:

Parameter xKw yKw xkb ykb : nat -> nat.

Hypothesis Hxkb : xkb on=1.
Hypothesis Hykb : ykb on=1.
Hypothesis HxKw : xKw on=1.
Hypothesis HyKw : yKw on=3.

Parameter
white_pawns_number
black_pawns_number
white_pieces_number
black_pieces_number : nat -> nat.

Hypothesis H_white_pawns_number:white_pawns_number on=3.
Hypothesis H_black_pawns_number:black_pawns_number on=0.
Hypothesis H_white_pieces_number:white_pieces_number on=7.
Hypothesis H_black_pieces_number:black_pieces_number on=1.

2.3 Definition of retrograde move

Each retrograde move is uniquely defined by

several attributes. For example, every standard

move is defined by the coordinates of the starting

square, the coordinates of the end square, the

o

type of move. On the other hand, the retrograde

move p_2 is only defined by the column of the

moved pawn and the type of move.

Anyway, our definition of the retrograde

move will contain the same arguments for all

retrograde moves: the ordinal number of the

move, the piece that is moved, the coordinates of

the starting and the end squares, the captured

piece and the type of move:

Inductive move : Set := moved : nat -> pieces -> nat -> nat -> nat -
> nat -> pieces -> type_of_move -> move.

The reason for such a wide definition lies in

our need to have all the relevant information

about the moves in a single hypothesis. As a

result, our system becomes faster.

When solving problems we will thread the

sequences of retrograde moves in the special

hypothesis H_list_moves. For example, the fact

that a given position arises after 1. Nb6a8,

Ka7a8x will be stored on the list as follows:

H_list_moves : list_moves 2 =
moved 0 k 1 1 2 1 N standard_move ::
moved 1 A 1 1 3 2 b standard_move :: nil

2.4 Possible captured pieces

In rules IV and VI in Section 1 we outlined

the conditions which must be satisfied

concerning the content of the starting square

after the retrograde move. These conditions will

be later checked by tactics. In general, we can

introduce the following annotated inductive

types for possible white and black captured

pieces:

Inductive possible_captured_pieces_white : pieces -> Prop :=
| cap_piece_w_b : possible_captured_pieces_white b
| cap_piece_w_r : possible_captured_pieces_white r
| cap_piece_w_q : possible_captured_pieces_white q
| cap_piece_w_n : possible_captured_pieces_white n
| cap_piece_w_p : possible_captured_pieces_white p
| cap_piece_w_O : possible_captured_pieces_white O.

Inductive possible_captured_pieces_black : pieces -> Prop :=
| cap_piece_b_B : possible_captured_pieces_black B
| cap_piece_b_R : possible_captured_pieces_black R
| cap_piece_b_Q : possible_captured_pieces_black Q
| cap_piece_b_N : possible_captured_pieces_black N
| cap_piece_b_P : possible_captured_pieces_black P
| cap_piece_b_O : possible_captured_pieces_black O.

3 Functions

3.1 End squares

In this section we introduce those functions that

will determine whether a square can be the end

square of a piece in a given position on the basis

(v :: nil) ::

(v :: k :: O :: K :: O :: O :: O :: O :: O :: nil) ::

(v :: O :: O :: O :: O :: Q :: O :: O :: O :: nil) ::

(v :: O :: O :: O :: O :: O :: O :: O :: O :: nil) ::

(v :: O :: O :: B :: O :: P :: O :: O :: O :: nil) ::

(v :: O :: O :: O :: P :: O :: O :: O :: O :: nil) ::

(v :: O :: O :: O :: O :: O :: O :: O :: P :: nil) ::

(v :: O :: O :: O :: O :: O :: O :: O :: O :: nil) ::

(v :: O :: O :: O :: O :: O :: O :: O :: B :: nil) ::

of the content of the relevant squares for that

piece. We call such squares possible end squares

because each retrograde move must also satisfy a

number of other conditions (for example after the

in check - see rule V in Section 1).

3.1.1 Standard moves by the bishop, rook and

queen

The bishop, rook or queen functions are

recursive. With these functions we will

determine how many squares are empty,

beginnings from the starting square in a number

of possible directions.

First we introduce the possible directions of a

move for the bishop, rook and queen, since in

different directions, the coordinates of the

possible end squares change in different ways

(see diagram 3).

Thus, we introduce the following enumerated

inductive types:

Inductive directions_bishop : Set := lu | ru | rd | ld.

Inductive directions_rook : Set := left | right | up | down.

The set of directions for the queen is actually a

union of the directions for the bishop and rook.

But, the constructors in two different inductive

definitions must be different. This is because we

need an extra definition for the queen:

Inductive directions_queen : Set := lu_queen | ru_queen |
rd_queen | ld_queen | left_queen | right_queen | up_queen |
down_queen.

Diagram 3. The possible directions of moves by the

bishop, rook and queen

lu

u
p
 ru

 # # # #
 # # # #
 # # # #
 # # # #

left # # # # right

 # # # #
 # # # #
 # # # #

ld

d
o
w

n

 rd

In this article we only provide the function

that will determine whether a square can be the

end square of the bishop:

Parameter xp_var yp_var xz yz u : nat.

Fixpoint end_square_bishop_temp (xp_var yp_var : nat)
(s:directions_bishop) (l:list (list pieces)) (i:nat) {struct i} : Prop :=
match i with
S i' =>
match s with
lu =>
match xp_var with
S xp_var' =>
match yp_var with
S yp_var' => match nth yp_var' (nth xp_var' l nil) v with
 O => end_square_bishop_temp xp_var' yp_var' lu l i'
 | _ => u<8-i /\ xz=xp-u-1 /\ yz=yp-u-1
 end
| _ => False
end
| _ => False
end
| ru =>
match xp_var with
S xp_var' =>
match S (S yp_var) with
S yp_var' => match nth yp_var' (nth xp_var' l nil) v with
 O => end_square_bishop_temp xp_var' yp_var' ru l i'
 | _ => u<8-i /\ xz=xp-u-1 /\ yz=yp+u+1
 end
| _ => False
end
| _ => False
end
| rd =>
match S (S xp_var) with
S xp_var' =>
match S (S yp_var) with
S yp_var' => match nth yp_var' (nth xp_var' l nil) v with
 O => end_square_bishop_temp xp_var' yp_var' rd l i'
 | _ => u<8-i /\ xz=xp+u+1 /\ yz=yp+u+1
 end
| _ => False
end
| _ => False
end
| ld =>
match S (S xp_var) with
S xp_var' =>
match yp_var with
S yp_var' => match nth yp_var' (nth xp_var' l nil) v with
 O => end_square_bishop_temp xp_var' yp_var' ld l i'
 | _ => u<8-i /\ xz=xp+u+1 /\ yz=yp-u-1
 end
| _ => False
end
| _ => False
end
end
| _ => False
end.

Definition end_square_bishop xp_var yp_var s l :=
end_square_bishop_temp xp_var yp_var s l 8.

The functions for the rook and queen are

analogous.

3.1.2 Standard moves by the knight and king,

moves by the pawn and other non-standard moves

The functions which determine possible end

squares for knight and king are not recursive.

These functions simply check whether a square

is empty or not. For these pieces we introduce

numerical notations of the possible end squares

(see the example for the knight in diagram 4).

Diagram 4. Possible end squares for the knight

 # # # #

 # 1 # 2 # #
8 # # 3 #
 # Ã # #

7 # # 4 #
 # 6 # 5 # #

So, the function for the knight is:

Definition end_square_knight (xp yp i:nat) (l : list (list figure)) :
Prop :=
 match i with
 1 => match nth (yp-1) (nth (xp-2) l nil) v with
 O => xz=xp-2 /\ yz=yp-1
 | _ => False
 end
 | 2 => match nth (yp+1) (nth (xp-2) l nil) v with
 O => xz=xp-2 /\ yz=yp+1
 | _ => False
 end
 | 3 => match nth (yp+2) (nth (xp-1) l nil) v with
 O => xz=xp-1 /\ yz=yp+2
 | _ => False
 end
 | 4 => match nth (yp+2) (nth (xp+1) l nil) v with
 O => xz=xp+1 /\ yz=yp+2
 | _ => False
 end
 | 5 => match nth (yp+1) (nth (xp+2) l nil) v with
 O => xz=xp+2 /\ yz=yp+1
 | _ => False
 end
 | 6 => match nth (yp-1) (nth (xp+2) l nil) v with
 O => xz=xp+2 /\ yz=yp-1
 | _ => False
 end
 | 7 => match nth (yp-2) (nth (xp+1) l nil) v with
 O => xz=xp+1 /\ yz=yp-2
 | _ => False
 end
 | 8 => match nth (yp-2) (nth (xp-1) l nil) v with
 O => xz=xp-1 /\ yz=yp-2
 | _ => False
 end
 |_ => False
 end.

For the moves by the pawn and other non-

standard moves, the functions and methods for

determining possible end squares are very

diverse and will not be shown in this article.

3.2 Axioms about possible combinations of

moves attributes

With a view to generating valid retrograde

moves more easily, as well as the easier

elimination of invalid retrograde moves, we

introduce axioms about possible combinations of

moves attributes according to piece and type of

move. Here we give the axiom about standard

move by the white bishop:

Axiom A_standard_move_information_B :
move_information B=
(tm=standard_move /\
direction_bishop=db /\
xp_var=xp /\
yp_var=yp /\
end_square_bishop xp_var yp_var db (position on) /\
possible_captured_pieces_white p_cap).

The above axiom contains data about the type

of move, the direction, the end square and the

move p_1 does not contain anything about the

type of move

captured piece because none of this data exists

for move p_1.

With the aim of applying the described

axioms during reasoning about chess positions,

we introduce the following hypothesis in which

the axioms will be applied:

Parameter move_information : pieces -> Prop.
Hypothesis H_move_information : move_information (fp on).

3.3 Functions for computing new positions

after a retrograde move

After every retrograde move a new position

arises. Before we define the main function in

order to compute the new position of pieces on

the chessboard (list in variable H_position), we

need to define several auxiliary functions.

The function beginning_of_list takes the n

first rows of a list:

Fixpoint beginning_of_list (n : nat) (l : list (list pieces)) {struct n} :
list (list pieces) :=
 match l with
 nil => nil
 | l' :: l1 => match n with
 0 => nil
 | S n1 => l' :: beginning_of_list n1 l1
 end
 end.

 The function rest_of_list takes the rows from

m-th to the end of list (including m-th row):

Fixpoint rest_of_list (m : nat) (l : list (list pieces)) {struct m}: list (list
pieces) :=
 match l with
 nil => nil
 | l' :: l1 => match m with
 0 => l
 | S n1 => rest_of_list n1 l1 end

 end.

The function change_of_piece for the given

linear list of pieces returns the list with changed

n-th element by piece f:

Fixpoint change_of_piece (n : nat) (f : pieces) (l : list pieces) {struct
n} : list pieces :=

 match l with
 nil => nil
 | l' :: l1 => match n with
 0 => f :: l1
 | S n1 => l' :: change_of_piece n1 f l1
 end
end.

And finally we need a function which for the

given position returns a new position with the

changed piece in place (xp,yp) of the new piece

fo (fo is the captured piece):

Definition position_xp_yp (xp yp : nat) (l : list (list pieces)) (fo :
pieces) := app (app (beginning_of_list xp l) ((change_of_piece yp
fo (nth xp l nil)) :: nil)) (rest_of_list (xp+1) l).

The main function position_new will compute

the new position of pieces on the board

depending on the type of move and is based on a

pattern matching over hypotheses about types of

move. For example, if the standard_move is

matched in the context then the function will be

the result of the following term:
5

app (app (beginning_of_list xk (position_xp_yp xp yp l fo))
((change_of_piece yk fp (nth xk (position_xp_yp xp yp l fo) nil)) ::
nil)) (rest_of_list (xk+1) (position_xp_yp xp yp l fo))6

We define those parts of the function that

correspond to others types of moves in different

ways. For example, retrograde promotion with

capturing (promotion_cap_3) is a double move

like we see in figure 1.

5 The function position_new is very long and we only can show
here some of its elements.
6 Parameters xp, yp and xk, yk are the coordinates of the starting and

end squares, fp is a piece on the starting square, fo is a captured
piece and l is a list of the lists with the given position of pieces on

the board.

The part of the function position_new that

corresponds to the move shown on figure 1 looks

like this:

match xp with
1 => position_xp_yp 1 yp (app (app (beginning_of_list 1
(position_xp_yp 2 (yp-1) l P)) ((change_of_piece yp O (nth 1
(position_xp_yp 2 (yp-1) l P) nil)) :: nil)) (rest_of_list 2
(position_xp_yp 2 (yp-1) l P))) fo
| 8 => position_xp_yp 8 yp (app (app (beginning_of_list 8
(position_xp_yp 7 (yp-1) l p)) ((change_of_piece yp O (nth 8
(position_xp_yp 7 (yp-1) l p) nil)) :: nil)) (rest_of_list 9
(position_xp_yp 7 (yp-1) l p))) fo
| _ => nil
end

We get a new position (position in the

moment of time on+1) if we apply the function

position_new in the position in the moment of

time on. We store this new position in a special

hypothesis H_new_position:

Variable H_new_position : position (on+1) =
position_new xp yp xk yk (fp rb) fo vp (position on).

Figure 1. Retrograde promotion of the white queen

with a captured black knight as a double move

 # # Æ # #

 # # # #

 # # # #

 # # # #

 # # # #
Ê # #
 # # # #

 # # # #

 # # # #

 # # â # #
Ê # #
 # # # #

 # # # #

 # # # #

The empty square is replaced with the black knight

Move of empty square (piece O) from (2,4) to (1,5) and
the captured white pawn

3.4 Functions for computing check

positions

3.4.1 Recursive functions for the bishop, rook and

queen

In this section, we outline the recursive

functions that check the content of the squares,

starting from the closest square of (white or

black) the king in all eight directions. If the first

non-empty square in a diagonal direction

if the first non-empty square in a vertical or

horizontal direction engages with the opponent's

rook or queen then the observed king is in check.

If another piece is on the first non-empty square,

then the king is not in check from the observed

direction.

For example, the function for direction left-up

(lu) looks like this:

Fixpoint check_lu_k (xkb ykb : nat) (pos : list (list pieces)) {struct
xkb} : Prop :=
 match xkb with
 S xkb' => match ykb with
 S ykb' => match nth ykb' (nth xkb' pos nil) v with
 O => check_lu_k xkb' ykb' pos
 | Q => check_lu_queen_k /\
 x_check_lu_queen_k=xkb' /\
 y_check_lu_queen_k=ykb'
 | B => check_lu_bishop_k /\
 x_check_lu_bishop_k=xkb' /\
 y_check_lu_bishop_k=ykb'
 | _ => True
 end
 | _ => True
 end
 | _ => True
 end.

3.4.2 Functions for the knight and pawn

The knight and pawn functions do not need to

be recursive, since they only need to check either

on a concrete square with regard to king is

opponent's knight or pawn.

For example, the following function will

check whether the black king is in check with a

white knight:

Definition check_knight_k (i':nat) (l : list (list pieces)) (xkb' ykb':nat)
: Prop :=

 match i' with
 1 => match nth (ykb'-1) (nth (xkb'-2) l nil) v with
 N => check_knight_k_1
 | _ => True
 end
 | 2 => match nth (ykb'+1) (nth (xkb'-2) l nil) v with
 N => check_knight_k_2
 | _ => True

 end
 | 3 => match nth (ykb'+2) (nth (xkb'-1) l nil) v with
 N => check_knight_k_3
 | _ => True
 end
 | 4 => match nth (ykb'+2) (nth (xkb'+1) l nil) v with
 N => check_knight_k_4
 | _ => True
 end
 | 5 => match nth (ykb'+1) (nth (xkb'+2) l nil) v with
 N => check_knight_k_5
 | _ => True
 end
 | 6 => match nth (ykb'-1) (nth (xkb'+2) l nil) v with
 N => check_knight_k_6
 | _ => True
 end
 | 7 => match nth (ykb'-2) (nth (xkb'+1) l nil) v with
 N => check_knight_k_7
 | _ => True
 end
 | 8 => match nth (ykb'-2) (nth (xkb'-1) l nil) v with
 N => check_knight_k_8
 | _ => True
 end
 |_ => True
 end.

3.5 Computing the new positions of kings,

and black pawns, the total number of

white and black pieces and the ordinal

number of the move

If one of the kings has been moved, either by

a standard move or by castling, their coordinates

will also change. We need functions to compute

these new coordinates. For the white king, the

functions are:

Definition change_xKw on : nat :=
 match (fp on) with
 K => xk
 | R => match tm with
 castling_kingside_white => 8
 | castling_queenside_white => 8
 | _ => xKw on
 end
 | _ => xKw on
 end.

Definition change_yKw on : nat :=
 match (fp on) with
 K => yk
 | R => match tm with
 castling_kingside_white => 5
 | castling_queenside_white => 5
 | _ => yKw on
 end
 | _ => yKw on
 end.

The functions for the black king are

analogous. We store the new coordinates in the

following hypotheses:

Variable H_new_xKw : xKw (on+1) = change_xKw on.
Variable H_new_yKw : yKw (on+1) = change_yKw on.
Variable H_new_xkb : xkb (on+1) = change_xkb on.
Variable H_new_ykb : ykb (on+1) = change_ykb on.

In a similar way, we define the functions and

hypotheses for computing and storing other

information mentioned in this section: which

black pawns, the total number of white and black

pieces and the ordinal number of move.

3.6 Hypotheses about check positions

In the hypotheses about check positions we

will store the results of the functions for

computing check positions (see chapter 3.4). We

can split this kind of information into four

groups:

1. Is the player whose turn it is in check?

2.

3. Will the player whose turn it is be in

check after his move?

4.

If the answers to the first and fourth cases are

positive, then the position is not valid and must

be eliminated.
7
 If the answers in the second and

third cases are positive, then the position is valid.

However, in the second case the player whose

turn it is must in their move eliminate the check

position. The third case will be in the next move

the same as the second.

So, we introduce into the context hypotheses

about the check positions in two adjoining

moments of time:
8

Hypothesis H_check_knight_k_M : check_knight_k M (position on)
(xkb on) (ykb on).

Hypothesis H_check_pawn_k_N : check_pawn_k N (position on)
(xkb on) (ykb on).

Hypothesis H_check_DIRECTION_k : check_DIRECTION_k (xkb
on) (ykb on) (position on).

Hypothesis H_check_knight_k_M_new : check_knight_k M
(position (on+1)) (xkb (on+1)) (ykb (on+1)).

7 See Axiom V in Section 1.
8 Here we show just the hypotheses for the black king. For the
white king the hypotheses are analogous.

Hypothesis H_check_pawn_k_N_new : check_pawn_k N (position
(on+1)) (xkb (on+1)) (ykb (on+1)).

Hypothesis H_check_DIRECTION_k_new : check_DIRECTION_k
(xkb (on+1)) (ykb (on+1)) (position (on+1)).

M {1, ..., 8}

 N {1, 2}

DIRECTION {lu, ru, rd, ld, left, right, up, down}

4 Reasoning about retrograde chess

problems

4.1 Goal

In our system we present the goal as the

proposition not_valid_move:

Parameter not_valid_move : Prop.

Goal not_valid_move.

During the reasoning about chess positions

the logical value of the proposition

not_valid_move will be unknown except in those

cases when we conclude that a move or position

is not valid. To eliminate invalid moves we

introducing the following meta-axiom:

Axiom Invalidity_of_move : not_valid_move=True.

4.2 Tactics, tacticals and Ltac function

In this article we do not present tactics for

generating retrograde chess moves or reasoning

about the validity of moves and their related

positions.
9
 We simply use the Ltac function

One_Move which is made up of all these tactics.

Whilst generating the valid retrograde moves in a

given position, this function inductively builds

up starting and end squares, captured pieces and

the types of moves. In this way, this function

builds up a certain number of subgoals. Each

subgoal belongs to one retrograde move. With

the developed heuristics invalid moves are

eliminated as soon as possible. After the first

application of the function One_Move, only the

valid moves remain in the form of unproven

subgoals. The context of each of these subgoals

is the same as the starting context. In the second

iteration, the function One_Move will be applied

to all remaining subgoals and so on. In such a

way, we use Coq

9 The code of our system has more than 5500 lines and more than

200,000 characters.

moves and positions. In the last three sections we

will show how the function One_Move can be

used for a higher level of reasoning - reasoning

about sequences of retrograde moves.

4.3 Invalidity of a given position

Diagram 5: Which side is white? R. M. Smullyan [10,

13]
North

è # È # # #
Ç #
 # # # #
Á Ë #
 # Ë # #

Ê
 # # # #
À

South

Let us assume that the white side is on the

south. We can check this assumption by

repeatedly applying the function One_Move in a

given position:

repeat One_Move.

Our system proves that the position is not

valid.
10

 It means that the assumption is wrong

and that white is on the north.

4.4 Last move

Diagram 6. What was black's last move? R. M.

Smullyan [10, 23]

è # È # # #

 # # # #

 # # # #

 # # # Ë
Á

The results of applying the Ltac function

One_Move are three unproven subgoals with the

following hypotheses:

H_list_moves : list_moves 1 =
moved 0 k 1 1 2 1 B standard_move :: nil

H_list_moves : list_moves 1 =
moved 0 k 1 1 2 1 N standard_move :: nil

10 All subgoals become proven.

H_list_moves : list_moves 1 =
moved 0 k 1 1 2 1 O standard_move :: nil

So, we must to use the Ltac function

One_Move at least twice:

One_Move;
One_Move.

In this way we get five unproven subgoals

with the following hypotheses:

H_list_moves : list_moves 2 =
moved 0 k 1 1 2 1 N standard_move ::
moved 1 A 1 1 3 2 b standard_move :: nil

H_list_moves : list_moves 2 =
moved 0 k 1 1 2 1 N standard_move ::
moved 1 A 1 1 3 2 r standard_move :: nil

H_list_moves : list_moves 2 =
moved 0 k 1 1 2 1 N standard_move ::
moved 1 A 1 1 3 2 q standard_move :: nil

H_list_moves : list_moves 2 =
moved 0 k 1 1 2 1 N standard_move ::
moved 1 A 1 1 3 2 n standard_move :: nil

H_list_moves : list_moves 2 =
moved 0 k 1 1 2 1 N standard_move ::
moved 1 A 1 1 3 2 O standard_move :: nil

We can see that every list of moves contains

the same first retrograde move: the standard

move by the black king from a8 to a7 with

retrograde captured white knight. So, the

problem is solved and solution is: the last move

of the black was the move Ka7a8x with the

capture of the white knight.
11

4.5 Last n moves

Now we can solve problem 1 from the

Section 1 using our system. We have to apply the

following tactical on goal (we need to find at

three last moves):

One_Move; One_Move; One_Move.

We get the following solution which is in

accordance with the solution we already gave in

Section 1:

H_list_moves : list_moves 3 =
moved 0 K 6 3 6 2 p standard_move ::
moved 1 p 6 3 xz yz O p_ep_cap_6 ::
moved 2 P 5 3 7 3 O p_2 :: nil

11 Solving such types of problems is also automated in our system.

5 Summary

In this article we have shown that the Coq - a

formal proof management system, and Calculus
of Inductive Constructions - the underlying

theory of the Coq, can be used for developing the

environment as a base for reasoning about

retrograde chess problems. This environment is

comprised of axioms, definitions and hypotheses

of chess objects, as well as functions for

computing changes in chessboard. Apart from

the available Coq's tactics, in order to be able to

solve these problems, new tactics (by using Coq

tacticals) are created as well as especially

heuristics in the form of more complex tacticals.

Due to their complexity, these tacticals are not

presented in this article but they are used for

solving several presented problems.

References

[1] Bertot Y.: Coq in a Hurry, available at

http://coq.inria.fr, Accessed: 20
th

 January

2007.

[2] Bertot Y., P.: Interactive Theorem

Proving and Program Development: Coq'art:

The calculus of inductive constructions,

Springer-Verlag, Berlin and Heidelberg, 2004.

[3] Delahaye D.: A Tactic Language for the

System Coq. In Proceedings of Logic for

Programming and Automated Reasoning

(LPAR), Reunion Island (France), Springer,

LNCS/LNAI (1955), 85-95, 2000.

[4] FIDE - World Chess Federation: Laws of Chess,

available at http://www.fide.com, Accessed:

22
th

 May 2008.

[5] Gimenez E., P.: A Tutorial on [Co-]

Inductive Types in Coq, available at

http://www.labri.fr/perso/casteran,

Accessed: 01
th

 January 2007.

[6] INRIA - The French National Institute for

Research in Computer Science and Control: Faq

about coq, available at http://coq.inria.fr

[7] INRIA - The French National Institute for

Research in Computer Science and Control: The

Coq Proof Assistant - A Tutorial, available at

http://coq.inria.fr, Accessed: 16
th

 January

2007.

[8] INRIA - The French National Institute for

Research in Computer Science and Control: The

Coq Proof Assistant Reference Manual

Version v8.1, available at

http://coq.inria.fr, Accessed: 21
th

 May

2008.

[9] Janko O.: The Retrograde Analysis Corner.

http://www.janko.at/Retros/.

[10] Smullyan R. M.: Chess Mysteries of Sherlock

Holmes: Fifty Tantalizing Problems of Chess

Detection, Random House Inc., 1994.

[11] White K. F.: Artificial intelligence and

retrograde chess analysis: The design of a

production system core rule base and

interpreter, M.S. thesis, Unpublished, University

of Florida, 1990.

