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Abstract. This paper presents a formal system for 

automated reasoning about retrograde chess 

problems using Coq  a formal proof management 

system. The system is divided into two parts. The first 

part describes the environment that includes the 
axioms, definitions and hypotheses of chess objects, 

and also the functions for computing changes in 

states. The second part is developed for generating 

tactics combined with the use of tacticals (elements of 

Ltac - cs). All 
of these tactics are defined as one Ltac function. This 

approach enables reasoning about retrograde chess 

problems with respect to reasoning about sequences 

of retrograde moves. In the aforementioned Ltac 

function, a number of heuristic solutions are 

implemented with the aim of solving the problems 
within a big search space such as retrograde chess 

analysis. These heuristics, as well as tactics and 

tacticals, are not the subject of this article. 

 
Keywords. retrograde chess analysis, formal system, 

Coq, automated reasoning 

 

1 Introduction 
 

Retrograde chess analysis is a method 

employed by chess problem solvers to determine 

which moves were played leading up to a given 

position. These moves are called the history of 
the position. Also, using retrograde chess 

analysis sometimes it is possible to determine if 

castling is disallowed, whether an en passant 

capture is possible or if a particular position is 

legal. Retrograde analysis is essentially a matter 

of logical reasoning as we can see in the example 

shown on diagram 1. The solver must deduce 

what were the last three moves. 

 
Diagram 1. What were the last 3 moves? 

 

 #  #  #  # 
#  #  #  #  
 #  #  #  # 
# ä # à #  #  
À #  #  #  # 

# #  É  #  #  
 #  #  #  # 
#  # è #  #  

 

Black king is in check but the bishop making 

the check cannot have made the last checking 

move. Therefore the white king must have 

moved off b3 to discover the check. On b3 the 

white king was in check by both the rook and the 

bishop which is, at first thought, impossible. But, 

if white had a pawn on c2 and black had a pawn 

on b4
c2c4 b4xc3 en passant, white is 

in double check. Since the black pawn is no 

longer on the board, white must have captured it 

in the last move. So, the solution to this problem 

is 1. c2c4, b4c3ep 2. Kb3c3x and the position 

before three moves is shown in diagram 1a. 

We define a retrograde chess move as 

follows: 

Definition (retrograde chess move). If in 

accordance with the laws of chess [4] position 

Pn+1 arises from position Pn due to the move p of 

piece f then the retrograde chess move  of 

move p is the movement of piece f due to the 

position Pn arising from position Pn+1. 



Diagram 1a. The position three moves before the 

position in diagram 1 
 

 #  #  #  # 
#  #  #  #  
 #  #  #  # 
# ä # à #  #  
À ë  #  #  # 

# # È #  #  #  
 # Ê #  #  # 
#  # è #  #  

 

In accordance with the above mentioned 

definition we can set up the rules of retrograde 

chess moves into two main groups: those rules 

which describe the retrograde moves of each 

chess piece and common rules for all moves. 

In this article we will not present all of the 

rules for each piece because they clearly arise 

from the definition of retrograde chess moves. 

We give just one example: The retrograde move 

of the king is the movement from the starting 

square to one of the eight closest squares in the 

same row, column or diagonal with the following 

conditions: the end square is not near the 

not been yet played with the moved king. 

Common rules for all retrograde moves are: 

 

I. 
turn 

II. After retrograde en passant capture, two 

squares backwards by the retrograde 

captured pawn must be played 

III. The end square of the retrograde move 

must be empty 

IV. 
appear

1
 on the starting square or the 

square can remain empty, but the 

following conditions must be satisfied: 

a) 
last row of the chessboard 

b) In cases of retrograde capture by the 

remain empty 

c) In those situations of retrograde 

moves by the pawn without 

retrograde capturing (one or two 

squares backwards), any retrograde 

castling and any retrograde en 

passant capturing, the starting square 

must remain empty 

                                                 
1 We call this retrograde capturing. 

d) In case of retrograde promotion with 

retrograde capturing, the starting 

 

V. After some retrograde moves, the 

 

VI. After the move no players can have more 

than eight pawns or more than sixteen 

pieces 

 

The Coq system
2
 is a computer tool for 

verifying theorem proofs in higher-order logic. 

These theorems may concern usual mathematics, 

proof theory, or program verification. The 

underlying theory of the Coq system is Calculus 

of Inductive Constructions, a formalism that 

combines logic from the point of view of -

calculus and typing. Objective Caml3
 is the 

implementation language for the Coq. 

Concerning a proposition that one wants to 

prove, the Coq system proposes tools, called 

tactics, to construct a proof, using elements taken 

from a context, namely, declarations, definitions, 

axioms, hypotheses, lemmas, and already proven 

theorems. In addition, the Coq system provides 

operators, called tacticals, that make it possible 

to combine tactics and, in such manner, to build 

more complex tactics. This paper presents a 

formal system for automated reasoning about 

retrograde chess problems using Coq. 

 

2 Definitions 
 

2.1 Definitions of the chess pieces, the 

colors of pieces, types of retrograde chess 

moves and the chessboard 
 

We define the chess pieces, the colors of 

pieces and types of retrograde chess moves as 

enumerated inductive type [2, 137]: 

 
Inductive pieces:Set:=P | B | R | Q | N | K | p | b | r | q | n | k | O | v. 

 

Constructors of above mentioned enumerated 

inductive type pieces and its meanings are shown 

in table 1. 

The definition of the colors of pieces has got 

only two constructors: 

 
Inductive colors : Set := white | black. 

 

 

                                                 
2 http://coq.inria.fr 
3 http://caml.inria.fr 



Table 1: Constructors of enumerated inductive type 

pieces and its meanings 

 

Cons. Piece Cons. Piece Cons. Piece 

P Ê p ê 
O 

empty 

square 
B À b à 

R Ä r ä 

v 

area 
outside 

the 

board 

Q Æ q æ 

N Â n â 

K È k è 

 

We group the types of moves in accordance 

with their properties: 

 
Inductive type_of_move : Set := 
standard_move 
| promotion 
| promotion_cap_3 
| promotion_cap_4 
| castling_kingside_white 
| castling_queenside_white 
| castling_kingside_black 
| castling_queenside_black 
| p_1 
| p_2 
| p_cap_3 
| p_cap_4 
| p_ep_cap_5 
| p_ep_cap_6. 

 

The meanings of the above constructors are: 

 

- promotion - retrograde promotion 

- promotion_cap_3, promotion_cap_4 - 

different retrograde promotions with 

 

- castling_kingside_white - retrograde white's 

kingside castling 

- castling_queenside_white - retrograde white's 

queenside castling 

- castling_kingside_black - retrograde black's 

kingside castling 

- castling_queenside_black - retrograde black's 

queenside castling 

- p_1 - one square backwards by the pawn 

- p_2 - two squares backwards by the pawn 

- p_cap_3, p_cap_4 - two different retrograde 

captures by the pawn (according to the 

 

- p_ep_cap_5, p_ep_cap_6 - two different 

retrograde en passant captures (according to 

 

- standard_move - all other retrograde moves 

 

On the other hand, we introduce both 

coordinates of the squares (rows and columns) as 

just one annotated inductive type [8, 39]: 

 
Inductive coordinates : nat -> Prop := 
| coord1 : coordinates 1 
| coord2 : coordinates 2 
| coord3 : coordinates 3 
| coord4 : coordinates 4 
| coord5 : coordinates 5 
| coord6 : coordinates 6 
| coord7 : coordinates 7 
| coord8 : coordinates 8. 

 
Diagram 2. The coordinates of the squares due to the 

orientation of chessboard 

 

 Black 

1  #  #  #  # 
2 #  #  #  #  
3  #  #  #  # 
4 #  #  # 4,6 #  
5  #  #  #  # 
6 #  #  #  #  
7  #  #  #  # 
8 #  #  #  #  
 

1 2 3 4 5 6 7 8 

 White 

 

2.2 Definition of chess position 
 

The 

declare in a retrograde sense (who moved the last 

piece) as the following declaration of global 

parameter on_turn: 

 
Parameter on_turn : nat -> colors. 

 

This parameter has type nat -> colors where 

nat is a type of current ordinal number of the 

move. Also, we introduce hypothesis Hon about 

the value of this number (at the beginning of 

reasoning about a retrograde chess problem, the 

value of this number is zero): 

 
Parameter on : nat. 
Hypothesis Hon : on=0. 

 

The position of pieces on the board in the 

moment on is a list of lists and we introduce it as 

hypothesis (first we need to declare parameter 

position with type nat -> list (list pieces)):
4
 

 

Parameter position : nat -> list (list pieces). 

                                                 
4 All hypotheses at the end of these sections correspond to problem 
5 which will be considered in Section 4.3. 



Variable H_position : position on = 

nil. 

 

In the given position the black king is in 

check. This is because we can conclude that 

white made the last move and we introduce this 

fact as a hypothesis: 

 
Hypothesis H_on_turn : on_turn on=white. 

 

From the hypothesis H_position the 

coordinates of the white and black kings arise, as 

well as the number of white and black pawns and 

the total number of white and black pieces. This 

data is very important for the speed of our 

system and we store them in separate hypotheses 

in the following way: 

 
Parameter xKw yKw xkb ykb : nat -> nat. 
 
Hypothesis Hxkb : xkb on=1. 
Hypothesis Hykb : ykb on=1. 
Hypothesis HxKw : xKw on=1. 
Hypothesis HyKw : yKw on=3. 
 
Parameter 
white_pawns_number 
black_pawns_number 
white_pieces_number 
black_pieces_number : nat -> nat. 
 
Hypothesis H_white_pawns_number:white_pawns_number on=3. 
Hypothesis H_black_pawns_number:black_pawns_number on=0. 
Hypothesis H_white_pieces_number:white_pieces_number on=7. 
Hypothesis H_black_pieces_number:black_pieces_number on=1. 

 

2.3 Definition of retrograde move 
 

Each retrograde move is uniquely defined by 

several attributes. For example, every standard 

move is defined by the coordinates of the starting 

square, the coordinates of the end square, the 

o

type of move. On the other hand, the retrograde 

move p_2 is only defined by the column of the 

moved pawn and the type of move. 

Anyway, our definition of the retrograde 

move will contain the same arguments for all 

retrograde moves: the ordinal number of the 

move, the piece that is moved, the coordinates of 

the starting and the end squares, the captured 

piece and the type of move: 

 
Inductive move : Set := moved : nat -> pieces -> nat -> nat -> nat -
> nat -> pieces -> type_of_move -> move. 

 

The reason for such a wide definition lies in 

our need to have all the relevant information 

about the moves in a single hypothesis. As a 

result, our system becomes faster. 

When solving problems we will thread the 

sequences of retrograde moves in the special 

hypothesis H_list_moves. For example, the fact 

that a given position arises after 1. Nb6a8, 

Ka7a8x will be stored on the list as follows: 

 
H_list_moves : list_moves 2 = 
moved 0 k 1 1 2 1 N standard_move :: 
moved 1 A 1 1 3 2 b standard_move :: nil 

 

2.4 Possible captured pieces 
 

In rules IV and VI in Section 1 we outlined 

the conditions which must be satisfied 

concerning the content of the starting square 

after the retrograde move. These conditions will 

be later checked by tactics. In general, we can 

introduce the following annotated inductive 

types for possible white and black captured 

pieces: 

 
Inductive possible_captured_pieces_white : pieces -> Prop := 
| cap_piece_w_b : possible_captured_pieces_white b 
| cap_piece_w_r : possible_captured_pieces_white r 
| cap_piece_w_q : possible_captured_pieces_white q 
| cap_piece_w_n : possible_captured_pieces_white n 
| cap_piece_w_p : possible_captured_pieces_white p 
| cap_piece_w_O : possible_captured_pieces_white O. 
 
Inductive possible_captured_pieces_black : pieces -> Prop := 
| cap_piece_b_B : possible_captured_pieces_black B 
| cap_piece_b_R : possible_captured_pieces_black R 
| cap_piece_b_Q : possible_captured_pieces_black Q 
| cap_piece_b_N : possible_captured_pieces_black N 
| cap_piece_b_P : possible_captured_pieces_black P 
| cap_piece_b_O : possible_captured_pieces_black O. 

 

3 Functions 

 

3.1 End squares 
 

In this section we introduce those functions that 

will determine whether a square can be the end 

square of a piece in a given position on the basis 

(v :: nil) ::                 

(v :: k :: O :: K :: O :: O :: O :: O :: O :: nil) :: 

(v :: O :: O :: O :: O :: Q :: O :: O :: O :: nil) :: 

(v :: O :: O :: O :: O :: O :: O :: O :: O :: nil) :: 

(v :: O :: O :: B :: O :: P :: O :: O :: O :: nil) :: 

(v :: O :: O :: O :: P :: O :: O :: O :: O :: nil) :: 

(v :: O :: O :: O :: O :: O :: O :: O :: P :: nil) :: 

(v :: O :: O :: O :: O :: O :: O :: O :: O :: nil) :: 

(v :: O :: O :: O :: O :: O :: O :: O :: B :: nil) :: 



of the content of the relevant squares for that 

piece. We call such squares possible end squares 

because each retrograde move must also satisfy a 

number of other conditions (for example after the 

in check - see rule V in Section 1). 

 
3.1.1 Standard moves by the bishop, rook and 

queen 

 

The bishop, rook or queen functions are 

recursive. With these functions we will 

determine how many squares are empty, 

beginnings from the starting square in a number 

of possible directions. 

First we introduce the possible directions of a 

move for the bishop, rook and queen, since in 

different directions, the coordinates of the 

possible end squares change in different ways 

(see diagram 3). 

Thus, we introduce the following enumerated 

inductive types: 

 
Inductive directions_bishop : Set := lu | ru | rd | ld. 
 
Inductive directions_rook : Set := left | right | up | down. 

 

The set of directions for the queen is actually a 

union of the directions for the bishop and rook. 

But, the constructors in two different inductive 

definitions must be different. This is because we 

need an extra definition for the queen: 

 
Inductive directions_queen : Set := lu_queen | ru_queen | 
rd_queen | ld_queen | left_queen | right_queen | up_queen | 
down_queen. 

 
Diagram 3. The possible directions of moves by the 

bishop, rook and queen 

 

lu     

u
p
    ru 

  #  #  #  #  
 #  #  #  #   
  #  #  #  #  
 #  #  #  #   

left  #  #  #  # right 

 #  #  #  #   
  #  #  #  #  
 #  #  #  #   

ld     

d
o
w

n
 

   rd 

 

In this article we only provide the function 

that will determine whether a square can be the 

end square of the bishop: 

Parameter xp_var yp_var xz yz u : nat. 
 

Fixpoint end_square_bishop_temp (xp_var yp_var : nat)  
(s:directions_bishop) (l:list (list pieces)) (i:nat) {struct i} : Prop := 
match i with 
S i' => 
match s with 
lu => 
match xp_var with 
S xp_var' => 
match yp_var with 
S yp_var' => match nth yp_var' (nth xp_var' l nil) v with 
              O => end_square_bishop_temp xp_var' yp_var' lu l i' 
             | _ => u<8-i /\ xz=xp-u-1 /\ yz=yp-u-1 
             end 
| _ => False 
end 
| _ => False 
end 
| ru => 
match xp_var with 
S xp_var' => 
match S (S yp_var) with 
S yp_var' => match nth yp_var' (nth xp_var' l nil) v with 
              O => end_square_bishop_temp xp_var' yp_var' ru l i' 
             | _ => u<8-i /\ xz=xp-u-1 /\ yz=yp+u+1 
             end 
| _ => False 
end 
| _ => False 
end 
| rd => 
match S (S xp_var) with 
S xp_var' => 
match S (S yp_var) with 
S yp_var' => match nth yp_var' (nth xp_var' l nil) v with 
              O => end_square_bishop_temp xp_var' yp_var' rd l i' 
             | _ => u<8-i /\ xz=xp+u+1 /\ yz=yp+u+1 
             end 
| _ => False 
end 
| _ => False 
end 
| ld => 
match S (S xp_var) with 
S xp_var' => 
match yp_var with 
S yp_var' => match nth yp_var' (nth xp_var' l nil) v with 
              O => end_square_bishop_temp xp_var' yp_var' ld l i' 
             | _ => u<8-i /\ xz=xp+u+1 /\ yz=yp-u-1 
             end 
| _ => False 
end 
| _ => False 
end 
end 
| _ => False 
end. 

 
Definition end_square_bishop xp_var yp_var s l := 
end_square_bishop_temp xp_var yp_var s l 8. 

 

The functions for the rook and queen are 

analogous. 

 



3.1.2 Standard moves by the knight and king, 

moves by the pawn and other non-standard moves 

 

The functions which determine possible end 

squares for knight and king are not recursive. 

These functions simply check whether a square 

is empty or not. For these pieces we introduce 

numerical notations of the possible end squares 

(see the example for the knight in diagram 4). 

 
Diagram 4. Possible end squares for the knight 

 
 #  #  #  # 
#  #  #  #  
 # 1 # 2 #  # 
# 8 #  # 3 #  
 #  Ã  #  # 

# # 7 #  # 4 #  
 # 6 # 5 #  # 
#  #  #  #  

 

So, the function for the knight is: 

 
Definition end_square_knight (xp yp i:nat) (l : list (list figure)) : 
Prop := 
  match i with 
      1 => match nth (yp-1) (nth (xp-2) l nil) v with 
               O => xz=xp-2 /\ yz=yp-1 
             | _ => False 
           end 
    | 2 => match nth (yp+1) (nth (xp-2) l nil) v with 
               O => xz=xp-2 /\ yz=yp+1 
             | _ => False 
           end 
    | 3 => match nth (yp+2) (nth (xp-1) l nil) v with 
               O => xz=xp-1 /\ yz=yp+2 
             | _ => False 
           end 
    | 4 => match nth (yp+2) (nth (xp+1) l nil) v with 
               O => xz=xp+1 /\ yz=yp+2 
             | _ => False 
           end 
    | 5 => match nth (yp+1) (nth (xp+2) l nil) v with 
               O => xz=xp+2 /\ yz=yp+1 
             | _ => False 
           end 
    | 6 => match nth (yp-1) (nth (xp+2) l nil) v with 
               O => xz=xp+2 /\ yz=yp-1 
             | _ => False 
           end 
    | 7 => match nth (yp-2) (nth (xp+1) l nil) v with 
               O => xz=xp+1 /\ yz=yp-2 
             | _ => False 
           end 
    | 8 => match nth (yp-2) (nth (xp-1) l nil) v with 
               O => xz=xp-1 /\ yz=yp-2 
             | _ => False 
           end 
    |_ => False 
  end. 

 

For the moves by the pawn and other non-

standard moves, the functions and methods for 

determining possible end squares are very 

diverse and will not be shown in this article. 

 

3.2 Axioms about possible combinations of 

moves attributes 
 

With a view to generating valid retrograde 

moves more easily, as well as the easier 

elimination of invalid retrograde moves, we 

introduce axioms about possible combinations of 

moves attributes according to piece and type of 

move. Here we give the axiom about standard 

move by the white bishop: 

 
Axiom A_standard_move_information_B : 
move_information B= 
(tm=standard_move /\ 
direction_bishop=db /\ 
xp_var=xp /\ 
yp_var=yp /\ 
end_square_bishop xp_var yp_var db (position on) /\ 
possible_captured_pieces_white p_cap). 

 

The above axiom contains data about the type 

of move, the direction, the end square and the 

move p_1 does not contain anything about the 

type of move

captured piece because none of this data exists 

for move p_1. 

With the aim of applying the described 

axioms during reasoning about chess positions, 

we introduce the following hypothesis in which 

the axioms will be applied: 

 
Parameter move_information : pieces -> Prop. 
Hypothesis H_move_information : move_information (fp on). 

 

3.3 Functions for computing new positions 

after a retrograde move 
 

After every retrograde move a new position 

arises. Before we define the main function in 

order to compute the new position of pieces on 

the chessboard (list in variable H_position), we 

need to define several auxiliary functions. 

The function beginning_of_list takes the n 

first rows of a list: 

 
Fixpoint beginning_of_list (n : nat) (l : list (list pieces)) {struct n} : 
list (list pieces) := 
  match l with 
      nil => nil 
    | l' :: l1 => match n with 
                     0 => nil 
                   | S n1 => l' :: beginning_of_list n1 l1 
                 end 
  end. 



 The function rest_of_list takes the rows from 

m-th to the end of list (including m-th row): 

 
Fixpoint rest_of_list (m : nat) (l : list (list pieces)) {struct m}: list (list 
pieces) := 
  match l with 
      nil => nil 
    | l' :: l1 => match m with 
                     0 => l 
                   | S n1 => rest_of_list n1 l1 end 

  end. 

 

The function change_of_piece for the given 

linear list of pieces returns the list with changed 

n-th element by piece f: 

 
Fixpoint change_of_piece (n : nat) (f : pieces) (l : list pieces) {struct 
n} : list pieces := 

  match l with 
      nil => nil 
    | l' :: l1 => match n with 
                      0 => f :: l1 
                    | S n1 => l' :: change_of_piece n1 f l1 
                  end 
end. 

 

And finally we need a function which for the 

given position returns a new position with the 

changed piece in place (xp,yp) of the new piece 

fo (fo is the captured piece): 

 
Definition position_xp_yp (xp yp : nat) (l : list (list pieces)) (fo : 
pieces) := app (app (beginning_of_list xp l) ((change_of_piece yp 
fo (nth xp l nil)) :: nil)) (rest_of_list (xp+1) l). 

 

The main function position_new will compute 

the new position of pieces on the board 

depending on the type of move and is based on a 

pattern matching over hypotheses about types of 

move. For example, if the standard_move is 

matched in the context then the function will be 

the result of the following term:
5
 

 
app (app (beginning_of_list xk (position_xp_yp xp yp l fo)) 
((change_of_piece yk fp (nth xk (position_xp_yp xp yp l fo) nil)) :: 
nil)) (rest_of_list (xk+1) (position_xp_yp xp yp l fo))6 

 

We define those parts of the function that 

correspond to others types of moves in different 

ways. For example, retrograde promotion with 

capturing (promotion_cap_3) is a double move 

like we see in figure 1. 

                                                 
5 The function position_new is very long and we only can show 
here some of its elements. 
6 Parameters xp, yp and xk, yk are the coordinates of the starting and 

end squares, fp is a piece on the starting square, fo is a captured 
piece and l is a list of the lists with the given position of pieces on 

the board. 

The part of the function position_new that 

corresponds to the move shown on figure 1 looks 

like this: 

 
match xp with 
1 => position_xp_yp 1 yp (app (app (beginning_of_list 1 
(position_xp_yp 2 (yp-1) l P)) ((change_of_piece yp O (nth 1 
(position_xp_yp 2 (yp-1) l P) nil)) :: nil)) (rest_of_list 2 
(position_xp_yp 2 (yp-1) l P))) fo 
| 8 => position_xp_yp 8 yp (app (app (beginning_of_list 8 
(position_xp_yp 7 (yp-1) l p)) ((change_of_piece yp O (nth 8 
(position_xp_yp 7 (yp-1) l p) nil)) :: nil)) (rest_of_list 9 
(position_xp_yp 7 (yp-1) l p))) fo 
| _ => nil 
end 

 

We get a new position (position in the 

moment of time on+1) if we apply the function 

position_new in the position in the moment of 

time on. We store this new position in a special 

hypothesis H_new_position: 

 
Variable H_new_position : position (on+1) = 
position_new xp yp xk yk (fp rb) fo vp (position on). 

 
Figure 1. Retrograde promotion of the white queen 

with a captured black knight as a double move 

 
 #  # Æ #  # 
#  #  #  #  
 #  #  #  # 
#  #  #  #  
 #  #  #  # 

# #  #  #  #  
 #  #  #  # 
#  #  #  #  

 

 
 
 
 
 

 #  #  #  # 
#  # Ê #  #  
 #  #  #  # 
#  #  #  #  
 #  #  #  # 

# #  #  #  #  
 #  #  #  # 
#  #  #  #  

 

 
 
 

 

 #  # â #  # 
#  # Ê #  #  
 #  #  #  # 
#  #  #  #  
 #  #  #  # 

# #  #  #  #  
 #  #  #  # 
#  #  #  #  

 

 

The empty square is replaced with the black knight 

Move of empty square (piece O) from (2,4) to (1,5) and 
the captured white pawn 



3.4 Functions for computing check 

positions 
 
3.4.1 Recursive functions for the bishop, rook and 

queen 

 

In this section, we outline the recursive 

functions that check the content of the squares, 

starting from the closest square of (white or 

black) the king in all eight directions. If the first 

non-empty square in a diagonal direction 

if the first non-empty square in a vertical or 

horizontal direction engages with the opponent's 

rook or queen then the observed king is in check. 

If another piece is on the first non-empty square, 

then the king is not in check from the observed 

direction. 

For example, the function for direction left-up 

(lu) looks like this: 

 
Fixpoint check_lu_k (xkb ykb : nat) (pos : list (list pieces)) {struct 
xkb} : Prop := 
  match xkb with 
      S xkb' => match ykb with 
                    S ykb' => match nth ykb' (nth xkb' pos nil) v with 
                                  O => check_lu_k xkb' ykb' pos 
                                | Q => check_lu_queen_k /\ 
                                           x_check_lu_queen_k=xkb' /\ 
                                           y_check_lu_queen_k=ykb' 
                                | B => check_lu_bishop_k /\ 
                                           x_check_lu_bishop_k=xkb' /\ 
                                           y_check_lu_bishop_k=ykb' 
                                | _ => True 
                              end 
                  | _ => True 
                end 
    | _ => True 
  end. 

 
3.4.2 Functions for the knight and pawn 

 

The knight and pawn functions do not need to 

be recursive, since they only need to check either 

on a concrete square with regard to king is 

opponent's knight or pawn. 

For example, the following function will 

check whether the black king is in check with a 

white knight: 

 
Definition check_knight_k (i':nat) (l : list (list pieces)) (xkb' ykb':nat) 
: Prop := 

  match i' with 
      1 => match nth (ykb'-1) (nth (xkb'-2) l nil) v with 
               N => check_knight_k_1 
             | _ => True 
           end 
    | 2 => match nth (ykb'+1) (nth (xkb'-2) l nil) v with 
               N => check_knight_k_2 
             | _ => True 

           end 
    | 3 => match nth (ykb'+2) (nth (xkb'-1) l nil) v with 
               N => check_knight_k_3 
             | _ => True 
           end 
    | 4 => match nth (ykb'+2) (nth (xkb'+1) l nil) v with 
               N => check_knight_k_4 
             | _ => True 
           end 
    | 5 => match nth (ykb'+1) (nth (xkb'+2) l nil) v with 
               N => check_knight_k_5 
             | _ => True 
           end 
    | 6 => match nth (ykb'-1) (nth (xkb'+2) l nil) v with 
               N => check_knight_k_6 
             | _ => True 
           end 
    | 7 => match nth (ykb'-2) (nth (xkb'+1) l nil) v with 
               N => check_knight_k_7 
             | _ => True 
           end 
    | 8 => match nth (ykb'-2) (nth (xkb'-1) l nil) v with 
               N => check_knight_k_8 
             | _ => True 
           end 
    |_ => True 
  end. 

 

3.5 Computing the new positions of kings, 

and black pawns, the total number of 

white and black pieces and the ordinal 

number of the move 
 

If one of the kings has been moved, either by 

a standard move or by castling, their coordinates 

will also change. We need functions to compute 

these new coordinates. For the white king, the 

functions are: 

 
Definition change_xKw on : nat := 
  match (fp on) with 
      K => xk 
    | R => match tm with 
               castling_kingside_white => 8 
             | castling_queenside_white => 8 
             | _ => xKw on 
           end 
    | _ => xKw on 
  end. 
 
Definition change_yKw on : nat := 
  match (fp on) with 
      K => yk 
    | R => match tm with 
               castling_kingside_white => 5 
             | castling_queenside_white => 5 
             | _ => yKw on 
           end 
    | _ => yKw on 
  end. 

 



The functions for the black king are 

analogous. We store the new coordinates in the 

following hypotheses: 

 
Variable H_new_xKw : xKw (on+1) = change_xKw on. 
Variable H_new_yKw : yKw (on+1) = change_yKw on. 
Variable H_new_xkb : xkb (on+1) = change_xkb on. 
Variable H_new_ykb : ykb (on+1) = change_ykb on. 

 

In a similar way, we define the functions and 

hypotheses for computing and storing other 

information mentioned in this section: which 

black pawns, the total number of white and black 

pieces and the ordinal number of move. 

 

3.6 Hypotheses about check positions 
 

In the hypotheses about check positions we 

will store the results of the functions for 

computing check positions (see chapter 3.4). We 

can split this kind of information into four 

groups: 

 

1. Is the player whose turn it is in check? 

2.  

3. Will the player whose turn it is be in 

check after his move? 

4. 

 

 

If the answers to the first and fourth cases are 

positive, then the position is not valid and must 

be eliminated.
7
 If the answers in the second and 

third cases are positive, then the position is valid. 

However, in the second case the player whose 

turn it is must in their move eliminate the check 

position. The third case will be in the next move 

the same as the second. 

So, we introduce into the context hypotheses 

about the check positions in two adjoining 

moments of time:
8
 

 
Hypothesis H_check_knight_k_M : check_knight_k M (position on) 
(xkb on) (ykb on). 
 
Hypothesis H_check_pawn_k_N : check_pawn_k N (position on) 
(xkb on) (ykb on). 
 
Hypothesis H_check_DIRECTION_k : check_DIRECTION_k (xkb 
on) (ykb on) (position on). 
 
Hypothesis H_check_knight_k_M_new : check_knight_k M 
(position (on+1)) (xkb (on+1)) (ykb (on+1)). 

                                                 
7 See Axiom V in Section 1. 
8 Here we show just the hypotheses for the black king. For the 
white king the hypotheses are analogous. 

Hypothesis H_check_pawn_k_N_new : check_pawn_k N (position 
(on+1)) (xkb (on+1)) (ykb (on+1)). 
 
Hypothesis H_check_DIRECTION_k_new : check_DIRECTION_k 
(xkb (on+1)) (ykb (on+1)) (position (on+1)). 
 
M {1, ..., 8} 

 N {1, 2} 

DIRECTION {lu, ru, rd, ld, left, right, up, down} 

 

4 Reasoning about retrograde chess 

problems 
 

4.1 Goal 
 

In our system we present the goal as the 

proposition not_valid_move: 

 
Parameter not_valid_move : Prop. 
 
Goal not_valid_move. 

 

During the reasoning about chess positions 

the logical value of the proposition 

not_valid_move will be unknown except in those 

cases when we conclude that a move or position 

is not valid. To eliminate invalid moves we 

introducing the following meta-axiom: 

 
Axiom Invalidity_of_move : not_valid_move=True. 

 

4.2 Tactics, tacticals and Ltac function 
 

In this article we do not present tactics for 

generating retrograde chess moves or reasoning 

about the validity of moves and their related 

positions.
9
 We simply use the Ltac function 

One_Move which is made up of all these tactics. 

Whilst generating the valid retrograde moves in a 

given position, this function inductively builds 

up starting and end squares, captured pieces and 

the types of moves. In this way, this function 

builds up a certain number of subgoals. Each 

subgoal belongs to one retrograde move. With 

the developed heuristics invalid moves are 

eliminated as soon as possible. After the first 

application of the function One_Move, only the 

valid moves remain in the form of unproven 

subgoals. The context of each of these subgoals 

is the same as the starting context. In the second 

iteration, the function One_Move will be applied 

to all remaining subgoals and so on. In such a 

way, we use Coq

                                                 
9 The code of our system has more than 5500 lines and more than 

200,000 characters. 



moves and positions. In the last three sections we 

will show how the function One_Move can be 

used for a higher level of reasoning - reasoning 

about sequences of retrograde moves. 

 

4.3 Invalidity of a given position 
 
Diagram 5: Which side is white? R. M. Smullyan [10, 

13] 
North 

 

è # È #  #  # 
#  #  Ç  #  
 #  #  #  # 
#  Á  Ë  #  
 #  Ë  #  # 

# #  #  #  # Ê 
 #  #  #  # 
#  #  #  # À 

 

South 

 

Let us assume that the white side is on the 

south. We can check this assumption by 

repeatedly applying the function One_Move in a 

given position: 

 
repeat One_Move. 

 

Our system proves that the position is not 

valid.
10

 It means that the assumption is wrong 

and that white is on the north. 

 

4.4 Last move 
 
Diagram 6. What was black's last move? R. M. 

Smullyan [10, 23] 

 

è # È #  #  # 
#  #  #  #  
 #  #  #  # 
#  #  #  #  
 #  #  #  # 

# #  #  #  #  
 #  #  #  Ë 
#  #  #  Á  

 

The results of applying the Ltac function 

One_Move are three unproven subgoals with the 

following hypotheses: 

 
H_list_moves : list_moves 1 = 
moved 0 k 1 1 2 1 B standard_move :: nil 
 
H_list_moves : list_moves 1 = 
moved 0 k 1 1 2 1 N standard_move :: nil 
 

                                                 
10 All subgoals become proven. 

H_list_moves : list_moves 1 = 
moved 0 k 1 1 2 1 O standard_move :: nil 

 

So, we must to use the Ltac function 

One_Move at least twice: 

 
One_Move; 
One_Move. 

 

In this way we get five unproven subgoals 

with the following hypotheses: 

 
H_list_moves : list_moves 2 = 
moved 0 k 1 1 2 1 N standard_move :: 
moved 1 A 1 1 3 2 b standard_move :: nil 
 
H_list_moves : list_moves 2 = 
moved 0 k 1 1 2 1 N standard_move :: 
moved 1 A 1 1 3 2 r standard_move :: nil 
 
H_list_moves : list_moves 2 = 
moved 0 k 1 1 2 1 N standard_move :: 
moved 1 A 1 1 3 2 q standard_move :: nil 
 
H_list_moves : list_moves 2 = 
moved 0 k 1 1 2 1 N standard_move :: 
moved 1 A 1 1 3 2 n standard_move :: nil 
 
H_list_moves : list_moves 2 = 
moved 0 k 1 1 2 1 N standard_move :: 
moved 1 A 1 1 3 2 O standard_move :: nil 

 

We can see that every list of moves contains 

the same first retrograde move: the standard 

move by the black king from a8 to a7 with 

retrograde captured white knight. So, the 

problem is solved and solution is: the last move 

of the black was the move Ka7a8x with the 

capture of the white knight.
11

 

 

4.5 Last n moves 
 

Now we can solve problem 1 from the 

Section 1 using our system. We have to apply the 

following tactical on goal (we need to find at 

three last moves): 

 
One_Move; One_Move; One_Move. 

 

We get the following solution which is in 

accordance with the solution we already gave in 

Section 1: 

 
H_list_moves : list_moves 3 = 
moved 0 K 6 3 6 2 p standard_move :: 
moved 1 p 6 3 xz yz O p_ep_cap_6 :: 
moved 2 P 5 3 7 3 O p_2 :: nil 

 

                                                 
11 Solving such types of problems is also automated in our system. 



5 Summary 
 

In this article we have shown that the Coq - a 

formal proof management system, and Calculus 
of Inductive Constructions - the underlying 

theory of the Coq, can be used for developing the 

environment as a base for reasoning about 

retrograde chess problems. This environment is 

comprised of axioms, definitions and hypotheses 

of chess objects, as well as functions for 

computing changes in chessboard. Apart from 

the available Coq's tactics, in order to be able to 

solve these problems, new tactics (by using Coq 

tacticals) are created as well as especially 

heuristics in the form of more complex tacticals. 

Due to their complexity, these tacticals are not 

presented in this article but they are used for 

solving several presented problems. 
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