
Applications of Genetic Algorithms

Peter Schreiber

Institute of applied informatics, automation and

mathematics

Faculty of Materials Science and Technology

Slovak University of Technology in Bratislava

Paulinska 1, 917 24 Trnava, Slovakia

Peter.schreiber@stuba.sk

Abstract. Genetic algorithms are well-known, simple

and powerful optimizing method, inspired by

Darwin’s evolutionary theory. They are used in many

areas. Their advantage is that they do not need a

mathematical description of the optimized problem.

Therefore they are good alternative to mathematical-

based methods, if these have failed.

More applications of genetic algorithms have been

designed and implemented in the author’s

organization. Some of them are described in this

contribution: a system for production optimization in

production systems, a system for planning of robot’s

optimal trajectory and a system for faces (identikits)

design by genetic algorithms.

Keywords. Genetic algorithms, optimization, robot,

production system, identikit

1 Introduction

Analytical optimizing methods are not usable in

many cases. Just then some alternative optimizing

ways should be used. Genetic algorithms offer a

modern and unconventional solution mode.

The genetic algorithms imitate the natural evolution

processes and they take advantage of them for the

optimizing tasks solution. The principle of genetic

algorithms bases on the fact, that individuals of

a population (individual = solution of the task), which

are more successful (better) then others, go

successfully to next generation (generation =

computing iteration). In the next generation they can

be changed (improved) within genetic operations. The

main genetic operations are mutation and crossover

operation.

The genetic optimizing algorithms are simple, but

robust. They employ stochastic processes and they are

able to find a global extreme without deadlock in a

local one. They are not restricted by parameters

number or by limiting conditions. They can solve

tasks with combinatory rising solutions space.

Therefore they are applicable for solution of various

difficult problems, where analytical approaches fail.

1.1 Base terms

Before we discuss the applications of genetic

algorithms, some base terms of their terminology

should be specified.

Table1. Base terms.

Term Explanation

Population A group of individuals of any defined

number. Iterative computations take

place in the group. Iteration =

generation.

Chromosome One individual in the population, i.e.

one solution. Ordered set of binary,

numerical or symbolic values, which

represent properties of the individual.

Gene Elementary chromosome item.

Objective

function

Function for the chromosome

evaluation.

Crossover

operation

Genetic operation, where two parent

chromosomes split on the same

random position and change one of

two parts.

Mutation Genetic operation, where some gene

varies in a new random allowed value.

1.2 Principle of the genetic algorithm

A genetic algorithm consists generally of the next

steps: [3], [4], [8]

1. An initial population of n individuals is

generated. The process can be random, or

regulated - if some information about solution

exists.

2. The objective function of each chromosome is

evaluated.

3. Terminal condition’s fulfillment (required

objective function value, computation time or

iterations number) is tested. If the condition is

satisfied, the most successful chromosome is

the asked solution.

4. Otherwise two groups of chromosomes should

be chosen for the next generation. There are

“a” best chromosomes in the first group. They

go directly into the next generation. This

“elitism” ensures that the new solution cannot

be worse than the last one. The second group

(called work group) consists of n-a chro-

mosomes for the genetic operations (mutation,

crossover). There are many methods, how to

select chromosomes into work group.

5. The genetic operations are performed on the

chromosomes of the work group.

6. The new generation from the chromosomes of

the first as well as of the work group is created.

The algorithm continues by the step 2.

Figure 1. Base genetic algorithm

The main problem in using of GA is the task

representation in GA concepts. Possible solutions

should be represented as chromosomes; an objective

function must be defined etc.

1.3 Visualization of GA

GA can be simply visualized to enable a clear

understanding of GA operations. The graphical

demonstration is inspired by the fact that GA works

by Darwinian evolutional theory. [2],[4]

Let us suppose that solution of some technical

problem is a vector with 8 numbers. This vector is one

individual (e.g. a butterfly) in GA terminology. Each

element of the vector represents one property of the

butterfly (e.g. wings color, wings form, wings size,

tentacles type, tentacles size, body size, body type,

body color).

If genetic algorithm solves the technical problem

(searches for 8 numbers iteratively), the vectors

represent different butterflies in iterative cycles. The

butterflies in various generations can be displayed and

the evolution is visible.

2 Applications

2. 1 Production optimization

Let suppose that production costs that depend on

the lot sizes and their input intervals should be

minimized. The restrictions are flow time, capacity

utilization and the number of finished parts. So :

N(d1, t1, d2, t2, ...,dn, tn) → min (1)

Ti(d1, t1, d2, t2, ...,dn, tn) ≤ Timax, i = 1..n (2)

Cj(d1, t1, d2, t2, ...,dn, tn) ≥ Cjmin, j = 1..m (3)

Pi(d1, t1, d2, t2, ...,dn, tn) ≥ Pimin, i = 1..n (4)

dimin ≤ di ≤ dimax, i = 1 .. n (5)

timin ≤ ti ≤ timax, i = 1 .. n (6)

where N – production costs, n – number of parts,

di – lot size of the i
th

 part, ti – input interval of batch

of the i
th

 part, Ti – flow time of i
th

 part, Cj – capacity

utilization of jth part, M – number of equipment, Pi –

number of finished i
th

 part, Timax – maximally

acceptable flow time of i
th

 part, Cjmin – minimally

acceptable capacity utilization of j
th

 equipment, Pimin –

minimally acceptable number of finished ith parts,

dimin, dimax, timin, timax, - limits of scanned space.

Objective function (1) and constraints (2) – (4)

cannot be analytically expressed, but the simulation

model built in Witness simulator determines values N,

Ti, Cj, Pi. [7]

Chromosome (the solution of the problem) is a

vector of numbers which represents input parameters

of the system (d1, t1, d2, t2, ...,dn, tn). Its elements are

genes.

Population: Let there are 40 individuals (solutions) in

one generation.

Objective function is given by relation (1) and

evaluates each solution. The value N is obtained by

simulation.

Selection: Genetic algorithm requires surviving

“good” solutions. They are those with small value

of N. The fitness of individual solutions is inversely

related to their costs. If we use roulette selection, the

probability of survival is

∑∑∑
===

===
g

k k

k

g

k k

k

g

k

k

k
k

N
N

N

N

F

F
p

111

1

1

1

1
 (7)

where pk is selection probability of k
th

 solution, Fk is

fitness of kth solution, Nk are costs of kth solution

obtained by simulation, g is the number of solutions

in population (40).

N

n-a

a

n-a Crossover

Mutation

Selection
New

population

Solution
Y End? Initialisation

Objective

function

Elitisms: The best 4 solutions turn to the next

generation unchanged to keep the best solutions. The

other 36 solutions are crossovered and mutated.

Crossover operation: one-point crossover of two

individuals in randomly chosen position. Let pc = 1.

Mutation: Mutation deals with probability pm = 0.05.

Computation termination: Number of generations or

calculation time is the ending condition.

The form of genetic algorithm is following:

1. Random solutions - vectors (d1, t1, d2, t2, ...,dn, tn)

are generated, the generated values should fulfill

conditions (2) - (6).

2. The solutions are evaluated by simulation in

Witness.

3. If the ending condition is fulfilled, the best

individual is the desired solution.

4. Otherwise the best 4 solutions are chosen into

new generation. The serial numbers 1 – 4 will be

assigned.

5. Remaining 36 individuals in new generation will

be obtained in the following way:

a. Roulette selection (according to relation (1)).

36 individuals are given to the positions 5 –

40.

b. Neighboring pairs crossover. Conditions (2) –

(4) are checked by the simulation. If the

solution is inadmissible, another random

crossover point is used.

c. Some genes are chosen for mutation in

solutions 5 – 40. New genes have to fulfill

conditions (5) - (6) and new solutions have to

fulfill conditions (2) – (4).

6. New generation is formed by solutions gained in

steps 4 and 5. Algorithm continues by the step 2.

The results of this optimization are comparable or

better than the values obtained by embedded

optimizers of Witness.

2. 2 Robot’s trajectory planning

The motion of robotic arm, autonomous robot (or

robotic systems generally) can be optimized

considering various criteria: travel time, energy

consumption, length of trajectory and/or other. Let us

use the trajectory length as criterion.

In the next text we do not consider the

construction and the architecture of robots. We only

suppose, that every point of robot’s working space is

reachable (that is there are minimal 3 degrees of

freedom). Each desired position can be reached thru

joints rotation and/or translation movement.

The trajectory between two points Xstart = X0

and Xgoal = Xn of robot’s working space is a sequence

of abscises X0X1, X1X2, ... , Xn-1Xn.

Only starting and goal points of movement must

be given. The control system estimates then the

shortest (optimal) trajectory.

The points number can be chosen according to

accuracy of computation. The given open polygon

represents the trajectory from starting point X0 to goal

Xn. The trajectory length is a sum of Euclidean

distances between neighboring points. This length

should be minimal.

min)(
1

2

1 →−∑
=

−

n

i

ii
XX (8)

There are constraints Pi in the robot’s working

space M. Pi are geometrical objects (sets of points)

given by analytical description:

Pi = {X; gji(X) ≤ 0}, where i = 1…k, ji = 1...mi (9)

The number of objects is k and the object i is

described by ji inequalities.

U
k

i

i
PP

1=

= (10)

is then the union of all constraints. Points from P

represent collision points, or, by another words, the

trajectory can consist only of points X, where

X∈ M\P. (11)

There are more optimum trajectories planning

ways described in literature. Dynamical models using

minimum-time criterion, graph-search scheme,

exhaustive search methods, full dynamic models etc.

All reported solution ways need complicated

mathematical apparatus. For all that a genetic

algorithm can be used for the estimation of optimal

trajectory. [3], [4]

In our case the chromosome (individual) is a

trajectory, i.e. a sequence of points. 100 random

sequences (e.g. with 16 points) are generated and

evaluated by objective function (8). Best trajectories

are selected into new generation (we use 10 or 20

trajectories). The roulette-mechanism is used for the

selection of the next 80 or 90 trajectories. They are

two cross-overed with probability 0.8 or 0.9 and then

their points (genes) mutate with probability 0.01 - 0.1.

The cross-over operation means, that two trajectories

exchange their parts, the mutation means, that one

point of a trajectory is replaced by another one, which

is random selected in an allowed space.

An example of two parent chromosomes, the

better one of two children after the cross-over

operation and the same chromosome after proper

mutation are displayed in the next 2D-figures 2, 3 and

4 (for the transparency we used trajectories with only

6 segments (7 points)):

Figure 2. Two trajectories (X0X1X2X3X4X5X6 and

Y0Y1Y2Y3Y4Y5Y6)

Figure 3. Descendant chromosome (trajectory)

X0X1X2X3X4Y5Y6 after crossover operation

Figure 4. The chromosome after the mutation X3 ⇒

X3’

The sought trajectory can consist only of points,

which do not belong to P. The points from P represent

collisions.

Figure 5. Working space with constraints

The genetic algorithm used in this case has some

needed supplements:

1. Only points from working space, which do not

belong to P, can be generated in initial

population. In addition, no point from the

connection of two neighboring points can be

from P:

Xi ∈ M\P for i = 1…k (12)

Xi-1Xi ∩ P = ∅ for i = 1…k (13)

Each trajectory is generated point to point and

each new point is tested according to conditions

(12) and (13). If the generated point Xi does not

fulfill the conditions, it must be refused and

replaced by another one.

The fulfilling of condition (13) is tested by

computation of intersection (common points) of

abscises Xi-1Xi and space P. The new point Xi has

to fulfill the condition; otherwise it must be found

another one.

2. A possible collision by cross-over operation must

be eliminated: There are two allowed trajectories

crossovered in each operation. Segment XaXa+1

from one trajectory and the segment YaYa+1 from

the second one are allowed, but they will be

spited by crossover operation and the descendants

will contain segments XaYa+1 and YaXa+1. The

new segments must be controlled according to

the condition (13). If one of segments intersects

one of constraints, the splitting position in

chromosomes must be moved in another one. If

all cross-over positions are tested without

success, the trajectories can not be cross-overed.

An example of a possible collision by cross-over

operation is given in the figure 6. The lines

(parents) X0X1X2X3 and X0Y1Y2X3 split in the

same random position, e.g. between the second

and the third points. The segments X0X1, X2X3,

X0Y1 and Y2X3 connect into new trajectories

X0X1Y2X3 and X0Y1X2X3. Even though the

ancestors are allowed, the descendents can

intersect possible constraints. In the figure 6 the

descendent X0X1Y2X3 is allowed, but the

descendent X0Y1X2X3 intersect the constraint C

and the condition (13) fails.

Figure 6. Collision by cross-over operation

3. The similar situation rises by mutation: By the

mutation of gene Xa to allowed value Xa’ the old

allowed segments Xa-1Xa and XaXa+1 are replaced

by new segments Xa-1Xa’ and Xa’Xa+1, which

maybe are not allowed. The condition (13) must

be checked for new segments. If the condition

fails, new value of mutated gene (new point of

the trajectory) must be generated and relevant

segments must be tested again. It repeats till new

segments fulfill the condition, i.e. they do not

intersect a constraint.

An example of this situation is displayed in the

figure 7. New segments Xa-1Xa’ and Xa’Xa+1

come into existence after the mutation of point Xa

into Xa’.The segment Xa-1Xa’ fulfill the condition

(13), but the segment Xa’Xa+1 fails because the

intersection with the constraint C.

Figure 7. Possible collision by the mutation

Genetic algorithm with 3 given supplements finds

the shortest trajectory in a few hundreds generations

in robot’s working space with constraints. The

number of generations and computation time depend

on the constraints number and their positions

(problems with points generations and with

intersections) and their analytical description (number

and complexity of equations. [1], [6]

2. 3 Identikit design

Manual or computer methods based on a face

picture composition from individual elements (for

example on individual slides) are used for creation of

a face image (composite drawing, identikit) in

personnel identification according to instructions of

witness. Disadvantage of all present-day methods is

that the witness must directly adjust every single face

element (eyes size, inclination, distance etc.).

However he often cannot say, what is necessary to

modify in order to increase the similarity between the

picture and the original. The face design in this

manner is neither simple nor precise.

This part of the lecture describes a solution of the

face generation problem by genetic algorithms. The

witness will just indicate the best solution (the most

suitable face picture) from a set of displayed faces.

The system will generate new faces similar to the

marked one according the genetic algorithms theory.

The repetition of these steps will achieve the identical

or very similar face to the sought one.

The successful solution of this problem requires to

find a suitable numerical or symbolic representation

of faces and to formulate an objective functions which

reflects the similarity.

Each face picture represents one problem solution,

i.e. one individual in a population. Formally it is an

ordered set of numbers, where the values represent

face elements. The software system displays several

(6, 9, 16) individuals (faces) and the user clicks the

most similar one. He gives to the system the best

solution in present generation in this manner. The

system evaluates the similarity of all faces in the

generation with the marked one and it finds and

displays the new faces generation with the using of

genetic algorithm. Because the properties (face

elements) of successful individuals survive with

greater probability in genetic algorithms, the new

faces will be similar to the last marked one. The

process continues till the user is satisfied with the

reached similarity.

Each face is represented as an ordered set of

numbers for our purposes. Every number means a

property of one face element. Properties are e.g. ears

form, size, color, position… The similar

characteristics concern the eyes, eyebrow, cheeks,

nose, etc., too.

We use together 33 face features. Each feature (face

element) can take the value 0 - 1 with the accuracy of

4 decimal positions, i.e. every element can obtain

10 000 different values. Therefore, the total number

of possible faces is 10 000
33

, i.e. 10
132

.

The objective function evaluates the similarity of

each face with the sought one. Let the numerical

representation of the face “m” with n elements is (am1,

am2, ... , amn) and let the face marked as the best one is

represented by the chromosome (b1, b2, ... , bn). User

selects by click the best face in each generation from

the set of displayed faces. Therefore the difference

toward the base form of genetic algorithm is that the

optimal solution varies in each generation.

This form of the objective function is used:

 (14)

This function expresses the sum of differences of

faces elements.

The genetic algorithm has the next form for our

purposes:

An initial population of 40 faces is generated.

The objective function (14) is evaluated for each

face. Six faces are displayed.

User tests the terminal condition achievement

(required similarity). If the similarity is sufficient, the

most successful face represents the asked solution.

If the similarity is not sufficient, the user clicks on

the best of the six displayed faces. Two groups of

individuals are chosen for the next generation. 10

faces go directly into the next generation. The second

||
1

∑
=

−=

n

i

imim baf

group (work group) consists of 10 best and 20 random

chosen individuals.

The genetic operations are performed with the

individuals of the work group.

The new generation of 40 faces from the

chromosomes of the first as well as of the work group

is created. The algorithm continues with the faces

evaluation.

Parameters (genes), which represent the face

elements, are used in a graphical tool, in order to

display the faces. In our pilot solution we have

proceeded as follows:

The tool 3D Studio Max with the module Facial

studio has been used for the human heads modeling.

The models are colored and three-dimensional with

the possibility of rotation.

The models have been used in the system Virtools

Dev. The look of faces changes in this system

according to genetic parameters.

An example of displayed faces after the start of

identification process is in the figure 8:

Figure 8 Displayed faces (of the 5th generation).

The described approach has confirmed some

expectations, but it has brought some problems, too.

The main result is that the genetic algorithms can be

used for the human faces design and the genetic

operations are a property approach for similar faces

generation. But the main goal – automatic face design

of optional person – has not been reached yet. There

are more reasons:

• graphical tool is not powerful enough

• the number of face parameters is too small, a

precise description of the face needs more than

33 parameters

• it is not possible to model hair, moustache, beard

and birth-marks, as well as glasses, ear-rings,

piercing etc. in the system

• we are not able to display an age of the person,

• the scanned area is too large (the used precision

with 10 000 values for each face element is spare)

3 Conclusion

Genetic algorithms are simple but powerful search

(optimizing) method. The obtained solutions are

comparable with results reached by conventional

analytical methods, but their advantage is that they do

not need the mathematical model of the optimized

process. Therefore GAs are usable successfully in

many areas. Some applications were presented in this

contribution.

4 Acknowledgments

The works presented in this paper have been

supported by the Slovak Grant Agency of the

Ministry of Education within the Project VEGA

1/0368/08 Artificial Intelligence in Flexible

Manufacturing Systems Control.

References

[1] Dalle, B: The Robot System Movement

Optimization by Genetic Algorithms. Diploma

thesis, FMST Trnava, Slovakia, 2008.

[2] De Decker A: Visualisation of Genetic

Algorithms, Diploma thesis, FMST Trnava,

Slovakia, 2008.

[3] Karr C L, Freeman L M: Industrial Applica-

tions of Genetic Algorithms. CRC Press, Boca

Raton, 1999.

[4] Man K F, Tang K S, Kwong S: Genetic

Algorithms. Concepts and Designs, Springer

Verlag, London, 1999.

[5] Schreiber P, Otčenáš J: Faces design by Genetic

Algorithms. Aims, First Steps, Results and

Problems. Proceedings of 13
th

 International

Scientific Conference CO-MAT-TECH 2005,

20th -21st October 2005, Trnava, Slovakia, 2005,

pp. 1050 – 1054.

[6] Schreiber P, Tanuška P: Detection of the

shortest robot trajectory by genetic
algorithms. DAAAM International Scientific

Book 2007, Vienna 2007, pp. 191-198.

[7] Schreiber P, Važan P, Tanuška P: Production

Optimization by Using Genetic Algorithms

and Simulation Model of Production System.
Proceedings of 19

th
 International DAAAM

Symposium “Intelligent Manufacturing and

Automation” 22
nd

 – 25
th

 October, Trnava,

Slovakia, 2008. (in printing).

[8] Sekaj I: Genetic Algorithms (in Slovak). AT&P

Journal, vol. 8, no. 11, Bratislava, Slovakia, 2001,

pp. 46 – 48.

