
Semantic Web As An Enabling Technology For 

Better Design Pattern Adoption 

Luka Pavlič, Marjan Heričko 

Faculty of Electrical Engineering and Computer Science 

University of Maribor 

Smetanova 17, SI-2000 Maribor, Slovenia 

{luka.pavlic, marjan.hericko}@uni-mb.si 

Abstract. Design patterns are a high level approach 

for reuse in software engineering area. The number of 

design patterns is rising rapidly, which makes 

selecting appropriate one harder task. This issue is 

especially clear for less experienced developers. 

In this paper we present our approach to address 

the presented issue of managing and selecting design 

patterns - an experiment prototype of a new design 

pattern repository, based on semantic web 

technologies. New Ontology-Based Design Pattern 

Repository is currently a work in progress. This is 

why we point out only its potentials for improving 

design pattern adoption. 

Keywords. Design Patterns, Semantic Web, 

Ontologies, Design Pattern Repository. 

1 Introduction 

It is important to develop new systems from existing, 

already proven reusable elements in all engineering 

disciplines. This enables engineers to use well known 

approaches and best practices. Reuse has become an 

essential and important strategy in the software 

development area also. The reuse of concrete software 

elements such as functions, classes and components is 

already well established and practiced on a daily 

basis. However, if we observe reuse at higher levels 

of abstraction i.e. software patterns, the reuse is still 

not well established. 

A pattern is a form of knowledge for capturing a 

recurring successful practice [10]. Design patterns 

capture the best practices for solving recurring 

software design problems and are proven way to build 

high quality software [5]. They capture knowledge 

that experienced developers understand implicitly and 

facilitate training and knowledge transfer to new 

developers [17]. A survey [13] indicated a low 

adoption of design patterns among practitioners – 

respondents estimated that no more than half of the 

developers and architects in their organization use 

software patterns. Therefore bridging the gap between 

the pattern expert communities and the typical pattern 

user is critical for achieving the full benefits of 

software patterns [4]. 

Authors have observed that it might be difficult to 

find a suitable design pattern even in a catalogue such 

as the GoF (Gang of Four) Design Pattern Catalogue 

[5] – with no more than 24 patterns. Several hundred 

software patterns have already been published. The 

Pattern Almanac [11] published in 2000, provided a 

list of over 700 previously published patterns 

organized into 70 categories. Software developers 

experience more and more problems finding patterns 

that match their design problems. Useful patterns 

might therefore easily be overlooked. Current 

methods of reuse on design pattern level obviously 

tend to be intuitive and based on the experience of the 

individual software engineer. We want to fill a gap 

between unmanageable number of design patterns and 

developers searching for a suitable pattern in their 

current design problems. Since we have many 

positive experiences in initiating developers to use 

design patterns we decided to develop an integral 

web-based tool for selecting design patterns. The tool 

(Ontology-Based Design Pattern Repository – 

OBDPR) presented in this paper is a basis for 

automatic and intelligent services, used to help in 

selecting appropriate design patterns. It introduces 

capabilities known from artificial intelligence area to 

improve the efficiency of design pattern selection 

used in the software development. The OBDPR 

prototype includes all lessons learned in previous 

attempts to improve design patterns adoption. When 

OBDPR is fully functional we are planning to 



perform several experiments to indicate if and how 

much our effort helps software engineers, especially 

inexperienced ones. 

2 Semantic web technologies and 

design pattern representation 

In general there are three main categories of 

representing design patterns: 

• informal representations, 

• semiformal representations based on graphical 

notations such as UML and 

• various formal representations which also include 

notations using semantic web technologies. 

Informal representations mainly include printed 

catalogs, which are traditionally used to describe 

design patterns using natural language [5]. Because of 

its loose structure this kind of representation is less 

suitable for knowledge management and sharing [7]. 

Those representations also do not enable desired and 

needed level of design pattern identification and 

application. This is why there are several forms of 

formal presentation, mainly by extending UML 

specification [15][6][8][3][12]. Those representations 

are efficient for a basic understanding of patterns 

since they cover their structural elements. But they do 

not provide information and knowledge on high level 

aspects such as intent, usability and consequences.

Some authors [7][8] talking about design pattern 

representations take a standpoint similar to the 

semantic web (to keep data semantically 

understandable both to human and machine). Their 

representation is based on ontologies. It is used 

primarily to describe structure of source code, which 

is done according to particular design pattern. One of 

those in used in “Web of Patterns” (WoP) project [1] 

has addressed the area of describing knowledge on 

design patterns. The main focus of WoP project is on 

analyzing Java source code for used design patterns

identification. One of the project results is also 

ontology for describing design patterns on source 

code level, which is not sufficient in our case. 

After reviewing related work and benefits of using 

ontologies as explained below we also decided to use 

them in our work. Although there are some ontologies 

in the community, we did not use any existing one. 

We rather develop our own with interoperability in 

mind. 

The idea of semantic web allows automatic, 

intelligent inferring on knowledge, represented using 

ontologies. The basic idea of semantic web is a 

different organization and storage of data and 

consequentially new possibilities to use this data [19]. 

The barrier that prevents more advanced usage of 

available data is believed to be the semantic poorness 

of today’s solutions. The vast majority of data is 

presented as a very simple, non-structured human 

readable and human understandable material. The 

result is the inability to make a real use of the 

enormous amount of “knowledge”. In order to 

overcome these difficulties the concept of meta-data 

is introduced in the core of the semantic web. Using 

meta-data, so called smart agents can be used to 

search for information by content and to infer on the 

gathered concepts. As a foundation, there has been a 

lot of work done about common formats for 

interchange of data and common understanding of 

common concepts. That allows a person to browse, 

understand and use data in a more straightforward 

way, and a machine to perform some intelligent tasks 

on the data automatically. Furthermore, the semantic 

web ideas can be used in an internal enterprise 

information system for knowledge management in a 

different way to introduce new intelligent services. In 

semantic web, knowledge is represented as graphs, 

written down in XML-based language called RDF 

(Resource Description Framework) [16]. RDF is 

dealing with URIs (another W3C standard for naming 

resources globally unique). Advanced use of 

semantically annotated data can only be accomplished 

by using ontologies represented as RDFS or OWL 

[14] documents. There is also a language for efficient 

querying the RDF-represented knowledge, SPARQL 

[18]. The whole stack of semantic web technologies is 

available and described in [20]. 

3 Role of ontology in OBDPR 

As mentioned before we decided to develop our own 

ontology. One could argue having a separate ontology 

is problematic. It is actually not a problem, since there 

is a possibility to connect ontologies in a quite 

straightforward way. Ontology from WoP project [1] 

is oriented towards supporting design pattern scanner, 

which does not help us a lot while being oriented 

towards design pattern selection. 

One of the enabling approaches used in semantic 

web is ontology, as described before. Ontology 

describes the subject domain using notions of 

concepts, instances, attributes, relations and axioms. 

Concepts can be organized in taxonomies through 

which inheritance mechanisms can be used in 

ontology. Ontology adds semantics to the model 

representation. Their formal, explicit and shared 

nature makes them an ideal choice for design pattern 

repository. 

With the presented facts we also justify our 

decision to use ontologies as well as other semantic 

web technologies to provide a basis, not only for 

design pattern description, but also for future 

intelligent services: 

• Ontology-based design pattern descriptions are 

computer readable and therefore suitable for 

automated (computer) processing. 

• Transforming OWL and RDF based design 

pattern representation into other kind of 



representations (textual or graphical form) is not 

an issue. 

• Ontology and related technologies are well 

established, recognized, extendable and based on 

standards. 

• They enable exchangeability of design pattern 

descriptions in straightforward way. 

• Ontology supported knowledge base is 

distributed by default. 

• Third-party ontology (OWL)–enabled tools are 

available and will be developed in future which 

can extend the use of ontology enabled 

knowledge base. 

Figure 1. Core of OBDPR ontology 

OBDPR underlying ontology is implemented 

using OWL. A core ontology fragment is shown in 

figure 1. We use hierarchical organization of pattern 

containers. Every pattern container may contain 

several pattern containers and patterns. This enables 

us to capture several divisions of design patterns, not 

only those found in fundamental literature. Every 

pattern can be included in several containers; the 

same is true for containers. Patterns themselves are 

connected in a more logical way in means of related, 

similar, composed patterns and pattern hierarchies. 

Not only patterns and pattern containers themselves 

are included in ontology, but there are also real-world 

examples using patterns to give more meaning to 

OBDPR user (“TestCase” class). 

Design pattern experts can provide experiences in 

question-answer pairs, which enables them to capture 

their implicit knowledge on design patterns. Not only 

experts can give experiences to tell which design 

pattern is used in particular real-life situation 

(“Question” class), but they can also specify more 

possible solutions to real-life situation (“Answer”) 

with specified probability (“AnswerRelevance”). This 

is value in range from 0% to 100% and tells user how 

likely is that particular candidate (“Pattern” or 

“PatternContainer”) is used when answer to given 

question is confirmed positive. Answers and possible 

candidates can easily be updated or added to 

questions at any time with rich user-friendly web 

interface. 

4 Current state of OBDPR 

As name implies, OBDPR is primarily design pattern 

repository with ontological foundation. It is also more 

than this. It is a platform for building intelligent 

services to improve design pattern adoption. As such 

besides integrating and managing knowledge itself it 

includes several functionalities, besides holding 

repository of design patterns, containers etc.: 

• Enables design patters experts to annotate 

patterns with additional knowledge. 

• Integrate knowledge on particular design pattern 

from the web and additional data sources. 

• Transform current RDF data to provide user-

friendly view on design patterns. 

• Index all the integrated data for supporting full 

text search capabilities of services build on the 

platform. 

• Full access to RDF data to services built on 

platform including questions and answers, which 

will enable intelligent services to use expert 

system-like proposing or validating services. 

• Set of real world examples and appropriate 

design patterns solutions in order to enable 

services to be used to train users or to show 

appropriate use of design patterns in real world 

examples. 

Current OBDPR prototype (figure 2) implements 

all functionalities above. Because of that fact first 

experiments are in preparation. At the moment of 

writing this paper there are also three services running 

on top of the platform: 

• simple full-text search service, 

• proposing service to support design pattern 

selection and 

• training service using real-world examples from 

underlying ontology. 

OBDPR prototype includes all design patterns 

found in GoF and J2EE design pattern catalogues. It 

is also open for other sets of design patterns. GoF and 

J2EE catalogues give us enough opportunities to 

perform relevant experiments with design patterns on 

real-world examples and with real developers, since 

as mentioned before even repositories of that size 

showed to be problematic [5]. 

The implementation technology for OBDPR is 

Java EE with Jena [9] framework for accessing and 

performing core semantic operations on ontology. A 

simple user interface framework with basic 

functionalities like raw and user friendly view on 

repository is prepared. Framework is able to host 

additional services, developed in future. 



Figure 2. OBDPR architecture 

At the moment there are three components on top 

of foundation platform (figure 2). They enable 

additional services, such as using full text search 

capabilities as well as training and using proposing 

services (figure 3). Not only data in OBDPR is 

indexed for full text search but also data from web, 

such as design pattern related content from Wikipedia 

and other design patterns related pages. 

Figure 3. Web based OBDPR user interface 

5 Further work 

One of the main goals of the project is to use it in 

order to perform several real-world experiments. 

After performing experiments which might show if 

and how much does OBDPR help adopting design 

patterns there are also other plans for future work. 

Some preliminary experiments have been already 

performed. Since the results were promising (figure 4) 

we are quite confident we are on the right track. The 

results showed us that less experienced users (test was 

made on 15 users) have significantly improved their 

design pattern adoption through solving 16 real world 

examples. The difference between the least and the 

most successful participant has also reduced. Since 

real experiment using OBDPR is a work to be done 

we are not going to discuss performed preliminary 

experiment in details here. 

Figure 4. Preliminary experiment results 

Before performing final tests it would also be 

reasonable to develop additional component that 

would enable user to verify if particular candidate was 

well selected. Service of that kind might help 

developers capable of selecting design patterns on 

their own to verify their selections. It could be even 

used to verify proposing or searching services 

correctness. 

Another idea that is not jet realized is to expose 

OBDPR with simple interfaces, implemented as web 

services for instance. This would not only enable 

further integration but can also enable developing 

plug-ins for the most popular development tools such 

as Eclipse, NetBeans or Visual Studio. Having 

OBDPR always at hand during development sound 

like good idea to us. 

There will also be several improvements in 

existing components. For example, we are trying to 

personalize the proposing component. The proposing 

component could learn about user from past proposals 

and ask personalized questions. 

After performing research activities in means of 

experimenting with tool on industry developers we 

plan to develop a holistic methodology for design 

pattern selection. It will include both design pattern 

expert and user activities. OBDPR will be given a role 

of enabling tool for developed methodology. 



6 Conclusions 

The potential of using appropriate design patterns is 

not yet fully realized. On this level of reuse there are 

many challenges and issues remaining to be solved. 

Our past experiences tell us that finding a suitable 

design pattern for a given situation represents a great 

challenge for a typical developer. OBDPR was 

therefore developed to capture design pattern explicit 

and implicit expert knowledge, to enable further 

development of intelligent services and to test our 

belief that we can improve design pattern adoption.

Introducing concepts and technologies of the 

semantic web into the field of design patterns research 

creates new possibilities for making design patterns 

more approachable to software engineers. Preliminary 

experiments were performed, which showed us we are 

on the right track. 

Semantic web technologies showed to be the right 

solution during the development. Especially when 

dealing with advanced requirements such as 

proposing design pattern for a given problem, and 

there are many more to come. 

References 

[1] A. H. Eden et al, Precise Specification and 

Automatic Application of Design Patterns, 

International Conference on Automated Software 

Engineering, IEEE Press, 1997. 

[2] Core J2EE Patterns, 

http://java.sun.com/blueprints/ corej2eepatterns. 

[3] D. K. Kim at al, A UML-based Metamodeling 

Language to Specify Design Patterns, 

Proceedings of the Workshop Software Model 

Eng. (WiSME) with Unified Modeling Language 

Conf. 2003, October 2003. 

[4] D.Manolescu, W. Kozaczynski, A. Miller, J. 

Hogg, “The Growing Divide in the Patterns 

World”, IEEE Software, Vol. 24, No. 4., 

July/August 2007, pp. 61-67. 

[5] E. Gamma et al, Design patterns: Elements of 

reusable object orientated software, Addison 

Wesley Longman, 1998. 

[6] Gerson Sunyé et al, Design Pattern Application in 

UML, ECOOP’00, http://www.ifs.uni-

linz.ac.at/~ecoop/cd/papers/1850/18500044.pdf. 

[7] J. M. Rosengard, M. F. Ursu, Ontological 

Representations of Software Patterns, KES’04, 

Lecture Notes in Computer Science, Springer-

Verlag, 2004, 

http://w2.syronex.com/jmr/pubs/2004/ontology-

pattern.pdf. 

[8] J. M. Rosengard, M. F. Ursu, Ontological 

Representations of Software Patterns, KES’04, 

Lecture Notes in Computer Science, Springer-

Verlag, 2004, 

http://w2.syronex.com/jmr/pubs/2004/ontology-

pattern.pdf. 

[9] Jena Semantic Web Framework, 

http://jena.sourceforge.net. 

[10] L. Rising, “Understanding the Power of 

Abstraction in Patterns”, IEEE Software, 

July/August 2007, Vol. 24, No. 4., pp. 46-51. 

[11] L. Rising, The Pattern Almanac 2000: Addison 

Wesley, 2000. 

[12] Marcus Fontoura and Carlos Lucena , Extending 

UML to Improve the Representation of Design 

Patterns, Computer Science Department, 

Pontifical Catholic University of Rio de Janeiro. 

[13] Microsoft, Microsoft Patterns & Practices, 

http://msdn.microsoft.com/practices. 

[14] OWL Web Ontology Language Overview, 

http://www.w3.org/TR/owl-features. 

[15] R. Singh, Drive: An RDF Parser for .NET, 

http://www.driverdf.org/. 

[16] RDF/XML Syntax Specification, 

http://www.w3.org/TR/rdf-syntax-grammar. 

[17] Schmidt, D.C., "Using Design Patterns to 

Develop Reusable Object-Oriented 

Communication Software", Communications of 

the ACM, October 1995, Vol. 38, No. 10. 

[18] SPARQL Query Language for RDF, 

http://www.w3.org/TR/rdf-sparql-query. 

[19] T. Berners-Lee, “Business Model for the 

Semantic Web”, http://www.w3.org/ 

DesignIssues/Overview.html. 

[20] W3C, “Semantic Web”, 

http://www.w3.org/2001/sw/. 


