
Problem of plagiarism and its detection

Branko Kaučič, Dejan Sraka

Faculty of Education

University of Ljubljana

Kardeljeva ploščad 16, 1000 Ljubljana, Slovenia

{branko.kaucic,dejan.sraka}@pef.uni-lj.si

Abstract. Rapid development of internet technologies

simplified sharing any kinds of data. Extremely

notable is also sharing the source codes.

Consequently, today’s "copy-paste" generation is a

subject of a notable problem of plagiarism. It is

present in many areas, from educational and research

areas to software development. We started a project

of studying known plagiarism detection systems and

developing a framework that would detect plagiarism

between different types of files. At first stage we are

focused on source codes of applications. In this

contribution, most known systems are revised and

compared among themselves. Our framework and its

usage are also presented.

Keywords. Plagiarism, cheating, trust, cut and paste

culture, electronic plagiarism detection service,

programming

1 Introduction

Rapid growth of technology, internet and powerful

search engines yielded massive amount of accessible

information. In a world that is populated by the

information technology, traditional searching for

information from the books could be seen as a thing

of the past. Namely, most needed information is

already available in electronic format on the internet.

The internet is the largest public repository of

information, that was ever created, and much

information is available on several web pages.

Because there is no way to forbid users to use it, using

the internet and online resources pose some serious

problems. Although the search and the research is

easier, the internet also provides a more conducive

means to plagiarism – there is only a limited control

over copied sources and it is difficult to verify the

reliability of information resources. Plagiarism

continues to plague all disciplines in secondary and

higher education because of easy online access to

source documents.

Many researchers report that plagiarism is increasing

and present a serious problem in education. At

present, in schools there is a battle for a higher

number of (good) students, number of staff is not

increasing, while the ratio student:staff is. By the

incoming Bologna process, also the contact hours are

reducing. The opportunities for a ‘tutor’ to identify

the students that need additional help will

consequently decrease, and the only indicator if

someone needs help will be the assessment results. It

is obvious that by increasing the number of students,

the energy put to a single assessment is also reducing.

Students know that very well and some cheat because

of that. More and more students use the internet to

obtain analysis, interpretation or even complete

assignments and then submit these as their own work.

Consequently, if assessment is copied from someone

else and the ‘tutor’ doesn’t found that out, student

leaves that course with not enough knowledge and

can later in life have problems because of that. More

worrisome, studies show that students not only

plagiarize regularly but also believe that it is okay to

do so. Although, the temptation to plagiarize in the

academic setting is not limited to students, in this

paper we will restrict ourselves to the students only.

Today’s "copy-paste" generation is therefore a subject

of more and more notable problem of plagiarism. It is

present in many areas, from educational and research

areas to software development. As in all similar

faculties, because of the popularity of the ICT we are

also facing this problem. Consequently we started a

project of studying known plagiarism detection

systems and developing a framework for professors

and assistants that would detect plagiarism between

different types of files. Electronic plagiarism

detection services can be a useful help for ‘tutors’, but

are not self-sufficient. Trust and student honesty must

remain to obtain a successful academic system.

At first stage we are focused on source code of

applications. Systems that detect source code

plagiarism have a rich future. First systems were

developed in 70s. Mostly used systems today detect

similarity in programs by comparing their structure.

These systems were developed as an answer to

criticisms to the older systems which work by

counting and comparing program’s features. In this

contribution, most known systems are revised and

compared among themselves. Our framework and its

possible usage are also presented.

The organization of the paper is the following.

Section 2 presents the problem of plagiarism, why

some people use it, and how the plagiarism is

noticeable in the programming courses. In Section 3

and 4 we present plagiarism detection systems, based

on the attribute counting methods and by mutual

comparing of structures. In Section 5 our framework

is briefly described and the last section concludes the

paper with some ideas for future.

2 Plagiarism

Encyclopedia Britannica [6] defines plagiarism as

“the act of the writings of another person and passing

them off as one’s own. The fraudulence is closely

related to forgery and piracy - practices generally in

violation of copyright laws.” Similarly, Webster’s

dictionary [20] defines it as “a piece of writing that

has been copied from someone else and is presented

as being your own work.” However, in the context of

university education, plagiarism does not have a

single meaning and can range from the citation of a

few sentences without attribution to the copying of an

entire work. There are a variety of ways students can

use ICT inappropriately while completing their

assignments. Very common approach is using of

research papers purchased or downloaded from web

sites. As stated in the introduction, students can easily

gain access to what they need just by typing keywords

in any internet search engine.

Schiller [17] reports about three different forms of

plagiarism. The first form consists of simply copying

word-for-word from a book, journal article, or page

from the internet without placing the copied material

in quotation marks and acknowledging the source.

Submitting a term paper written by someone else,

including a paper purchased from a commercial

company, would be categorized as this form of

plagiarism. The second form of plagiarism is to

paraphrase another’s organization and language

without acknowledging the source. Extensive use of a

source, even when a writer changes a few words,

omits a few sentences, or reorders ideas, requires

citing the source. The third form of plagiarism is

basing material solely on the ideas of another. In this

case the work is considered plagiarized because the

writer has contributed no original thought. Writing an

article without acknowledging that it follows the

content, outline, and ideas from others’ written or

orally presented work is also considered as the

plagiarism. However, there are several additional

creative approaches to academic dishonesty that are

available to students through technology [17].

Students can cut and paste sections from the internet

articles into their assignments without attributing the

work. Information from CDs such as encyclopedias,

databases, and study guides can be inserted into

assignments. Students may ask for assistance from

others through electronic discussion groups and then

cut and paste answers from other people into their

work without acknowledging that assistance was

received.

The ease with which text, numbers and computer

codes can be moved between students and institutions

unfortunately has the potential to undermine

traditional forms of learning and assessment.

Although course syllabi warn students that plagiarism

is punishable, the effort the instructor must invest to

pursue a case of plagiarism effectively guarantees that

almost no prosecution will occur. It is important that

educators address the issue of plagiarism, despite the

additional time and emotional burden required to

confront offenders.

2.1 Why students plagiarize

There are many reasons why students copy from each

other, or collude when performing a specific piece of

work. These include the following [17].

• A weak student produces work in close

collaboration with a colleague, in the belief that it is

acceptable.

• A weak student copies, and then edits, a colleague’s

program, with or without the colleague’s permission,

hoping that this will go unnoticed.

• A poorly motivated (but not necessarily weak)

student copies, and then edits, a colleague’s program,

with the intention of minimizing the work needed.

At the level of the individual student, three categories

are often explaining why certain individuals commit

non-trivial plagiarism [1]. The three categories

concern students’ personal circumstances, personal

traits, and whether the means and opportunity to

plagiarize are readily to hand:

Means and opportunity: the widespread of internet,

and online academic journals have contributed much

to the rising incidence of plagiarism, as they have

made it possible for students to find and download

materials from diverse sources with little reading,

effort or originality. In addition, the web services with

such materials are customized and thus difficult to

detect using anti-plagiarism web crawling software.

However, while the internet undoubtedly facilitates

plagiarism, it does not possess the moral power to

incite otherwise honest students to cheat. Lack of

rules and prosecution for cases of plagiarism could

encourage students to indulge in the practice.

Personal traits: Internal beliefs that academic

cheating is immoral and dishonest are known to

discourage plagiarism. However, the strongest motive

for student cheating (according to Bjorklund and

Wenestam’s in [1]) is the desire to obtain high grades,

which itself may depend on other considerations. For

example, due to a person’s innate need to prove his or

her worth to him or herself and/or to the world, or to a

pathological fear of failure.

Individual circumstances: For example, students who

need to take paid employment to help finance their

time at university have less time for study, and high

academic workloads may need to be compressed into

their available study periods. The time pressures are

likely to cause growing numbers of students to resort

to plagiarism. It is also interesting, that males are

more ready to admit plagiarism than females [1].

2.2 Plagiarism in programming courses

Plagiarism is a common problem also in computer

science courses. In most these courses, the completion

of programming assignments is part of the course

requirements. In many cases, these assignments

contribute significantly to the student's grade; thus,

each student is usually expected to work

independently although sometimes team work is

demanded. However, students are mainly

collaborating with one another and programmed

assignments can be copied and transformed with

relative little effort. Consequently, defining and

prosecuting plagiarism is difficult because of the

fuzzy boundary between allowable collaboration and

plagiarism. At some universities, committees

concerning this have been formed, e.g. Carnegie-

Mellon University.

Probably every instructor of a programming course

has been concerned about possible plagiarism in the

program solutions turned in by students. Instances of

cheating are found, but traditionally only on ad-hoc

basis. For example, the instructor may notice that two

programs have the same idiosyncrasy in their user

interface, or the same pattern of failures with certain

test cases. With suspicions raised, the programs may

be examined further and the plagiarism discovered.

Unfortunately, this leaves much to chance. The larger

is the class, more different people are involved in the

grading, less is the chance that a given instance of

plagiarism will be detected. Parker and Hamblen [14]

define software plagiarism as: a program which has

been produced from another program with a small

number of routine transformations. Modifications to

hide plagiarism in source code are very diverse, from

changing comments, identifiers or formatting to

changes made in decision logic of a program.

Plagiarism detection is a pattern analysis problem. A

plagiarized program is either an exact copy of the

original, or a variant obtained by applying various

textual

transformations such as those shown below. Faidhi

and Robinson listed six levels of program

modifications [7]:

� level 1: changes in comments and indentation,

� level 2: changes in level 1 and changes in

identifiers,

� level 3: changes of level 2 and changes in

declarations

� level 4: changes of level 3 and changes in program

modules,

� level 5: changes of level 4 and changes in the

program statements

� level 6: changes of level 5 and changes in the

decision logic

It would be worth to mention an example, when

plagiarist does not make completely no changes in

program code. However, such plagiarism would

hardly be unnoticed. It is also interesting to debate

about a program in which only changes in program

statements have been made – is the program still

classified as level 5? Such classification on levels

could be useful, but can be subjective. In response to

that, numerous other classifications appeared in

literature [11],[12].

2.3 Plagiarism detection systems

For students who know about various instances of

cheating, which instances are detected and which are

not, the plagiarism is very tempting. The standard

“dumb” attempt at cheating on a program assignment

is to obtain a copy of a working program and then

change statement spacing, variable names, prompts

and comments. By comparing all pairs of solutions

against each other for evidence of plagiarism seems

like the approach that will detect fraud. However,

even the above mentioned case is mostly enough to

require a careful manual comparison, which simply

becomes infeasible for large classes. Since there is

usually more than just a few assignments,

programming classes are in desperate need for an

automated tools which perform reliable and objective

detection of plagiarism.

In programming courses there are two sources of

solved assignments: the internet and other students.

For the internet, the products like Turnitin and

PlagiServe are harnessing the internet for detecting

plagiarism, in a similar fashion to what search engines

such as Google has long been doing. However, the

second source, other students, is more frequent and

different plagiarism detection systems are needed.

Attempts to assess plagiarism, by technical means,

run into the difficulty of distinguishing the differences

between texts of different kinds. Much work in the

past has been devoted to discovering concordances

between texts. A plagiarism detection method must

produce a measure that quantifies how close two

source codes of programs are. Obviously, except for

the case of a verbatim copy, detection approaches that

use direct comparison of text files are weak, since

there is no obvious closeness measure. Also, a simple

file “diff” would of course detect only the most

obvious attempts of fraud. There are various

electronic systems to detect plagiarism in

programming courses. From the middle of 70s to the

end of 80s of 20th century were prevailing the

systems that were finding resemblances based on

counting and comparing program attributes. The

technique was called attribute counting. Later

plagiarism detection systems that were examining and

comparing program structures were introduced.

Standard software metrics and examination of

redundant code were used, too. There are even servers

on the web which detect plagiarism. For example,

JPlag [15] at Karlsruhe University tries to find pairs

of similar programs, and the MOSS server at Berkeley

[3] looks for similar code sequences in a set of

programs; each system creates a web page where the

instructor can see which ones are suspiciously similar.

All of these techniques operate by running an analysis

program on groups of submissions to detect

similarities and to calculate the likelihood of

plagiarism. Many approaches take a lexical approach,

where the program tokens are classified as language

keywords and user symbols. The simple plagiarism

detection systems convert the source programs into

token strings, and then compare the strings using

dynamic programming. Although they are reasonably

successful in pointing to pairs or groups who submit

similar work, they are limited in identifying the

original author of the work.

The following sections present some of most known

detection systems of this kind.

3 Detection of plagiarism by attri-

bute counting

Attribute counting detection systems try to detect a

plagiarism by scanning whole program line by line

while counting system defined attributes. Similarities

between programs are detected with mutual

comparison of counted attributes. For each attribute

counter a range is defined. If deviations of observed

pair of attributes are inside of a range, programs are

marked as a potential plagiarism.

The first known system is from 1976 by Ottenstein

[13]. Based on technical report by Bulut and Halstead

[4] Ottenstein defined the following parameters for

counting:

n1 – the number of unique operators,

n2 – the number of unique operands,

N1 – the total number of occurrences of operators,

N2 – the total number of occurrences of operands.

Those parameters were later described in details in

Elements of Software Science by Halstead [9].

Interestingly, later works of different authors ([2], [7],

[19],...) even use the term “Halstead metrics” or

“basic software science parameters”. Ottenstein's

system detects program pairs as possible plagiarism

when four-tuples (n1, n2, N1, N2) of two programs

match.

Next known system, Accuse, was developed by Grier

in 1981 [8]. In order to [8]get more accurate

plagiarism detection system, twenty parameters were

introduced. After some tests have been made, Grier

selected seven parameters that were used in

calculation of correlation between program source

codes:

1) number of unique operators,

2) number of unique operands,

3) total number of occurrences of operators,

4) total number of occurrences of operands,

5) number of code lines,

6) number of variables declared and used, and

7) total number of control statements.

Accuse compares seven-tuples with correlation

function and two constants: “window size” and

“importance value” for all seven parameters.

Importance value and window size were defined

experimentally by writing the source code for three

programs (partially written collaboratively, partially

individually). Constants for “importance value” were

adjusted until those three programs were suspected of

plagiarism. For every pair (A,B) of compared

programs the correlation factor is calculated as a sum

by all the parameters:

| |ii

=i

i pcountBpcountAValueImportance −−∑
7

1

where |pcountAi-pcountBi| is less or equal to window

size defined for parameter i. Pair of programs are

suspected of plagiarism if correlation factor is greater

than 28 (highest possible value for default constant

values is 32).

In 1981 Donaldson et al. introduced also a system that

in addition to counting attributes, also records the

structure of a program [5][5]. System is observing

next parameters:

1) total number of used variables,

2) total number of subprograms,

3) total number of input statements,

4) total number of conditional statements,

5) total number of loop statements,

6) total number of assignment statements,

7) total number of calls to subprograms, and

8) total number of statements of type 2-7.

Analysis of compared pair of programs is done in two

phases. In first phase system checks programs, line by

line and characterizes every program in two ways.

First it counts attributes and saves values in a two-

dimensional array. Those values are later used in

second phase in which a degree of correlation is

calculated. To determine similarity or difference

factor, three different methods were implemented:

sum of the differences, count of similarity and

weighted count of similarity.

This system could be even called as an origin of all

newer systems since it was the first system that used

structure recording. All newer systems base on

detection by comparing structure and have their idea

in one or another way upgraded and perfected.

In 1982 Rees introduced system Style, automatic

assessment program for programs written in Pascal

[16][16]. His system is measuring ten parameters; five

of them are intended for grading layout and other five

for grading identifiers:

1) average line length,

2) use of comments,

3) use of indentation,

4) use of blank lines as separators,

5) degree of imbedded spaces within lines,

6) procedure and function units,

7) variety of reserved words,

8) length of identifiers,

9) variety of identifier names, and

10) use of labels and gotos.

Robson used measured values by Style for post-

processor program called Cheat [16]to detect similar

programs submitted by students [16]. Program was

observing the following features:

1) total number of non-comment characters,

2) percent of embedded spaces,

3) number of reserved words,

4) number of identifiers,

5) total number of lines, and

6) number of procedures/functions.

In 1984 Berghel and Salach presented interesting

results of empirical study [2]. Over several semesters

of observation they made a list of fifteen key features

that are probably most useful in identifying

similarities between program pairs. With further

factor analysis they excluded eight parameters from

the list and formed two metrics: Halstead’s and the

alternative. They formed a tuple C=(c1,c2,c3,c4) and

considered program pair (P,Q), where P=(p1,p2,p3,p4)

and Q=(q1,q2,q3,q4), similar if and only if |pi - qi| ≤ ci

for i={1,2,3,4}. After some tests have been made,

they conclude that Halstead metric consistently

detected similarities which did not exist and

alternative metric was more reliable.

Faidhi and Robinson in 1987 claimed that their

system is more accurate and sensitive than those in

the literature [7]. They claimed that their set of

empirical metrics is minimal and their system is using

hidden measures that are hard to bypass for a beginner

in programming course. They substantiate their claims

with three case studies: varying the similarity gauge,

checking whether the set of empirical metrics is

minimal and checking the sensitivity of all metric

sets.

In order to determine the features that may help in

successful detection, Faidhi and Robinson selected

two sets of measuring attributes. The first set with ten

parameters is measuring certain general features of a

program code that are most likely to be altered by

novice programmer that commits plagiarism.

Fourteen attributes in the second set have been

extracted from other studies which attempted to

quantify the inner and hidden features of a program’s

structure. Unfortunately in their report Faidhi and

Robinson did not present a method for scoring the

levels of similarity found between two programs.

Later, Verco and Wise [19] presented a slightly

modified version of correlation scoring function used

by Grier [19][8]. They determined “window size” by

observing the difference values for each parameter,

over a small group of programs. Grier’s method

requires the importance values to be larger than

windows sizes which are not appropriate for Faidhi-

Robinson system since window sizes could vary

greatly. The increment is calculated using the

importance value to scale the increment:

i

i

ii

i importance
window

)diff(window
=incr ⋅

−

for the i-th parameter.

A year later, Jankowitz introduced a system that could

be partially classified as a system with structure

detection [10][10]. However, it is classified as

attribute counting system since final decision about

possible plagiarism is made by comparing counted

parameters.

System performs analysis in two phases. In the first

phase, the system scans through source program and

for each program constructs static execution tree.

When a program consists of only three or four

procedures, they are analyzed by comparing each

procedure in the first program with every other

procedure in the second program.

In the second phase, the system compares static

execution trees and is scanning for identical branches.

If they are found, the procedures attached to these

branches are then analyzed statistically. This section

is divided into two separate subphases.

The first subphase inspects the global characteristics

of the procedures by comparing these parameters:

1) number of code lines (excluding all I/O

statements),

2) number of variables used (excluding

procedure and function calls with

parameters),

3) number of used reserved words (excluding

all Begins and Ends),

4) number of assignment statements,

5) number of If statements,

6) number of Repeat/While statements,

7) number of For statements,

8) number of Case statements,

9) number of With statements, and

10) number of procedure and function calls.

For each of the above pairs, the acceptance region is

defined. After that, a mutual comparison of parameter

values from two programs is performed. In case when

values for same parameter lie within specified range,

they are said to be equivalent and favorable-counter is

incremented. If both parameter values are zero a null

counter is incremented. At the end of this subphase a

combined evaluation is made to determine whether or

not the process continues into the next phase.

Purpose of this evaluation is to select only those

procedures, where high chances of matching are

expected. Only those are further analyzed in second

subphase where for each If, Repeat/While, For, Case

and With statement a further analysis is made by

recording the following measures:

1) length of statements (simple and compound),

2) number of reserved words,

3) number of variables used in statements,

4) number of If statements,

5) number of Repeat/While statements,

6) number of For statements,

7) number of Case statements,

8) number of With statements, and

9) reference sequence order.

Further analysis is made by comparing a tuple from

statement in the first procedure with a tuple from

statement in the second procedure. The number of

successful matches found is compared with the

number of unsuccessful matches. If the value is

greater than some general correlation of X%, the

procedures are said to be cohesive. If the value is even

greater than some Y% then the procedures are said to

be equivalent. Both X and Y values are arbitrary

values that can regulate detection degree of

plagiarism.

4 Detecting plagiarism by compa-

ring structure

More powerful computers enabled use of different

approaches in plagiarism detection. Implementations

that use direct comparison of program structure

replaced attribute counting systems. Most advanced

and in literature frequently mentioned systems are

MOSS, YAP3 and JPlag.

In 1988 Whale presented Plague Error! Reference

source not found.. It works in three phases. In the

first phase, a sequence of tokens is made for each

compared file and structure profile is built, which

summarizes the structures used in each program. In

the second phase structure profiles are compared and

pairs of nearest neighbors are determined by using a

combination of language specific distance functions.

After the second phase, majority of compared

programs is expected to stay unpaired. Others move

forward into the third phase where sequences of

tokens are compared using a variant of the longest

common subsequences algorithm.

Since Plague was implemented for only few

programming languages and results are returned in

two lists which need to be interpreted with help of

manual, Wise consequently implemented system

called YAP (Yet Another Plague) Error! Reference

source not found.. System detects plagiarism in two

phases: a generation phase, in which token file is

generated for each scanned program, and comparison

phase, in which pairs of token files are compared.

The process of creating a token file is same for each

programming language:

1. In preprocess phase comments and print-string are

removed, upper-case letters are translated to lower-

case, letters not found in legal identifier are removed

and a list of primitive tokens is made.

2. Synonym functions are renamed to a common

name and blocks of functions/procedures are

identified.

3. Identified function blocks are reordered in their

calling order. First call to each function is expanded

to full token sequence and subsequent calls are

replaced with token FUN.

4. All tokens that are not from lexicon of target

language are removed.

The generation phase is the same for all three versions

of YAP. Different versions differ in comparison phase

where YAP uses simple UNIX command sdiff, YAP2

uses Heckel’s algorithm and YAP3 Running-Karp-

Rabin Greedy-String-Tilling algorithm [21].

Later introduced JPlag uses the same comparison

algorithm as YAP3 but it uses different optimizations

for improving run time efficiency [15]. It is also

available as a web service with user interface which

generates HTML pages to present results. At the top

level, an overview page presents histogram of

similarity values found for all program pairs. User

(teacher, professor or assistant) can select each

presented pair and make side-by-side comparison

where corresponding code is colored in same color.

Well known system is also MOSS (Measure of

Software Similarity) which uses winnowing algorithm

[18]. It divides programs into substrings of length k

(called k-grams), where k is a parameter chosen by the

user. Each k-gram is hashed and a subset of these

hashes is used for program’s “fingerprint”. MOSS is

also implemented as plagiarism detection service

available over Internet to all registered users.

5 Our framework

One of study programs at Faculty of Education

University of Ljubljana is mathematics and computer

science where students learn to become teachers of

mathematics and computer science at primary and

secondary schools. Among pedagogical, didactical

and mathematical subjects they have several subjects

from computer science with different level and

contents of programming. Several years assistants and

professors at homeworks and seminar works cope

with copied source codes while being aware that they

detect only minority of cases. Therefore, electronic

plagiarism detection systems have the potential to

help them detect the frauds. Some of these systems

already exist but their usage is not yet well reported in

the academic literature.

In order to investigate why and how students commit

plagiarism, and how to help teachers about that we

started a project of studying known plagiarism

detection systems and developing a framework that

would detect plagiarism between different types of

files. At first stage we are focused on source codes of

applications, at second we will focus on file types as

are LaTeX, Mathematica, Matlab, Linux scripts, and

later on other file types as well. We expect that

procedures from detecting plagiarism in source codes

can be applied to other types of files.

At first stage, which is currently under development,

we are also developing our framework that will allow

using different plagiarism detection systems and

comparing their results. Teachers will use that

framework in next study year for detecting

plagiarisms for programming assessments in Pascal,

C, JavaScript and PHP. The framework is written in

Java, it works as a standalone application and as a

web application. Its architecture is shown on Figure 1.

It is comprised of five subsystems:

1) input system that manages different types of

inputs (from files or any kind of input stream),

2) tokenizer system that parses given input and

returns collected data from input as are. list of

parsed attributes, counters, tokens of text etc.

3) plagiarism detection system that uses information

from tokenizer system and performs detection

based on algorithms of different detection

systems

4) report system that generates reports about

comparison of input, and

5) web services that allow using the framework over

the web.

The framework is prepared very generally and allows

adding subystems as are additional tokenizers and

plagiarism detection systems. We strongly believe

that in the future it will also contain our own

plagiarism detection system.

Figure 1: framework of our system

Currently we are gathering assessments from two

different study courses:

1) “Computer practice” where students develop

basic programs in Pascal. From 4 different

assignments we have collected 105 assessments,

from totally 38 students.

2) “Programming” where students develop

advanced programs in Pascal, C and scripts in

JavaScript and PHP. From 10 different

assignments we have collected 287 assessments,

from totally 69 students. In addition, some

students (because of this project) when they

submitted their work, they anonymously reported

if they copied their work from someone else,

from whom they copied, if they solved

assessment collaboratively or have any other

help. Assistant and professor who marked their

assignments did not use this data.

All assessments are gathered with date and time of

submission in order to observe the spreading speed of

the same source code. Gathering assessments will

finish in September, and thorough survey will be

done.

6 Conclusion

Emerging technologies are definitively causing a shift

in our mental world. The internet is growing at a

remarkable rate and is fast becoming a common

resource for everyone. With powerful search engines,

finding and exchanging data became simple and fast.

Demands for better study and research results are

higher than ever. Better means faster, with higher

grades and with more published articles.

When the work of someone else is reproduced

without acknowledging the source, this is known as a

plagiarism. Many teachers discourage students from

engaging in plagiarism on the grounds that it is

fraudulent, deceptive and involves the theft of

intellectual property, but when the plagiarism is

detected there are no serious punishments or not at all.

Consequently, all reasons to turn our culture into the

plagiosphere are present, and research indicates that

plagiarism is a problem in today's institutions of

higher education. Sadly, research also reports that the

magnitude of the plagiarism has increased in recent

years.

In the paper, we treated the problem of plagiarism, in

general and specifically for programming courses.

Different kinds of plagiarism with source codes of

programs and different systems to detect the

plagiarism are presented. Although we restricted

ourselves in the paper to education, the source code

plagiarism is a problem not only in education but also

for corporations which can be facing with source code

and intellectual property theft, patent and copyright

violation. It is important to have mechanisms to detect

this and to react when plagiarism is detected.

References

[1] Bennett Roger, Factors associated with student

plagiarism in a post-1992 university, Assessment

& Evaluation in Higher Education, 30(2), 2005,

pp. 137 - 162.

[2] Berghel H. L., Sallach D. L.: Measurements of

program similarity in identical task environments,

ACM SIGPLAN Notices, 1984, 19 (8), pp. 65 -

76.

[3] Bowyer W. Kevin, Hall O. Lawrence, Experience

Using ”MOSS” ta Detect Cheating On

Programming Assigaments, 29th ASEE/IEEE

Frontiers in Education Conference, 3, 1999, pp.

18 - 22.

[4] Bulut Necdet, Halstead Maurice H.: Impurities

found in algorithm implementations, ACM

SIGPLAN Notices, 1974, 9 (3), pp. 9 - 12.

[5] Donaldson John L., Lancaster Ann-Marie,

Sposato Paul H.: A plagiarism detection system,

ACM SIGSCE Bulletin (Proc. of 12th SIGSCE

Technical Symp.), 1981, let. 13 (1), pp. 21 - 25.

[6] Encyclopedia Britannica, www.britannica.com

[7] Faidhi J. A. W., Robinson S. K.: An empirical

approach for detecting similarity and plagiarism

within a universitiy programming environment,

Computers and Education, 1987, 11 (1), pp. 11 -

19.

[8] Grier Sam: A tool that detects plagiarism in

Pascal programs, ACM SIGSCE Bulletin (Proc.

of 12th SIGSCE Technical Symp.), 1981, 13 (1),

pp. 15 - 20.

[9] Halstead Maurice H.: Elements of Software

Science (Operating and Programming Systems

Series), Elsvier Science Inc., New York, USA,

1977.

[10] Jankowitz Hugo Thomas: Detecting plagiarism in

student Pascal programs, The Computer Journal,

1988, let. 31 (1), pp. 1 - 8.

[11] Jones Edward L.: Metrics based plagiarism

monitoring, Journal of Computing Sciences in

Colleges, 2001, let. 16 (4), pp. 253 - 261.

[12] Joy Mike, Luck Michael: Plagiarism in

programming assignments, IEEE Transactions on

Education, 1999, 42 (2), pp. 129 - 133.

[13] Ottenstein Karl J.: An algorithmic approach to

the detection and prevention of plagiarism, ACM

SIGSCE Bulletin, 1976, 8 (4), pp. 30 - 41.

[14] Parker Alan, Hamblen James O.: Computer

algorithms for plagiarism detection, IEEE

Transactions on Education, 1989, 32 (2), pp. 94 -

99.

[15] Prechelt Lutz, Malpohl Guido, Philippsen

Michael: JPlag: Finding plagiarisms among a set

of programs, Technical Report 2000-1, Fakultät

für Informatik, Universität Karlsruhe, 2000, pp. 1

- 44.

[16] Rees Michael J.: Automatic assessment aids for

Pascal programs, ACM SIGPLAN Notices, 1982,

17 (10), pp. 33 - 42.

[17] Schiller Rosita M., E-Cheating: Electronic

Plagiarism, Journal of the American Dietetic

Association, 105 (7), 2005, pp. 1058 - 1062.

[18] Schleimer Saul, Wilkerson Daniel, Aiken Alex:

Winnowing: Local algorithms for document

fingerprinting, Proceedings of the 2003 ACM

SIGMOD international conference of

management of data, 2003, pp. 76 - 85.

[19] Verco Kristina L., Wise Michael J.: Software for

detecting suspected plagiarism: comparing

structure and attribute-counting systems,

Proceedings of the First Australian Conference

on Computer Science Education, 1996, pp. 81 -

88.

[20] Webster's Online Dictionary, www.websters-

online-dictionary.org

[21] Wise Michael: YAP3: Improved detection of

similarities in computer program and other texts,

Proceedings of the twenty-seventh SIGCSE

technical symposium on computer science

education, 1996, pp. 130 - 134.

