
Issues of hardware implementation of image based

vehicle detection

Abstract. The paper presents the discussion of ways

of implementation in hardware of a vehicle detection

algorithm. Instruction set architectures and

configurable processing architectures are assessed

for the demanding video stream calculation tasks. The
significance of decomposition of the detection

algorithm for achieving set forth efficiency and speed

requirements is presented.

The vehicle detection algorithm is based on

extracting moving objects on a slowly changing

background. The algorithm may be divided into data
driven computation blocks. It is shown that a

processing pipeline, designed using reconfigurable

FPGA resources, satisfies implementation criteria

providing a robust solution for application in road

traffic control systems.

Keywords: image processing, processing

architectures, vehicle detection

1 Introduction

Image processing requires the highest processing

capabilities available but at a cost, which is acceptable

for the end user. This requirement is hard to comply

with using ordinary video processing equipment.

A way to meet this requirement is to use specialized

processing hardware. Such hardware extensively

utilizes parallel processing.

The problem of concurrent execution of different

processing tasks can be solved using multiple

processing units working in parallel on a set of data or

feeding a pipeline of processors with parts of data,

which make up the original data set

The first solution is highly flexible, but

unnecessarily complicated as image processing can be

carried out efficiently, using simple processing

elements working on small pixel neighbourhoods.

 The second solution based on partitioning of the

data for processing can be implemented very

effectively using gate arrays. Gate arrays especially

FPGA, which can easily be reconfigured, allow for

efficient design of multiple simple processing blocks.

The basic image processing tasks are centred on

neighbourhood operations so it is necessary to map

the acquired image to the gate structure in a way to

streamline processing. Elementary logic blocks inside

the gate arrays consist of a LUT, a few FF and

multiplexers. This is not enough to implement even

a simple local filter on a 4-connected neighbourhood

of an image pixel. The logic blocks need to be

combined into more complex structures.

Different researchers present two main groups of

solutions for the problem of efficient use of FPGA

resources [2]. First is based on designing specialized

window processing elements and the other on

concepts utilising processing pipelines.

In [1] characteristics of different moving window

architectures are discussed showing that throughput is

dependent on the product of number of clock cycles

per pixel and the number of FF in a window

processing element for completing a processing task.

In order to choose the optimal architecture for

a particular image processing algorithm task, it is

necessary to consider the way the algorithm is

partitioned into elementary steps. A window-based

architecture is most suitable for implementing 2D

convolvers [4, 16].

Design of a pipeline based image processor

requires careful decomposition of the processing task.

The decomposition must take into account the way

pixel data will be exchanged between memory blocks

and pipelines. A very important issue is to determine

the level of complexity of operations to be performed

by the pipeline stages.

wieslaw.pamula@polsl.pl

-019 Katowice, Poland

The Silesian University of Technology

Faculty of Transport

Wieslaw Pamula

Example systems with pipeline architectures

prove that appropriate distribution of processing tasks

efficiently use available FPGA resources [5, 11].

The paper is divided into 5 sections. Section 2

outlines the vehicle detection algorithm; in the next

section discussion of implementation issues is

presented. The 4th section presents a pipeline based

implementation. The ending section proposes further

work on tuning the solution.

2 Vehicle Detection Algorithm

It is specified that data for processing is provided by a

standard CCTV camera mounted above a section of

road, where vehicles are to be detected.

The task of detecting vehicles is defined as

recognizing the presence of moving objects in defined

detection fields. It is assumed that there are no other

objects than vehicles in the analysed video sequence.

Such a conjecture simplifies the problem of detecting

vehicles.

 Several approaches for object detection were

analysed and evaluated [9, 14]. It was decided to use

background subtraction to highlight moving objects.

This simple method requires efficient modelling of

background data. The method must be immune to

noise and ambient light changes.

A modified scheme using recursive first order

filter and pixel value statistics is used as the base of

adapting the value of background pixels to current

traffic and light situation [3, 10, 15].

An object oriented approach was chosen for

specifying the scope of processing requirements and

related data structures of the algorithm [6]. The basic

objects are data structures associated with memory

operations. Calculation tasks further characterize their

properties.

Fig. 1. presents the outline of the detection

algorithm. An unmarked Petri net is used to link data

objects places and processing steps transitions of

the algorithm [12]. Analysis of properties of the net

and possible transformation will indicate ways for

optimising the processing flow [8]. This model was

chosen to emphasize processing requirements and

separate them from hardware particularities thus

enabling a discussion of implementation variants.

Apparent concurrency is of special interest as it

contributes to high processing throughput. Desirable

are regular data objects in order to simplify memory

operations.

Input data object of the processing scheme is raw

data from a CCTV camera. This data structure is

processed - transition t1 to obtain a video frame object

and synchronization signals, marking the start of

detection cycles. These objects supplemented with

a background frame and detection masks are input

places for transition t2 which calculates occupancy

states of detection fields.

There are 32 detection fields. Masks define the

fields; additionally each field has an occupation

threshold and sensitivity coefficient assigned during

a configuration procedure. These values are used for

calculating the state of detection field.

Masks are stored in local memory.

The crucial object background is derived using

a number of auxiliary data objects and associated

processing tasks as shown in fig.2.

This second net diagram, in fact, explicitly

shows the complexity of data transfers and size of

necessary memory objects.

Updating image pixel values statistics is done in

3 separate ranges. Only the mean values are taken into

consideration when estimating background. The

statistics are calculated over 256 update periods.

Direct calculation of mean values requires the

allocation of at least 16 bit memory cells to fit the

growing value of the sums of pixels. To save memory

resources the mean value is calculated on the run [14].

Pixel value statistics are calculated for every

input frame pixel so there are 6 tables of the size of

a video frame. Other data objects such as detection

fields masks, pixel update frequencies and current

video frame should also reside in memory.

Figure 1. Detection algorithm

Background frame is updated using three

different calculation procedures t10, t11, t12

transitions, which are chosen in accordance with

current video frame number t6, t7, t8 transitions.

Tables are concatenated into one data object

using t3.

BI update calculates the preliminary value of

background as the most probable mean values of

pixels from 3 value ranges. A simplified version of

statistical modelling is used, which incorporates three

fixed centroids and no dispersion calculation.

BIII update makes a "sleeping person" correction

once every 6,4k frames using a max function. The

max function uses the entity tables for determining

the correction values.

start background masks frame

raw camera data

t1 data acquisition

detection fields states

t2 occupancy

calculation

The core procedure for determining background

values, bII update, derives the new value using

a linear function of previous background value and

current pixel value [10].

When the absolute difference of the current

frame and background, which may be regarded as

a mask, is larger than a set threshold the background

is calculated as:

where:

B - background value, F - pixel value, t - update

count, a (0, 1).

otherwise it is not updated.

Figure 2. Background calculation

Prior to hardware implementation a software

version of the algorithm was tested on a set of video

streams from road traffic cameras. The software run

on a PC (3,4GHz P4) equipped with a frame grabber

and a massive hard disk. More than 50 hours of

different traffic situations were processed [14]. The

video streams were analysed at 1 frame per second of

processor time.

More than 95% of vehicles arriving at detection

fields were accounted for.

3 Implementation Discussion

In order to design efficient hardware architecture, data

structures and processing requirements were

reviewed. Besides these hardware specification

requires additionally a time scale for performing

operations and a concept of register level transfer

operations.

3.1 Memory Resources

To ensure the freedom of choice, of memory

solutions, diagrams do not include memory

operations. Storage technology defines the time

budget of the implementation.

The basic data object has the size of a video

frame that is roughly 0,4M bytes. This entity may be

saved or retrieved several times during a detection

cycle.

Transition t9 uses the largest amount of memory

resources, in all 8 objects, which are read and written

back to a memory structure. The way of accessing

memory and its execution time define the resultant

performance of processing organization.

The obvious choice for memory is static RAMs.

To achieve real time operation that is a detection

cycle equal to video frame acquisition, memory

access time cannot exceed tacc=tframe/(8*0,4 106*2).

start tables
update

frame B1 B

2

B3 V1 V

2

V3 V

frame count

start bIII

update

start bII
update

start bI
update

tables

start

background

t3

concatenation

t4

counter

t5

t12

bIII update

t6 t7 t8

t10

bI update

t11

bII update

t9

tables update

Assuming a word length of 1byte, tframe equal to

40 ms, tacc must be less than 6,3 ns. Such a small

access time requirement may be ensured only with

costly, very high speed devices.

The other choice is dynamic RAMs. In this case

to achieve comparable throughput, block exchange of

data is necessary. Block exchange although fast

requires cache memory to facilitate uninterrupted data

processing. Addressing consecutive blocks forces

breaks in data flow which should be filled by data

from auxiliary memory such as cache.

To ease the dictate of memory speed long

memory words may be envisaged. Consistent with the

data objects in net diagram of fig.2. the entity tables is

a suitable candidate for deriving the word s length. It

is a concatenate of 8 data objects. Objects use byte

long words so the resultant word length may be 64

bits.

3.2 Processing Architectures

The presented net diagrams show data flows and

processing tasks, imposing no constraints on hardware

implementation. One can devise a processor based

unit or a configurable logic array for implementing

these.

Devising a processor solution requires

modification of transitions to account for processor

specifics. Execution efficiency will highly depend on

the size of used processor word and features of

available instruction set.

Especially t9 transition requires attention as it

involves the largest data object.

Embedded processors which are preferred for use

in control applications usually work with 8 to 32 bit

long words. These components lack elaborate

memory management units and associated control

instructions. This implies that transition t9 has to be

converted to a series of tasks working on parts of the

entity tables. In consequence execution time may be 2

to 4 times longer in comparison to whole entity

processing.

Besides memory accesses several operations are

applied to data entities which require a number of

processor machine cycles to complete.

A complete processor based solution comprises

a processor block, memory management unit,

program and data memory. Usually embedded

processors contain on chip programme memory which

is sufficient to store instruction codes for necessary

data operations.

Analysis of net diagrams indicates that many

transitions may be performed concurrently. This

feature can be effectively utilized in elaborating the

configuration of logic arrays.

Architectures using arrays of logic gates can be

tailored to frameworks of concurrently acting

components.

Distinctive feature of logic based implementation

is the ability to merge operations and derive results

without multiple data relocations. Although it is

possible to organize asynchronous operation, in this

case, when data needs to be fetched from memory,

clocking is more desirable. Synchronizing operations

additionally eliminate data skew which may arise

when manipulating large data entities.

Merging background updates bI, bII, bIII creates

a component purely acting on data from tables with

no memory write back path. The data does not have to

be read from memory it can be routed from other

components which perform memory accesses in the

same time slots. The inherent flexibility of routing

data which is available in logic arrays is of use in this

case.

T9 transition remains the only one task requiring

bi-directional memory access. With no limits on data

length a whole data entity update can be carried out.

Additionally a RAM controller may be incorporated

to organize data exchange with a dynamic RAM.

3.3 Frame vs. Pixel Processing

The conjecture that processing done with video

frames as basic data objects facilitates real time

implementation is hard to prove.

lower performance than anticipated. Ordinary

memory access times are in the range of tens of ns

which leads to even 10 times longer data exchange

times. Adding to this processor machine cycles of

a similar duration, required for data processing,

vehicle detection times of several hundred ms may be

attained.

A solution based on logic arrays is much faster

but still falls behind real time timing target. The main

source of time loss is inefficient frame based memory

access. Streamlining data exchange is the key to

successful algorithm implementation.

Pixel by pixel processing is an alternative

solution. At first it may appear infeasible.

A modification of net diagrams by redefining

data entities is adequate to model this alternative

solution. New entities refer to single pixel data and

associated auxiliary table entries. Revision of fig.2

indicates that only the scope of transitions changes. In

result a new approach for organizing data exchanges

is required.

Video data is usually acquired using a standard

video decoder IC which provides data synchronously

with a 27 MHz clock. Data is coded in compliance

with ITU-R BT 656 standard. Luminance is outputted

every second clock cycle and this is the time interval

in which all transitions must fit in.

The pixel processing cycle is therefore 74ns

long. Crucial t9 transition must be optimised to fit in

this time slot.

Processor based solution especially using

embedded devices is in no way suitable for such

a demanding task.

Utilization of caching memory operations and

logic circuits for conducting data operations should

meet this timing constraint.

4 Hardware Design

As pointed out in part 3 specialized hardware

must be considered as the basis for implementing the

detection algorithm. Such hardware, based on

configurable arrays of logic gates, has the very serious

handicap of scarce memory resources. Devices

usually posses a few hundred thousand bits of

memory, that is far too little to contain an image

frame and associated statistic tables.

As remarked previously hardware specification

requires a time scale for operations and a register

skeleton to provide the means for data exchange in the

processing framework.

The time scale for operations may be determined

by the speed of acquiring picture elements from the

video camera or by the update rate of the detection

 occupation.

In the first instance all operations must be

performed between two consecutive pixel

acquisitions, while the second time limit is much

more lenient and may amount even to a number of

video frame periods. The length is dependent on

update needs of a traffic controller which will

incorporate the vehicle detector.

To cover update rates of many controllers the

concept of pixel by pixel processing was accepted as

the design base.

Several architecture frameworks were analysed

and their characteristics were evaluated [14]. In all

cases the problem of storing large amounts of

auxiliary data such as tables had to be addressed. To

diminish hardware costs a DDRAM was incorporated.

The detection algorithm as presented on fig.1 and

2 comprises data objects and processing tasks. The

processing tasks were assigned to components with

clearly defined data interfaces.

The hardware framework consists of components

occupancy and data exchange with camera and

DDRAM.

To sustain the required data flow a specialized

dynamic RAM controller was designed. This

component incorporates dual port block memories

acting as cache memories for data transfers. One of

the ports is handled by logic organizing dynamic

RAM block transfer operations while the other is used

for pixel access.

Using a 32 bit data path for RAM access

throughput of over 0,5GB/sek may be achieved

without excessively straining RAM components.

Fig. 3. presents the pixel based architecture. It is

a processing pipeline fed by data from the DDRAM

memory. The pipeline setup reproduces the algorithm

diagrams with the exception that entities are acted

upon and pushed through components corresponding

to transitions.

Transitions t5, t6, t7, t8 are merged into one

component - the processing sequence controller.

Figure 3. Processing pipeline for detecting

vehicles

The processing sequence controller pushes data

through processing stages. When data is not needed

for calculation it is just pushed through. Results are

written back to memory.

 The stages of this pipeline are implemented in

a low cost FPGA. Video stream comes from

a digitized signal of a CCTV PAL camera. A Xilinx

Spartan 3E device is the logic array component used

[7].

The hardware implementing the vehicle

detection algorithm must be augmented with

controllers interface for passing detection results and

suitable configuration protocols.

5 Conclusions and Future Work

Object oriented approach to hardware design

proved its usefulness. Goals set for the design were

met. Currently first prototypes are field tested and

detection results are compared against traditional loop

detectors.

Further reduction of the designed hardware

structure is possible by changing the way pixels are

ordered in memory. The presented solution utilizes

two-dimensional arrays and elaborates data row by

row. This requires counters for controlling row

numbers and picking pixels within rows. The size of

rows is not a power of two, which further complicates

control circuits.

By using a vector representation of image data it

will be possible to eliminate row counters and

simplify control circuitry [13].

7 Acknowledgments

This research is a part of a project financed by the

European Union and the Polish Ministry of Science

and Higher Education.

References

[1] Battle J, Marti J, Ridao P, Amar J: New

FPGA/DSP-Based Parallel Architecture for Real-

Time Image Processing, Real Time Imaging

2002, vol. 8:345-356

[2] Benitez D: Performance of reconfigurable

architectures for image-processing applications,

Journal of Systems Architecture 2002, vol.

49:193-210

[3] Bhandarkar S, Luo X: An Efficient Background

Updating Scheme for Real-time Traffic

Monitoring. IEEE ITS Conference Washington

USA Oct 2004, pp.859-864

[4] Cardells-Tormo F, Moline P: Area-Efficient 2-D

Shift-Variant Convolvers for FPGA-Based

Digital Image Processing, IEEE Transactions On

Circuits And Systems 2006, vol. 53, No. 2

[5] Chang C-C, Huang Z-Y, Li H-Y, Hu K-T, Tseng

W: Pipelined Operation of Image Capturing and

Processing Proceedings of 2005 5th IEEE

Conference on Nanotechnology Nagoya, Japan

[6] Damasevicius R, Stuikys V: Application of the

object-oriented principles for hardware and

embedded system design. Integration the VLSI

Journal 2004, vol.38:309-339

[7] Ehrig H, Hoffmann K, Padberg J:

Transformations of Petri Nets, Electronic Notes

in Theoretical Computer Science 2006,

vol.148:151-172

[8] FPGA Features and Design. Xilinx Inc. San Jose,

CA USA 2007

[9] Heikkila J, Silven O: A real-time system for

monitoring of cyclists and pedestrians. Image

Vision Computing 2000, vol.22:563-570

[10] Koller D, Weber J W, Malik J: Robust Multiple

Car Tracking with Occlusion Reasoning, Proc.

European ConJon Computer Vision, Stockholm,

Sweden, May 1994, pp.189-196

[11] Li J, An X, Ye L, He H: A Reconfigurable

Parallel Architecture for Image Computing, IEEE

Proceedings of the 6th World Congress on

Intelligent Control and Automation, June 21-23,

2006, Dalian, China

[12] Murata T: Petri Nets: Properties, Analysis and

Applications, Proceedings of the IEEE, 1989,

vol.77:541-580

[13] Pamula W: Advantages of Using Space Filling

Curve for Computing Wavelet Transforms of

Road Traffic Images. International Conference on

Image Analysis and Processing, Mantova, Italy,

IEEE Society Press pp. 614-620

[14] Project Report: Modules of Video Traffic

Incidents Detectors ZIR-WD for Road Traffic

Control and Surveillance. WKP-

1/1.4.1/1/2005/14/14/231/2005, Katowice,

Poland 2007

[15] Stauer C, Grimson W E L: Adaptive background

mixture models for real-time tracking in:

Computer Vision and Pattern Recognition, Fort

Collins, Colorado, June 1999, pp. 246-252

[16] Torres-Huitzil C, Arias-Estrada M: Configurable

Hardware Architecture for Real-Time Window-

Based Image Processing, LNCS 2003,

vol.2778:1008-1011

