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1 Introduction
In 1976, Di�e and Hellman [1] proposed the �rst
public�key exchange protocol for exchanging secret
keys over insecure channels. This protocol is not
a public�key cryptosystem, but it is the basis for
the cryptosystems. In 1978, Rivest, Shamir and
Adleman [10] proposed the �rst practical public�
key cryptosystem, now widely known as the RSA
public�key cryptosystem. Its security is based on
the assumption that it is not so di�cult to �nd
two large prime numbers, but it is very di�cult to
factor a large composite into its prime factorization
form. The modulus n of the RSA cryptosystem is
the product of two di�erent large primes p and q.
The public exponent e and the secret exponent d
are related by ed ≡ 1 (mod (p − 1) (q − 1)).
In 1985, Koblitz [6] and Miller [8] independently

proposed new public�key cryptosystems based on
elliptic curves. These cryptosystems rely on the
di�culty to solve the discrete logarithm problem
for elliptic curves.
In 1991, Koyama, Maurer, Okamoto and Van-

stone [7] proposed another kind of elliptic curve
based cryptosystems. Their schemes are based on
the di�culty of factoring large numbers and are

similar to RSA. The most practical of these schemes
(Type 1) is generally called the KMOV public�key
cryptosystem, according to the �rst letters of the
author's names.
A well�known attack on RSA with small secret

exponent d, which is called the Wiener attack, was
proposed by Wiener [13] in 1990. He showed that
using continued fractions, one can e�ciently re-
cover the secret exponent d from public key (n, e)
as long as d < n0.25. In this case d is the denom-
inator of some convergent pm/qm of the continued
fraction expansion of e/n.
In 1997, Verheul and van Tilborg [11] extended

the boundary of the Wiener attack on RSA. They
propose a technique to raise the security boundary
of n0.25 with exhaustive-searching for 2t + 8 bits,
where t = log2 d−log2 n0.25. The candidates for the
secret exponent d are of the form d = rqm+1 +sqm,
for some positive integers r and s.
In 2004, Dujella [2] described a modi�cation of

the Verheul and van Tilborg variant of the Wiener
attack on RSA. Dujella's modi�cations of this at-
tack is based on the Worley result on Diophantine
approximations [14] of the form |α − a/b| < c/b2,
for a positive real number c. The candidates for the
secret exponent d are of the form d = rqm+1±sqm,
for some nonnegative integers r and s.
In 1995, Pinch [9] extended the Wiener attack to

KMOV cryptosystem.
Here we extend the Dujella variant of the Wiener

attack to KMOV cryptosystem. We describe an
algorithm for �nding secret key d of the form
d = rqm+1 ± sqm, for some nonnegative integers
r and s. Using results on connection between con-
tinued fractions and rational approximations of the



form |α−a/b| < c/b2, for a positive integer c, from
Dujella and Ibrahimpa²i¢ [4] and above mentioned
results on Diophantine approximations [2, 14], we
derive bounds for r and s.

2 Elliptic curve over the ring
Zn

Elliptic curves are described by the set of solutions
to certain equations in two variables. We begin by
looking brie�y at elliptic curves [12, 3]
Let K be a �eld of characteristic 6= 2, 3 (1+1 6= 0

and 1+1+1 6= 0 in K), and let x3 + ax+ b (where
a, b ∈ K) be a cubic polynomial with no multiple
roots

(

4a3 + 27b3 6= 0
)

. An elliptic curve E (a, b)
over K is the set of points (x, y) ∈ K × K which
satisfy the equation

y2 = x3 + ax + b,

together with a single element denotedO and called
the point at in�nity. We will mainly be interested in
elliptic curves Ep (a, b) over the �nite �eld Fp with
p elements, for some prime p. The fact that addi-
tion operation on the points of an elliptic curve can
be de�ned that elliptic curve is an abelian group,
makes elliptic curves interesting in cryptography.
This addition operation is described in the follow-
ing.
Let E be an elliptic curve, and let P and Q be two

points on E. We de�ne the negative of P and the
sum P +Q according to the following rules. If P =
O, then we de�ne −P = O and P +Q = Q (i.e. O is
the neutral element of the group of points). If P =
(x, y), then −P = (x,−y). Let (x1, y1) , (x2, y2)
and (x3, y3) denote the coordinates of P,Q and P +
Q, respectively. The coordinates (x3, y3) may be
computed by

P1 + P2 =

{

O , x1 = x2 & y1 = −y2

(x3, y3) , otherwise (1)

where

x3 = λ2 − x1 − x2

y3 = λ (x1 − x3) − y1

and
λ =

{

3x2

1
+a

2y1

, P1 = P2

y2−y1

x2−x1

, otherwise.
(2)

All computations are in the �eld over which E
is de�ned. In particular, when the �eld is Fp, all
computations are modulo p.
Let #Ep (a, b) denote the order (i.e. the num-

ber of points) of the elliptic curve Ep (a, b). It well-
known that p+1−2

√
p ≤ #Ep (a, b) ≤ p+1+2

√
p.

There exists a polynomial-time algorithm for com-
puting the order of an elliptic curve, but this algo-
rithm is quite impractical for large p. It is known
that Ep (a, b) is either cyclic or the product of
two cyclic groups. In the latter case, Ep (a, b) ∼=
ZN1

×ZN2
, where N1 · N2 = #Ep (a, b), where N2

divides N1 and where N2 also divides p − 1. For
some special classes of elliptic curves, the order and
group structure is easily determined. If p an odd
prime satisfying p ≡ 2 (mod 3), then for 0 < b < p,
elliptic curve Ep (0, b) is a cyclic group of order p+1
[7].
We now consider elliptic curves over the ring

Zn = {0, 1, 2, . . . , n− 1}, where n denote the prod-
uct of two large distinct primes p and q. Like
the de�nition over the �eld Fp, an elliptic curve
En (a, b) over the ring Zn is the set of points
(x, y) ∈Zn×Zn satisfying the equation y2 = x3 +
ax + b (mod n) together with the point O. An ad-
dition operation on En (a, b) can be de�ned in the
same way as the addition operation on Ep (a, b),
simply by replacing computations in Fp by compu-
tations in Zn, where all computations are modulo
n. A rational number a/b in (2) must be treated as
ab−1 where b−1b = 1 (mod n). However, two prob-
lems occur. The �rst problem is that because the
computation of λ in (2) requires a division which
in a ring is de�ned only when the divisor is a unit,
the addition operation on En (a, b) is not always
de�ned. The second problem, which is related to
the �rst is that En (a, b) is not a group. It would
therefore seem impossible to base a cryptographic
system on En (a, b). The authors of KMOV cryp-
tosystem [7] presented a natural solution to these
problems. By Chinese Remainder Theorem, every
element on En (a, b) can be represented uniquely
as a pair of points, one on Ep (a, b) and other on
Eq (a, b). In this way we have that En (a, b) is
isomorphic to Ep (a, b) ⊕ Eq (a, b). In practice is
very unlikely that the addition of two points on
En (a, b) is unde�ned, where n = pq for large p and
q. The probability of �nding two points such that
their sum is unde�ned is the same than �nding the
two prime factor of n. The second problem, that



En (a, b) is not a group, can be solved by the fol-
lowing statement which can be easily obtained from
the Chinese Remainder Theorem. Let En (a, b) be
an elliptic curve such that gcd

(

4a3 + 27b2, n
)

= 1.
If Nn = lcm (#Ep (a, b) ,#Eq (a, b)), then

∀P ∈ En (a, b) ,∀k ∈ Z : (kNn + 1) P = P. (3)

We should note that it is possible to de�ne an
elliptic curve over a ring so that the resulting struc-
ture is a group, but for our purposes, this is unnec-
essary.

Example 1 Let E35 (10, 18) the elliptic curve
y2 = x3 + 10x + 18 over the ring Z35, and let
P = (x1, y1) = (1, 8) and Q = (x2, y2) = (23, 5) be
two points on E. We have:

Case 1: P + Q

y2 − y1 = 5 − 8 = −3 = 32 mod 35
x2 − x1 = 23 − 1 = 22 mod 35
22−1 = 8 mod 35 (22 · 8 = 176 = 1 mod 35)
λ = 32 · 8 = 256 = 11 mod 35
x3 = 112 − 1 − 23 = 97 = 27 mod 35
y3 = 11 · (1 − 27) − 8 = −294 = 21 mod 35

P + Q = (27, 21)

Case 2: P + P = 2P

3x2

1
+ a = 3 · 12 + 10 = 13 mod 35

2y1 = 2 · 8 = 16 mod 35
16−1 = 11 mod 35 (16 · 11 = 176 = 1 mod 35)
λ = 13 · 11 = 143 = 3 mod 35
x3 = 32 − 2 · 1 = 7 mod 35
y3 = 3 · (1 − 7) − 8 = −26 = 9 mod 35

2P = (7, 9)

3 KMOV cryptosystem
Koyama, Maurer, Okamoto and Vanstone [7] pro-
posed public key cryptosystem which is an elliptic
curve based analogue to RSA. The authors pro-
pose using the elliptic curve En (0, b) with equa-
tion y2 = x3 + b modulo n = pq where p and q are
both congruent to 2 mod 3. In this case, the order
#Ep (0, b) is p + 1 and #Eq (0, b) is q + 1.
Alice want to send a message M to Bob. They

do the following.

1. Bob chooses two distinct large primes p and q

with p ≡ q ≡ 2 (mod 3) and computes n = pq.

2. Bob chooses integer e which is relatively prime
to lcm (p + 1, q + 1).

3. Bob computes private key number d

ed ≡ 1 (mod lcm (p + 1, q + 1)).

4. Bob makes n and e public and he keeps d, p

and q private.

5. Alice represents her message as a pair of inte-
gers (m1,m2) (mod n). She regards (m1, m2)
as a point M on the elliptic curve En (0, b)
given by

y2 = x3 + b mod n,

where b = m2

2
−m3

1
mod n (she does not need

to compute b).

6. Alice adds M to itself e times on E to obtain
C = (c1, c2) = eM . She sends C to Bob.

7. Bob computes M = dC on E to obtain M .

Note that the formulas for the addition law on
En (0, b) never use the value of b. Therefore, Bob
never need to compute it, but he can compute it, if
he wants as b = c2

2
− c3

1
.

Let's verify that encryption and decryption are
inverse operations. Since

ed ≡ 1 (mod lcm (p + 1, q + 1)),

we have that

ed = K · lcm (p + 1, q + 1) + 1

for some positive integer K. Then, from (3) we
have

dC = deM = (K · lcm (p + 1, q + 1) + 1) M = M,

as desired.
The following algorithm implements the idea of

repeated doubling and addition for computing eP

(and similar for computing dP ). This algorithm
will compute the point eP mod n, where e is pos-
itive integer and P = (x, y) is initial point on an
elliptic curve En (a, b) : y2 = x3 + ax + b over the
ring Zn. The result point is eP = (xt, yt).



Write e in the following binary expansion form
e = es−1es−2 . . . e1e0.

(xt, yt) ← (x, y)
for i from s − 2 down to 0 do

m1 ← 3x2

t + a mod n
m2 ← 2yt mod n
M ← m1/m2 mod n
x0 ← M2

− 2xt mod n
y0 ← M (xt − x0) − yt mod n
xt ← x0

yt ← y0

if ei = 1 then
m1 ← yt − y mod n
m2 ← xt − x mod n
M ← m1/m2 mod n
xt ← M2

− xt − x mod n
yt ← M (xt − x0) − yt mod n
xt ← x0

yt ← y0

print (xt, yt)

Example 2 Alice want to send a message to Bob.
Bob chooses two distinct primes p = 23 and q = 29
and computes n = pq = 667. He chooses integer
e = 13 with gcd (e, n) = 1, and computes secret
exponent d = 37 with ed ≡ 1 (mod 120) where
120 = lcm (p + 1, q + 1). Bob makes n = 667 and
e = 13 public.

Alice want to send the message M = (1, 27)
to Bob, where M is an point on an elliptic curve
E667 (0, 61) : y2 = x3 + 61 over the ring Z667.
Alice adds M to itself e = 13 times on E667 to

obtain C = (c1, c2) = 13M . She computes eM with
the mentioned algorithm.

e = 13 = 11012 = e3e2e1e0

e3 = 1 : (xt, yt) = M
= (1, 27) (M)

e2 = 1 : (xt, yt) = 2M + M
= (33, 490) + (1, 27) = (559, 362) (3M)

e1 = 0 : (xt, yt) = 2 (2M + M)
= (559, 362) + (559, 362) = (540, 630) (6M)

e0 = 1 : (xt, yt) = 2 (2 (2M + M)) + M
= (209, 207) + (1, 27) = (13, 527) (13M)

Alice sends C = (13, 527) to Bob.

Bob computes M = dC = 37C on E667 to obtain
M .

d = 37 = 1001012 = d5d4d3d2d1d0

d5 = 1 : (xt, yt) = C = (13, 527) (C)

d4 = 0 : (xt, yt) = 2C = (56, 306) (2C)

d3 = 0 : (xt, yt) = 2 (2C) = (281, 41) (4C)

d2 = 1 : (xt, yt) = 2 (4C) + C = (559, 305) (9C)

d1 = 0 : (xt, yt) = 2 (9C) = (540, 37) (18C)

d2 = 1 : (xt, yt) = 2 (18C) + C = (1, 27) (37C)

4 Cryptanalysis of KMOV
cryptosystem with short
secret exponent

The security of the KMOV cryptosystem is based
on the di�culty of �nding the secret key d.
If an attacker factors n as pq, then he knows
lcm (p + 1, q + 1) and he can �nd d from the re-
lation ed ≡ 1 (mod lcm (p + 1, q + 1)). Solving a
secret key d from public keys e and n is computa-
tionally equivalent to factoring a composite number
n.
In this article, we are only interested in attacks

using continued fractions. If [a0; a1, a2, . . .] is the
continued fractions of a real number α, then the
convergents pm

qm

satisfy p0 = a0, q0 = 1, p1 = a0a1+
1, q1 = a1 and for i > 1

pi = aipi−1 + pi−2

qi = aiqi−1 + qi−2.

In 1990, Wiener [13] proposed a polynomial time
algorithm for breaking a RSA cryptosystem, where
p and q are same size and e < n, if the secret expo-
nent d has at most one-quarter as many bits as the
modulus n. He showed that if p < q < 2p, e < n
and d < 1

3
n0.25, then d is the denominator of some

convergent of the continued expansion of e/n, and



therefore d can be computed from the public keys
n and e. In 1997, Verheul and van Tilborg [11]
proposed extension of the Wiener attack when d is
few bits longer than n0.25. The candidates for the
secret exponent d are of the form d = rqm+1 +sqm,
for some positive integers r and s. In 2004. Du-
jella [2] described new variant of the Wiener attack.
This attack is very similar to the Verheul and van
Tilborg attack, but instead of exhaustive search af-
ter �nding the appropriate convergent, this variant
also uses estimates which follow from Diophantine
approximations [2, Theorem 1].

Theorem 1 (Dujella, Worley) Let α be an real
number and let a, b be coprime nonzero integers,
satisfying the inequality

∣

∣

∣
α −

a

b

∣

∣

∣
<

c

b2

where c is a positive real number. Then (a, b) =
(rpm+1 ± spm, rqm+1 ± qm), for some nonnegative
integers m, r and s such that rs < 2c.

In 1995, Pinch [9] extended the Wiener attack to
KMOV cryptosystem, and here we extend the Du-
jella variant of the Wiener attack to KMOV cryp-
tosystem.
From ed ≡ 1 (mod lcm (p + 1, q + 1)) there

must exist an integer K such that

ed = K · lcm (p + 1, q + 1) + 1.

If we let G = gcd (p + 1, q + 1) and use the fact
that

lcm (p + 1, q + 1) =
(p + 1) (q + 1)

G

we get
ed =

K

G
· (p + 1) (q + 1) + 1.

Let us de�ne

k =
K

gcd(K,G)
and g =

G

gcd(K,G)

then K
G

= k
g
, g < k and gcd(k, g) = 1. Also e < n

G

and thus e
n

< 1

G
. Now we have

ed =
k

g
· (p + 1)(q + 1) + 1

edg = k(p + 1)(q + 1) + g. (4)

Let d = D 4
√

n. Assume that p < q < 2p. Then
2
√

n < p + q < 2.1214
√

n and this implies

e

n
−

k

dg
=

kn + kp + kq + k + g − kn

ndg

=
k(p + q) + k + g

ndg

<
k · (2.1214

√
n + 2)

ndg
.

We may assume that n > 108, and we have
e

n
−

k

dg
<

k

dg
·
2.1216

√
n

n
<

2.1216e

n
√

n
.

In the opposite direction we have
e

n
−

k

dg
=

k(p + q) + k + g

ndg
>

2k
√

n + k

ndg
.

Since k
dg

< e
n
· n

n+2
√

n+1
, we obtain

e

n
−

k

dg
>

e

n
·

2
√

n + 1

(
√

n + 1)
2

>
1.9997e

n
√

n
.

Let m be the largest (even) integer such that
e

n
−

pm

qm

>
2.1216e

n
√

n

We have two possibilities depending on whether the
inequality pm+2

qm+2
≤ k

dg
is satis�ed or not.

In �rst case we may assume that pm+2

qm+2
> k

dg
. We

have

e

n
−

k

dg
<

2.1216e

n
√

n
<

2.1216

G
√

n
=

2.1216D2g2

G

(dg)
2

,

and from Theorem 1 we conclude that
k

dg
=

rpm+1 + spm

rqm+1 + sqm

or k

dg
=

spm+2 − tpm+1

sqm+2 − tqm+1

where m ≥ −1 and r, s and t are nonnegative
integers satisfying rs < 4.2432D2g2

G
and st <

4.2432D2g2

G
.

If we search for k
dg

between the fractions of the
form rpm+1+spm

rqm+1+sqm

, we have system

k = rpm+1 + spm

dg = rqm+1 + sqm.



The determinant of the system is 1 and therefore
the system has positive integer solutions:

r = kqm − dgpm

s = dgpm+1 − kqm+1 .

If r and s small, then they can be found by
an exhaustive search. Let us �nd upper bounds
for r and s. From [5, Theorem 9 and 13]
(

1
qm(qm+1+qm) <

∣

∣

∣
α − pm

qm

∣

∣

∣
< 1

qmqm+1

)

, we have r =

dgqm

(

k
dg

− pm

qm

)

< dg
qm+1

. The estimate for s have
two possibilities. Assume that pm+1

qm+1
− e

n
> 2.1216e

n
√

n
.

Then

s = dqqm+1

(

pm+1

qm+1
−

k

dg

)

<
2dg

qm+2
.

Since
1

q2
m+2 (am+3 + 2)

<
e

n
−

pm+2

qm+2
<

2.1216e

n
√

n
<

2.1216

G
√

n
,

we have

qm+2 >

√
G 4
√

n
√

2.1216 (am+3 + 2)
.

Putting all these estimates together we obtain

r <
√

2.1216 (am+3 + 2) (am+2 + 1)
Dg
√

G

s < 2 ·
√

2.1216 (am+3 + 2)
Dg
√

G

rs < 4.2432 (am+3 + 2) (am+2 + 1)
D2g2

G
.

Assume now that pm+1

qm+1
− e

n
≤ 2.1216e

n
√

n
. Then

s = dqqm+1

(

pm+1

qm+1
−

k

dg

)

<
dg

qm

,

and analogous to the previous case we have

r <
√

2.1216 (am+2 + 2)
Dg
√

G

s <
√

2.1216 (am+2 + 2) (am+1 + 1)
Dg
√

G

rs < 2.1216 (am+2 + 2) (am+1 + 1)
D2g2

G
.

We have rs < 4.2432 D2g2

G
and (see [2])

r = am+2s − t < am+2s which imply r <√
4.2432am+2

Dg√
G
. We have that s ≤ s1 where s1 =

⌊

2 ·
√

2.1216 (am+3 + 2) Dg√
G

⌋

if pm+1

qm+1
− e

n
> 2.1216e

n
√

n

and s1 =
⌊

√

2.1216 (am+2 + 2) (am+1 + 1) Dg√
G

⌋

if
pm+1

qm+1
− e

n
≤ 2.1216e

n
√

n
.

Let s0 =
⌊√

4.2432 Dg√
G
√

am+2

⌋

. We have the
following upper bound for the number of possible
pairs (r, s):

am+2

∑s0−1
i=1 i + 4.2432 D2g2

G

∑s1

i=s0

1
i

<

< am+2 · s0(s0−1)
2 + 4.2432 D2g2

G

(

1 +
∫ s1

s0

dx
x

)

<

< am+2 ·
s2
0

2 + 4.2432 D2g2

G

(

1 + ln s1

s0

)

<

< 4.2432 D2g2

G

(

1.5 + ln s1

s0

)

<

< 4.2432 D2g2

G
(1.1536 + ln (max (A,B))) .

where

A = 2
√

am+2 (am+3 + 2)

B = (am+2 + 1) (am+1 + 1) .

We have the same upper bound for the number
of possible pairs (s, t).

In the second case we assume that pm+2

qm+2
≤ k

dg
.

We search for k
dg

among the fractions of the form
k
dg

= r′pm+3+s′pm+2

r′qm+3+s′qm+2
. Similar with �rst case we have

r′ = kqm+2 − dgpm+2

s′ = dgpm+3 − kqm+3 .



Now we have

r′ = dgqm+2

(

k

dg
− pm+2

qm+2

)

= dgqm+2

[(

e

n
− pm+2

qm+2

)

−
(

e

n
− k

dg

)]

< dgqm+2 ·
0.1219e

n
√

n
< 0.06096 · dg

qm+3

<
0.06096

√

2.1216 (am+3 + 2)

am+3

√
G

Dg

s′ = dgqm+3

(

pm+3

qm+3

− k

dg

)

≤ dg

qm+2

<

√

2.1216 (am+3 + 2)√
G

Dg .

Hence, we have following upper bound for the num-
ber of possible pairs (r′, s′)

r′s′ < 0.387999
D2g2

G
.

We will now consider how one could test whether
a guess of k and dg is correct. Since g < k we have
from (4) that guess of (p + 1) (q + 1) is

⌊

e·dg

k

⌋

and
of g is edg mod k. The guess of (p + 1) (q + 1) can
be used to create a guess of p+q

2
using the following

identity
p + q

2
=

(p + 1) (q + 1) − n − 1

2
.

If the guess of p+q

2
is not an integer, then the guess

of k and dg is wrong. The guess of p+q

2
can be

used to create a guess of
(

q−p

2

)2 using the following
identity:

(

q − p

2

)2

=

(

p + q

2

)2

− n.

If the guess of
(

q−p

2

)2 is a perfect square, then the
original guess of k and dg is correct. The secret key
d can be found by dividing dg by g. Recall that g

was the remainder when edg was divided by k. We
can also recover p and q easily from p+q

2
and q−p

2
.

Example 3 Let

n = 16033062558247898774937117413365790744917

and

e = 895701964455975587584305550686841593607.

The �rst 19 partial quotiens of the continued ex-
pansion of e

n
are

[0, 17, 1, 8, 1, 3436, 1, 4, 2, 5, 1, 4, 1, 5, 5, 1, 1, 3, 2, . . .] ,

and the some convergents are

p0

q0

= 0,
p1

q1

=
1

17
,

p2

q2

=
1

18
,

p3

q3

=
9

61
, . . . ,

p14

q14

=
83158371

1488534599
,

p15

q15

=
430058380

7698043751
,

p16

q16

=
513216751

9186578350
,

p17

q17

=
943275131

16884622101
, . . .

We �nd that
83158371

1488534599
<

e

n
− 2.1216e

n
√

n
<

513216751

9186578350
,

and have m = 14. We are searching for the
secret number dg between the numbers of the
form 7698043751r+1488534599s or 9186578350s−
7698043751t or 16884622101r′ + 9186578350s′ . By
applying the above mentioned test, we �nd that
s = 494414887 and t = 261 gives the correct
value for secret key d (i.e. for k and dg). We
have secret key d = 2782668710135556079 and
the factorization of n = pq is achieved, where
the factors are p = 126621133370427318341 and
q = 126622327027697104337.
If we compare these numbers s and t with the

numbers r and s obtained by an application of the
Verheul and van Tilborg attack to the same prob-
lem, we have the same number s = 494414887, but
the other number r = 494414626 is much bigger
than the number t = 261.

Example 4 We take now the 41 digit example.

n = 16033062558247898774937117413365790744917.

Among 1000000 trials with randomly chosen pri-
vate key d such that 1

3
n0.25 < d < 109 · n0.25, we

have following results. In 988974 (98.90%) trials
we have that pm+2

qm+2
> k

dg
. The maximal value of

min{rs, st} is 2410094076733959020 and it is at-
tained for d = 3730709572904400293. The average
value of min{rs, st} is 81126922686797477.50. The



maximal value of min{ Grs
D2g2 , Gst

D2g2 } is 3.9541 and it
is attained for d = 1771893280839858823. The av-
erage value of these minimums for d in the given
interval is 0.8329.
In 11026 (1.10%) trials we have that pm+2

qm+2
≤

k
dg
. The maximal value of products r′s′ is

389865443158121810 and it is attained for d =
2056384316432564443. The average value of these
products r′s′ is 2879889251373413.87. The maxi-
mal value of Gr′s′

D2g2 is 0.1133 and it is attained for
d = 755155591075719559. The average value of
these products is 0.0297.

Note that KMOV cryptosystem with 1024�bit
modulus n is factoring�secure. In this case, Pinch
[9] showed that the KMOV cryptosystem is inse-
cure for 256�bit d and the attack described in this
paper shows that it is insecure for 270�bit secret
key d.
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