

Exploring the Access to the Static Array Elements via

Indices and via Pointers — the Introductory C++ Case

Robert Logožar, Matija Mikac

University North, Croatia

Dpt. of Electrical Engineering

104. brigade 3, 42 000 Varaždin, Croatia

{robert.logozar, matija.mikac}@unin.hr

Danijel Radošević

University of Zagreb

Faculty of Organization and Informatics

Pavlinska 2, 42 000 Varaždin, Croatia

darados@foi.unizg.hr

Abstract. We revisit the old but formally still undecided

debate on the time efficiency of accessing the elements

of 1D arrays via indices versus accessing them via

pointers. To analyze that, we have programmed bench-

marks of minimal complexity in the C++ language and

inspected the machine code of their 32-bit compilation

in the x86 assembly language. Before the performance

study, we have briefly compared a few methods used

for the execution time measurements. There is no ad-

vantage in the use of pointers over indices except for

some benchmarks and array (data) types, while for the

others, the exact opposite may be true. The parallel aim

was to provide a ground for the possible further ana-

lysis and measurements of this kind on different com-

puters and platforms, and different languages.

Keywords. Static arrays, pointers, C/C++, accessing

the array elements, time measurement and efficiency.

1 Introduction

The array is the simplest and ubiquitous data structure

that resembles the organization of the computer main

memory itself. As such, it is unavoidable in computer

programming and all general-purpose high-level

languages implement it one way or the other. The

simplest way to access the array elements — which

follow the mathematical notation of vectors and

matrices — is by “subscripting” the arrays with their

indices. In Pascal and the C language, that became

possible also via pointers, which are the addresses of

the defined data types.

The fathers of the C language, B. Kernighan and D.

Ritchie, in their C language “bible,” devoted the whole

chapter 5 to the pointers and arrays and their relation

(Kernighan & Ritchie, 1978, 1988, known as K&R). In

§5.3 they say: “Any operation that can be achieved by

array subscripting can also be done with pointers. The

pointer version will in general be faster but, at least to

the uninitiated, somewhat harder to understand.”

This claim must be echoing in the minds of many

computer scientists and practical programmers who

have read the valuable classical literature and care to

write the most efficient code. Namely, if we follow the

implicit suggestion, should we insist on accessing the

array elements by using pointers, and if so, what are the

time efficiency improvements? Kernighan and Ritchie

did not support their statement with any explanation or

proof. They have even relativized it in the further

elaboration on the array element access in the rest of

that chapter and the textbook. Besides that, when trying

to see if someone else tried to corroborate or dispute

this thesis, we could not find any systematic work or

firm results on this topic from other authors.

To investigate this subject properly, one should get

a deeper insight into it and reach the final verdict only

after the concrete time measurements. That is, for the

appropriately tailored benchmarks of the two appro-

aches, we must measure their benchmark execution

times, which we shall abbreviate as BETs.

We did some simple, preliminary time measure-

ments roughly a decade ago. They showed that the ac-

cess to the elements of one-dimensional arrays of some

integer types (short int, int) via pointers was rou-

ghly 15% to 20% faster than the access via indices. We

did not pursue the measurements more systematically

nor did we investigate the causes of this behavior at that

time. We left that — seemingly trivial research — for

some “future work,” which finally continues with this

paper. Thus, our first aim is to provide an introduction

for a detailed analysis of the provided benchmarks and

their execution time measurements. At the same time,

we shall expose our first results obtained by using a

modern integrated developing environment (IDE) on a

relatively contemporary computer and today’s com-

mon operating system (OS), but leaving the many

details from this shorter version of our report.

Concerning the outline of this paper, in the next,

section 2, we shortly expose the basics of the array data

structure and the pointer data type and their implemen-

tation in the C/C++ languages. Section 3 presents and

explains our benchmarks and exposes their assembly

language code. Section 4 discusses the methods,

program setup and prerequisites for the time

measurements. There, we present the results of our

BET measurements and discuss them. Section 5

concludes this paper and opens several new directions

and topics for future work.

Proceedings of the Central European Conference on Information and Intelligent Systems ___ 507

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

mailto:darados@foi.unizg.hr

2 Arrays and Pointers

Before elaborating on our benchmark details, we shall

briefly outline the basics of the arrays and pointers,

with an emphasis on their implementation in C/C++.

2.1 Arrays

One-dimensional (1D) arrays serve for storing the

series of 𝑛 equal 𝑎𝑖 elements, where the nonnegative

integer index 𝑖 spans through 𝑛 consecutive values. For

example, with 𝑖 = 1, 2, … , 𝑛, the elements 𝑎𝑖 could be

interpreted as the components of vector 𝒂 in an 𝑛-

dimensional space. Following this mathematical nota-

tion, the standard syntax for accessing the array

elements in high-level programming languages

requires stating the array name and the element index.

Based on that, the compilers ensure the run-time

calculation of 𝑖-th array element memory address as:

𝐴(𝑖) = 𝐴0 + 𝑙𝑇 × (𝑖 − 𝑖0),
𝑖 = 𝑖0, 𝑖0 + 1, … , 𝑖0 + 𝑛 − 1 . (1a)

Here, 𝐴0 is the address of the starting element, the one

with the index 𝑖0, and 𝑙𝑇 is the size of the element data

type (𝑇) in the number of bytes (B) — here, of course,

in their original meaning of the basic memory location.

2.2 C/C++ Arrays and Pointers

The C and C++ languages fix the starting index to 𝑖0 =
0, so that its value needs not to be subtracted from 𝑖.
This leads to the simplest possible formula and the

fastest possible address calculation:

𝐴(𝑖) = 𝐴0 + 𝑙𝑇 × i, 𝑖 = 0, 1, … , 𝑛 − 1. (1b)

The value of the 𝑖-th element is the contents of the 𝐴(𝑖)

address expressed as a certain data type.

As hinted in the introduction (§1), the element

addresses and their contents can be operated also by

using the variables of the pointer data type, or pointers.

They hold the addresses with assigned data types and

can be shortly described as typed addresses.

Altogether, this leads to the three possible ways of

accessing the array elements, which we immediately

write in the C/C++ languages (K&R 1988, Stroustrup

1997), in the same way as they appear in the

benchmarks’ source code in Listing 1:

1) by using the element index: iX[i];

2) by using the pointer arithmetic and dereferencing

the obtained pointer: *(pI0 + i);

3) by incrementing the pointer: *(++pI).

The first two are of the random access kind because

their elements can be accessed directly via its index,

regardless of the previously accessed element. The

third access applies only to the passage through suc-

cessive array elements. To enable the comparison of

the time efficiency of all three access types, here we

restrict the consideration only to such passage through

the arrays, which is quite common in practice.

The above general deliberation is applicable to both

static and dynamic arrays, but in the further text, we

restrict our deliberation to the former.

3 Our Benchmarks

In this section, we describe and analyze our benchmark

routines. They are the core of our three C++ test prog-

rams, created in MS Visual Studio, Community Versi-

on 2019 (further on VS-CV 2019). The slight variati-

ons between them served to investigate the many pecu-

liarities on which the execution times depend (§4.3).

Because of the repetitive code for each data type, the

programs built up to a bit more than 1000 lines each.

3.1 Benchmark Source Code

Listing 1 shows our standard benchmarks for the int

type of 1D arrays. In each version of our test program,

there are benchmark loops similar to those in Listing 1

but for the arrays of all the six standard data types —

four integer and two floating-point types:

 char (1B), short int = short (2B), int (4B) (in

Listing 1), and long long int = abbr. llint (8B);

 float (4B), and double (8B).

To avoid the user stack overflow, the very large arrays,

like ours, must be declared as static or as global.

Listing 1. Our standard benchmarks for accessing the

elements of a (large) C/C++ int array by: 1) indices,

2) pointer arithmetic, 3) incrementing the pointer.

// Compiler Optimizations OFF!

#define intMid 1111
#define intLrg 22222222

typedef unsigned int uint;

// Defining the (static) int array:
const uint cuiN = 20000000;
uint uiN1 = cuiN;
static int iX[cuiN] = {0, };
iLVal = intMid, iRVal = intLrg;

// Pointers to the 0-th and last el.:
int *pI0 = iX, *pI1 = iX + uiN1;

 // A. Storing into array elements

// 1) Via index: iX[uI]:
for (uint uI = 0; uI < uiN1; ++uI)

iX[uI] = iRVal;

// 2) Via pointer arithmetic: *(pI0 + uI).
for (uint uI = 0; uI < uiN1; ++uI)

*(pI0 + uI) = iRVal;

// 3) Via icrementing the pointer: *(++pI).
for (int* pI = iX; pI < pI1; ++pI)

*pI = iRVal;

// B. Retrieving from array elements

// 1) Via index: iX[uI]:
for (uint uI = 0; uI < uiN1; ++uI)

iLVal = iX[uI];

// 2) Via pointer arithmetic: *(pI0 + uI).

for (uint uI = 0; uI < uiN1; ++uI)
iLVal = *(pI0 + uI);

// 3) Via icrementing the pointer: *(++pI).
for (int* pI = iX; pI < pI1; ++pI)

iLVal = *pI;

508 ___ Proceedings of the Central European Conference on Information and Intelligent Systems

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

For each of the three observed and implemented

access methods, there are two benchmarks:

A. for storing a value in the uI-th array element, and

B. for retrieving (fetching) a value from the uI-th

array element into a variable.

To investigate primarily the observed influence of

different element-accessing mechanisms, we have kept

the A and B types of operations as simple as possible.

In A, instead of storing the quasi-random numbers into

the array elements that serve as l-values, we assigned

them the value of the unchanging iRVal variable. In

the action B, one and only one l-value, the variable

iLVal, is assigned the values of the array elements.

In the release version of the program, the compiler

could and would optimize both actions if set so,

especially B, because its final outcome is the single

assignment: iLVal = iX[uiN1 - 1]. That is why these

benchmarks must run without any optimization.

The objection holds that such circumstances can be

considered very artificial and that the arrays could have

been filled up in some other ways. However, if our r-

or l-values were more complex with the aim to prevent

the extreme optimization efficiency, the net effect

would have been the same as now. Furthermore, the

investigation of the assembly language code (in the

next subsection), would not be possible in VS-CV

2019, as it is for the non-optimized, debug version.

Therefore, in this introductory investigation, we stick

to the proposed benchmarks, with elementary actions.

We shall discuss other details of the concrete

program implementation as needed.

3.2 Benchmark Machine Code

Disassembled

When running the programs in the debug mode, the VS

integrated developing environment (IDE) enables the

in-place presentation of the Intel assembly language

instructions in symbolic form, after disassembling the

machine code of the debug version of the program

(Intel 2022-1). The x86 (32-bit) and x64 (64-bit) versi-

ons of assembly languages are available, but in this

paper, we focus on the still-standard 32-bit version. A

reader more interested in this topic can find a concise

review of the x86 assembly language in (Evans 2022),

whereas the exhaustive reference is in (Intel 2022-2).

For our six benchmark routines (A/B.1, 2, 3) with the

array of int data type, this is shown in Listing 2.

3.2.1 Compilation of the for-loops (int arrays)

Of the six for-loops from our benchmarks in Listing 1,

the first two of the A and B types, A/B.1 and A/B.2,

have the standard for-loop heads, with (rising) indices.

Because of the same source form, their compilation

results in a series of eight machine instructions, which
are equivalent to the A.1 for-loop head. I.e., they

differ from each other only in the possible use of

different alternative registers: ECX instead of EAX, EDX

instead of ECX, and EAX instead of ECX. Additionally,

(jae) jumps to the: i) loop conditions (cmp instruction),

 Listing 2. Intel x86 assembly language code of the

crucial parts of our benchmarks from Listing 1. The

order of the code snippets is rearranged (see §4.2.1).

 // A. Storing into array elements
// 1) Via index: iX[uI]

for (uint uI = 0; uI < uiN1; ++uI)
00C738B8 mov dword ptr [ebp-7E8h],0
00C738C2 jmp main+20E3h (0C738D3h)
00C738C4 mov eax,dword ptr [ebp-7E8h]
00C738CA add eax,1
00C738CD mov dword ptr [ebp-7E8h],eax
00C738D3 mov ecx,dword ptr [ebp-7E8h]
00C738D9 cmp ecx,dword ptr [ebp-77Ch]
00C738DF jae main+2106h (0C738F6h)

 iX[uI] = iRVal;
00C738E1 mov edx,dword ptr [ebp-7E8h]
00C738E7 mov eax,dword ptr [ebp-738h]
00C738ED mov dword ptr iX (0C826A8h)[edx*4],eax
00C738F4 jmp main+20D4h (0C738C4h)

// 2) Via pointer arithmetic: *(pI0 + uI)
for (uint uI = 0; uI < uiN1; ++uI) // As in A.1.

 *(pI0 + uI) = iRVal;
00C73B5B mov eax,dword ptr [ebp-7F8h]
00C73B61 mov ecx,dword ptr [ebp-76Ch]
00C73B67 mov edx,dword ptr [ebp-738h]
00C73B6D mov dword ptr [ecx+eax*4],edx
00C73B70 jmp main+234Eh (0C73B3Eh)

// 3) Via incrementing the pointer: *(++pI)
for (int* pI = iX; pI < pI1; ++pI)

00C73DD1 mov dword ptr [ebp-808h], offset iX

(0C826A8h)
00C73DDB jmp main+25FCh (0C73DECh)
00C73DDD mov edx,dword ptr [ebp-808h]
00C73DE3 add edx,4
00C73DE6 mov dword ptr [ebp-808h],edx
00C73DEC mov eax,dword ptr [ebp-808h]
00C73DF2 cmp eax,dword ptr [ebp-770h]
00C73DF8 jae main+261Ah (0C73E0Ah)

 *pI = iRVal;
00C73DFA mov ecx,dword ptr [ebp-808h]
00C73E00 mov edx,dword ptr [ebp-738h]
00C73E06 mov dword ptr [ecx],edx
00C73E08 jmp main+25EDh (0C73DDDh)

 // B. Retrieving from array elements
// 1) Via index: iX[uI]
for (uint uI = 0; uI < uiN1; ++uI) // As in A.1.

 iLVal = iX[uI];
00C73A09 mov eax,dword ptr [ebp-7F0h]
00C73A0F mov ecx,dword ptr iX (0C826A8h)[eax*4]
00C73A16 mov dword ptr [ebp-784h],ecx
00C73A1C jmp main+21FCh (0C739ECh)

// 2) Via pointer arithmetic: *(pI0 + uI)
for (uint uI = 0; uI < uiN1; ++uI) // As in A.1.

 iLval = *(pI0 + uI);
00C73C9B mov edx,dword ptr [ebp-800h]
00C73CA1 mov eax,dword ptr [ebp-76Ch]
00C73CA7 mov ecx,dword ptr [eax+edx*4]
00C73CAA mov dword ptr [ebp-784h],ecx
00C73CB0 jmp main+248Eh (0C73C7Eh)

// 3) Via incrementing the pointer: *(++pI)
for (int* pI = iX; pI < pI1; ++pI) // As in A.3.

 iLval = *pI;
00C73F3D mov ecx,dword ptr [ebp-810h]
00C73F43 mov edx,dword ptr [ecx]
00C73F45 mov dword ptr [ebp-784h],edx
00C73F4B jmp main+2730h (0C73F20h)

ii) exits (behind the last, jmp instruction in the loop

body), and iii) loop-expressions, i.e., the index incre-

ments, starting at the second mov instruction.

Proceedings of the Central European Conference on Information and Intelligent Systems ___ 509

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

Summarily, all these for-loops consist of eight (8)

machine instructions in the loop head and one (1)

additional at the end of the loop body, totaling nine (9)

instructions, which are stored in altogether 43B (cf.

type int benchmark A.1, the for-loop control part).

We leave the in-detail explanation and analysis of

the disassembled machine code for the extended

version of this report. Here we just pay attention to a

slight alteration of the for-loop conditions that results

in different compilation results and execution times.

If the index upper limit in the for-loop conditions

is a (variable declared as) constant, as in the following

for-loop head:

for (uint uI = 0; uI < cuiN; ++uI),

then the compiler could and would omit the second mov

instruction after add (at the address 00C738D3h) and

prepare the cmp instruction as

cmp dword ptr [ebp-7E8h], 1312D00h .

Here, the constant value of cuiN = 1312D00h =

20 000 000h is stored in the instruction itself. This is

just an example of how the x86 set of instructions is not

orthogonal, i.e., how many operations are not allowed

with an arbitrary addressing mode.

In our old benchmarks, we wrote the for-loops in

just the above way and their loop heads were translated

into the following seven (7) instructions, with their

lengths in bytes in parenthesis:

– mov(10), jmp(2), mov(6), add(3), mov(6), cmp(10),

jae(2), plus jmp(2) at the end of the loop body,

◦ totaling eight (8) instructions in 41B.

This is one (1) instruction and 2B less than in our

standard benchmarks. However, whether such loops

will run faster or not, is still to be determined (§4.3.3).

Nevertheless, they do not resemble the general case in

which the upper limit can and often will be a non-

constant value, so we have abandoned them.

To get back to the present state of our benchmark

loops, in Listing 2 we observe that the for-loop in A.3

benchmark is very similar to the previous ones, and the

one in B.3 is equivalent. They have the same number

of instructions (8 + 1), with the same lengths as the

loops in the first two benchmarks. Furthermore, all

instructions in the A.3 for-loop are of the same type as

those in A.1, with just a few minor differences.

Overall, the differences in manipulating the pointer

from manipulating the indices are only subtle. The

compilation of all for-loops in our standard bench-

marks results in the same number of instructions, with

the same operations, and the same or very similar

addressing modes, resulting in their same lengths. A

thorough analysis confirmed — what could have been

expected in the first place — that this holds for the

loops of the benchmarks with other five array (data)

types as well. From this conclusion, one could expect

them to execute within the nearly same time, but

whether this is so, we still have to see.

3.2.2 Compilation of the array-element-accessing

statements (int arrays)

In the for-loop bodies of all the presented benchmarks,

there is just one C/C++ statement. First, we focus on

the compilation of this statement in the three bench-

marks of type A, in which a right-value provided by a

variable iRVal is stored into the uI-th array element

of the integer array iX.

In the benchmarks A.1 and A.3 for the int array,

this is accomplished by three (3) and in the benchmark

A.2 by four (4) mov instructions. Therefore, we compa-

re A.1 and A.3 cases first. In A.1, the three mov instruct-

ions together are 19B long, and in A.3 (only) 14B. The

first two instructions in both benchmarks are not only

of the same length but also of the exact same type. In

A.1 (A.3) benchmark:

 the first mov instruction places the value of the

index uI (pointer pI) into EDX (ECX);

 the second mov instruction, in both A.1 and A.3,

places the value of the local variable iRVal =

intLrg = 22 222 222d = 0153158Eh, stored at the

address A(iRval) = EBP – 738h, into EAX (EDX).

The difference is only in the third mov instruction.

In A.1, it moves the value of EAX (= iRVal) to the

address of the uI-th array element, which is formed by

the index addressing (eq. 1b). In this case:

A(iX[uI]) = iX + 4*uI = 00C826A8h + 4*EDX . (2)

It requires a 7B-mov instruction, which is 1B longer

than the previous two. Namely, besides the information

of the source operand (here EAX), it must store the

information of the index register (EDX), the length of

the (integer) array element (4) and — as the longest

data — the 32-bit address of the iX array.

In A.3, the third mov instruction in the loop body is

much simpler and because of that 5B shorter. Namely,

the address of the uI-th array element is already

prepared in the iP pointer (which was moved into ECX

in the first mov instruction). So, the value of EDX is

simply moved to the address shown by iP.

To summarize briefly, in that third mov instruction,

we note a clear simplification in the benchmark A.3,

comparing it to the benchmark A.1. However, having

in mind that this 32-bit code will be executed on the

64-bit platform (and particularly, on the 64-bit

processor!), it remains to see if the shorter and simpler

last mov instruction will bring some speed benefits.

As for the loop body of the benchmark A.2, the four

instructions are 6B, 6B, 6B, and 3B long, in total 21B,

i.e., one instruction and 2B (7B) more than in A1 (A3).

In B.1, the three mov instructions are of the same

type as those in A.1 and have the same lengths, but they

are placed in a different order and with different source

and destination operands. The first mov places the value

of uI (now with A(uI) = EBP – 7F0h) into EAX, the

second stores the value of iX[uI] into ECX, and the last

one moves the value from ECX into the iLVAl variable,

A(iLVal) = EBP – 784h.

510 ___ Proceedings of the Central European Conference on Information and Intelligent Systems

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

The analogous situation is in B.3. Again, the instru-

ctions there are of the same type as those in A.3, but

permuted. First, the pointer pI value is moved to ECX

[A(pI) = EBP – 810h]. The second mov retrieves the

contents from the address in ECX, i.e., the value of *pI,

and stores it into EDX, making this crucial fetch of the

array element very effective. Finally, the third mov

places the EDX value into iLVal.

Similarly, in B.2, the four mov instructions are of

the same type as those in A.2. The first two of them do

the same thing as those in A.2. The third, the shortest

one (3B), stores the value of *(pI0 + iRVal) into ECX,

and the last one moves this value from ECX to iLVal.

Judging solely by the number of instructions and their

lengths, this solution is longer but — as suggested

previously — its time efficiency may depend on other

factors, as well.

As for the benchmarks with the other array (data)

types, here we just summarize our findings after the

analysis of all six (6) benchmarks for every of the six

(6) standard data types. The implementation of the

single C/C++ statement within the loop body is more

diverse than of the loop control, as we have already

shown for the int arrays. The observation that the

type-2 benchmarks (A.2 and B.2) have one instruction

more and the type-3 benchmarks (A.3 and B.3) have

the shortest total length of their instructions holds also

for the other array data types. Besides that general

remark, while the number of instructions for the short-

and int-type arrays is the same, the former has the net

length that is systematically 2B longer. These instructi-

ons use the 16-bit X-type registers (AX, CX, DX). The

situation levels up for the char type. These bench-

marks have the instructions of the same or faintly

shorter length than those for the int type, and they use

the lower byte of the X registers (AL, CL).

The benchmarks with the llint arrays have

systematically two (2) instructions more than the

corresponding ones of int type and are because of that

considerably longer. In the x86 mode, the VS-CV 2019

compiler produces the x86, 32-bit machine code,

without using the available 64-bit (R) registers, so that

moving this type of data required the engagement of

two 32-bit registers instead of one, and the use of the

standard dword (double word = 32-bit word) mov

instructions. In our concrete example, the value of the

llint variable llRVal is stored into the two registers:

ECX:EDX, of which the left (right) holds the more (less)

significant half of the 64-bit value.

The remaining two types of arrays are of the

floating-point type. To access the array elements of the

float (double) type, the compiler uses movss (movsd)

instructions to move the 32(64)-bit contents to the

lowest (lower) portion of the 128-bit xxm registers (in

our case it was the xmm0 register (Intel 2022-2). The

assembly code analysis showed that the numbers of

these instructions are equal to the numbers of

instructions in the corresponding benchmarks for the

int arrays and that their length is equal for both the 32-

bit float and 64-bit double float type.

3.2.3 A Glimpse to the x64 Compilation

In VS-CV 2019, the default compilation option is for

the x86 set of machine instructions, as a still de-facto

standard for many sorts of applications. In addition,

there is also the x64 compilation, which translates the

C++ source code into the Intel’s x64 set of 64-bit

machine instructions.

In this brief overview, we just summarize that the

structure of the for-loops in our benchmarks remained

the same after the x64 compilation: there are eight (8)

instructions in the loop heads and one (1) unconditional

jump at the end of the loop bodies. That is, there are

nine (9) instructions with the total length of 42B, 1B

less than in our standard, x86 version loop. This holds

for all for-loops with indices. The for-loops with the

incrementing pointers are organized somewhat differ-

ently, so that they have in total ten (10) instructions and

a much longer length of 55B.

As for the assignment statement in the loop body, it

is compiled to four (4) instructions: mov(7), lea(7),

mov(4), mov(3), totaling 23B, and having one (1)

instruction and 4B more than the x86 version. Here all

but the first instruction work with the R-type of

registers for preparing the operand addresses. As for

the assignment statements for the int-type bench-

marks, their r-values and the array elements are mani-

pulated in accordance to their type, that is, as the 32-bit

memory and register values. The same instructions, but

ordered differently, are in the loop bodies of the B-type

benchmarks. The situation is very similar for the

shorter (integer) types, for which the loop bodies have

one instruction more than in the x86 version. Likewise,

for the float type, the loop body of A.1 benchmark is

realized by four (4) instructions: mov(7), lea(7),

movss(6), movss(5), totaling 25B, and having one (1)

instruction and 2B more than the x86 version.

Generally, for the types equal to or shorter than 32-bits,

the use of x64 architecture does not improve the

structure of the compiled machine code.

The benefits of the 64-bit architecture should — if

anywhere — become obvious for the 64-bit data types.

Really, the loop body of the llint A.1 benchmark is

realized by (only) four (4) instructions: mov(7), lea(7),

mov(8), mov(4), totaling 28B, which is one (1)

instruction and 4B less than in the x86 machine code.

However, for the type double of A.1 benchmark, the

instructions in the loop body are: mov(7), lea(7),

movsd(9), movsd(5), totaling 28B, which is one (1)

instruction and 5B more than in the x86 version.

3.2.4 Importance of the Benchmark Analysis

The benchmarks written for this purpose were not

intended to perform some standard operations (though

the A-type benchmarks do perform the initialization of

the array elements to the same value), but to be as

simple as possible and thus eliminate all unnecessary

consumption of the processor time that is not

connected with the purpose of this testing. In such

reduction, one must pay attention to the generality of

the written program code. Otherwise, it may easily

Proceedings of the Central European Conference on Information and Intelligent Systems ___ 511

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

happen that the obtained benchmarks favor some of the

testing options before the others.

For instance, in the early versions of our A-type

benchmarks, instead of the iRVal variable, we have

used a numerical constant as a value to be stored in the

array element. This enabled the use of the immediate

addressing mode for that operand, which resulted in

one mov instruction less than in our standard bench-

marks (in Listing 2). The numbers and the lengths of

those instructions (in parenthesis) are as follows:

A.1 – 2 instr.: mov(6), mov(11), in total 17B;

A.2 – 3 instr.: mov(6), mov(6), mov(7), in total 19B;

A.3 – 2 instr.: mov(6), mov(6), in total 12B.

Another example of a pitfall in the benchmark code

was already commented in §3.2.1.

In conclusion, when writing benchmarks, one

should pay great attention to their generality and follow

all the rules of good programming practices. Besides

that, before applying the newly created benchmarks, it

is good to check their assembly language form.

4 Execution Time Measurements

In this section, we shall briefly present the methods

used for our BET (benchmark execution time) measu-

rements and the prerequisites needed to achieve

consistent and precise results. Then we present these

results and comment on them.

4.1 Time Measurement Methods

There are several ways to measure the elapsed time of

certain program parts in C++. In our preliminary and

motivational measurements (mentioned in sec. 1), we

have used the MS Windows SYSTEMTIME struct, avai-

lable in VS IDE after including the windows.h header

file (details in MS 2022-1, example of application in

Listing 3). With its smallest time division being a milli-

second (ms), this method is useful when the measured

times approach the order of one second (s). This was

the case in our early measurements, where we measu-

red the passage through the short and int arrays with

700 0000h = 117 440 512d elements, i.e., five times

larger than now, and on slower computers. In our

present programs, this method is deserted.

More precise time measurements should get more

accurate “time stamps” from the hardware timers,

which rely directly on the processor’s time cycles (MS

2012-2). Such are the methods (ii) and (iii) in Listing

3. In (ii), the HRTimer class uses the member function

QueryPerformanceCounter to do the job. We used

this method for the time measurements in (Logozar

2012-1/ 2012-2), overestimating its precision to 10ns.

The third time measurement method tested in this work

used the high_resolution_clock class from the C++

std::chrono library (C++ reference, 2022).

In a special, short test C++ program, we have com-

pared the results of the three time-measuring methods

on the A-type benchmarks 1, 2, and 3, for the short

and int types. Method (i) gives only roughly correct

Listing 3. Examples of the three time measurement

methods in C++, applied to the A.1 benchmark for

int array: i) _SYSTEMTIME structures, ii) CHRTimer

class, and iii) the high_resolution_clock class.

// Declarations and definitions as in Listing 1.
//

// Variables for the elapsed times in ms.
float fDltTmSYS, fDltTmHRT, fDltTmHRC;

// i) Time mesurement by SYSTEMTIME (SYS)
#include "windows.h"

// _SYSTEMTIME structures and ptrs. to struc.:
_SYSTEMTIME sT1, sT2, *pST1 = &sT1, *pST2 = &sT2;

GetSystemTime(pST1); // Stopwatch on.
for (uint uI = 0; uI < cN; uI++)

iX[uI] = intLrg;
GetSystemTime(pST2); // Stopwatch off.
fDltTmSYS =
(float)(pST2->wSecond - pST1->wSecond)*1000 +
(float)(pST2->wMilliseconds - pST1>wMilliseconds);

// ii) Time mesur. by CHRTimer class (HRT)
#include "HRTimer.h" // High Resolution Time.

CHRTimer hrTimer; // CHRTimer object.

hrTimer.StartTimer(); // Stopwatch on.
for (uint uI = 0; uI < cN; uI++)

iX[uI] = intLrg;
fDltTmHRT = (float)hrTimer.StopTimer()*1.e3f;

 // Stopwatch off.

// iii) By high_resolution_clock class (HRC)
#include <chrono> // XYZ
using namespace std;
using namespace chrono;

duration<float, milli> durTDlt;
auto t1 = high_resolution_clock::now();
auto t2 = high_resolution_clock::now();

t1 = high_resolution_clock::now();// On.
for (uint uI = 0; uI < cN; uI++)

iX[uI] = intLrg;
t2 = high_resolution_clock::now();// Off.

fDltTmHRC = (durTDlt = t2 - t1).count();

individual results and nearly correct averages, which is

not bad regarding its above-stated deficiencies.

Methods (ii) and (iii) both give very consistent results

of satisfying accuracy for our measurements. Surpris-

ingly, though, their results differ for the order of mag-

nitude of 10μs, which is much more than it should be

if they are related to the processor’s time cycles (C++

reference, 2022). Anyhow, because the accuracy of this

method is more than satisfactory for our case, we have

used it for the measurements in this paper.

4.2 Time Measurement Setup

To achieve consistent and accurate time measurements,

a programmer should comply with some program- and

system-wise conditions. In our approach, we tend to

measure the “average best results,” i.e., the optimal

benchmark execution times for the given computer.

4.2.1 Benchmark Execution Order

In the test programs, we have placed the benchmarks

for each of the six array types in an order different from

the one shown in Listing 1. In that order, there are also

the pre-runs (explained in the next section), as follows:

512 ___ Proceedings of the Central European Conference on Information and Intelligent Systems

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

Repeat for the array element access type 𝑘 = 1, 2, 3 :

A. Pre-run A. 𝑘, then 𝐀. 𝒌 with BET measurements;

B. Pre-run B. 𝑘, then 𝐁.𝒌 with BET measurements;

End repeat.

In this way, we have simulated a somewhat more

realistic situation, in which the A- and B-type bench-

marks exchange first, and then there is a change in the

type of array element access, according to the

enumeration given in §2.2.

4.2.2 Pre-runs

The measured BETs can significantly depend on the

momentary state of the memory system of today’s

computers with multitasking OSs. If the multilevel

caches are already optimally filled with the data used

in the benchmarks, the execution times will also be

optimal, i.e., close to the shortest possible. If this

condition is not fulfilled, the measured times can

increase severely, making the results prone to erratic

changes. To deal with this problem, here we have used

the benchmark pre-runs. They execute the benchmark

fully or partly before measuring its execution time, in

the same or very similar way (Logozar 2012-1 and 2).

Here, the pre-runs executed the benchmarks by assign-

ing the array elements different number values. Obvio-

usly, because the longest BETs will mostly happen at

the execution of the first benchmarks, these two appro-

aches produce similar results.

In our C++ programs, the user can control the pre-

runs by switching them on and off for the A- and B-

types of benchmarks separately, which come one after

the other for each array (data) type. The user can also

change the number of iterations, i.e., she can specify

the number of elements the pre-runs will access.

4.2.3 Computer and OS specifications

To make the BET measurement results complete, it is

essential to record the specifications of the computer

hardware and OS. In this paper, we mostly present the

measurements that are made on one computer with the

following specifications:

Processor: Intel® Core™ i7-8700K CPU

@ 3.70 GHz, with 6 cores.

Installed RAM: 32.0GB

System type: 64-bit OS, x64-based processor.

OS: Windows 10 Pro Education (build 19044.1766).

4.2.4 Measurement Preconditions

Our aim is to measure the execution times of our

benchmarks only, as “pure” as possible. To achieve

that, we want to eliminate all side effects that could

interfere with the computer hardware and OS perform-

ance. For that matter, there are a few things to consider.

1 Although we did not practice it, the VS-VC19 IDE can be turned

off after launching the desired (debug or release) version of the test

program, and before proceeding with the program, i.e., before

entering the few required input values.

The first is which program version — debug or

release, and in which way — from the IDE or by start-

ing the executable code file — to run. The measure-

ments showed that the influence of both of these

options in our VS-CV 2019 is rather minor. The

comparison of running the programs directly from the

exe-files vs. starting them from the VS-VC19 IDE and

leaving the IDE on during the test program executions

gives similar results. The former approach does give a

bit shorter BETs (0.3% to 1.0%) but its true advantage

is greater stability. Namely, the latter approach is prone

to sporadic upsurges of BETs up to 10%.1

Thus, as a precaution to achieve better precision,

our choice for the final measurements was as follows:

 to run the release versions (without compiler

optimizations);

 to start the exe-files, with all other applications

turned off.

Furthermore, for today’s standard multitasking

OSs, with the otherwise “standard” execution environ-

ment, we take the following precautionary procedure:

 turn off all user applications;

 disable Ethernet and WLAN;

 check the task manager for the possibly demanding

background processes and try to turn them off;

 run the test program with benchmarks.

4.3 Results of the BET Measurements

With all the preconditions being fulfilled, we run our

benchmark test programs. Once the user enters the

required input parameters, the remaining free run of

one program on our computer lasts approximately 25s.

It performs a benchmark pre-run and a BET measure-

ment, normally both through the arrays with 20 × 106

elements, does that for six (6) different benchmarks,

repeat the whole action ten (10) times to get the avera-

ges and repeat the same thing for six (6) different data

types of array. This totals to the 6 × 10 × 6 = 360

pre-run and the same number of measured iterations,

resulting in 14.4 × 109 assignment operations on the

array elements. If both the A- and B-type benchmark

pre-runs are turned off, this number is halved. Each

program lists 6 × 10 BETs for the six array (data)

types, with their averages and standard deviations.

4.3.1 BETs of Our Standard Benchmarks

The typical results of the BET measurements for our

six standard benchmarks (from Listing 1), extracted

from a single run of (test) Program 1, are in Table 1.

For the A- and B-type assignments and the three

different methods of accessing the array elements, six

average ∆𝑡̅̅ ̅
𝐵𝐸𝑇 times and (corrected) standard devia-

tions are calculated for the set of 10 non-successive

BET measurements for each array type.2 In the extra

columns for the A/B.2 and A/B.3 benchmarks, which

2 With 20 × 106 iterations performed in ≈ 30ms, one loop iteration

takes 1.5ns, or 5.55 clock cycles (CC) of our processor, executing

12 – 13 machine instructions. This means that the working-core’s

pipeline has an average throughput of 2.25 instructions per CC.

Proceedings of the Central European Conference on Information and Intelligent Systems ___ 513

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

access the array elements by using pointers, we can

track the relative difference of their BETs comparing

to the A/B.1 BETs.

The measured times and relations between them are

similar for the A- and B-type benchmarks marked with

the same numbers. A/B.1 is only slightly slower than

A/B.3, meaning that the successive access to the array

elements by incrementing the pointers did not signifi-

cantly shorten the execution, although the lengths of

their loop bodies are shorter by roughly a quarter. The

BETs for A/B.3 benchmarks are shorter than those for

A/B.1, but only for the amounts comparable to the

measurement standard deviations.

Quite a surprise is that the execution is fastest for

the A/B.2 benchmarks (except for the llint), although

the number of the instructions in their loop body is

greater by one-third than those in A/B.1 and 3. In

addition, their total length is roughly 10% (30%)

longer than in A.3 (B.3). This example clearly shows

how the number of instructions and their lengths do not

directly dictate their execution times. The decrease is

quite significant for the short and int integers, and for

both floating-point types, ranging from roughly 30%

to more than 40%. The big exception for the llint

type (+57%) is caused by the simultaneous lack of the

comparable improvement for its A/B.2 benchmarks

and the sudden 38% (34%) decrease of its BETs for

A.1 & 3 (B.1 &3), resulting in the great raise of the

relative values for A/B.2.

For the char type, the BETs for A/B.2 benchmarks

are just a little faster than for A/B.1 & 3. Furthermore,

they are ≈ 45% longer than for all other, longer types,

except the llint, which is quite surprising. Namely,

one would expect the BETs for this data type to be

similar to the (other) integers, but not slower.

From above and by looking at the absolute values of

those times, we come to the following conclusion.

For our standard benchmarks (Listing 1), the fastest

way to access the array elements of type:

 char, short, int, float, and double is by using

pointer arithmetic [*(p0 + i)], as in A/B.2,

(though for char it is only slightly better);

 llint type is by using

– pointer incrementing [*(pI)], as in A/B.3, or

 just a little bit slower by using
– indices (Arr[i]), as in A/B.1.

4.3.2 BETs of the Modified Benchmarks

In our Program 2, we have modified the benchmarks

from Listing 1 by replacing the assignment (=) operator

with the compound addition-assignment (+=) operator.

For these benchmarks, Table 2 contains the average

values of their typical BET measurement set.

The times of the A- and B-type benchmarks are still

close to each other, but not as much and as consistently

as for the set of our standard benchmarks. In addition,

there are a few greater discrepancies, as in the follow-

ing cases: for int – cf. A.1 vs. B.1 and A.3 vs. B.3; for

char – cf. A.2 vs. B.2. A big difference is also that now

A.2 and B.2 are not the best access methods as they

were for the standard benchmarks (except for llint).

On the contrary, those are now either worst or close to

that, with float-B.2 being the only exception. As

above, we resume this as follows:

For our modified benchmarks (‘=’ → ‘+=’), the fastest

way to access the array elements of

 all types except int is by pointer incrementing

[*(pI)], as in A/B.3, (int-A.3 losing over int-A.1

for mere 0.1%), or just a little bit worse by using

– indices (Arr[i]), as in A/B.1.

An interesting observation is that these bench-

marks — which not only assign the r-values but also

add them to the l-values — execute faster than the
assignment-only benchmarks in the following cases:

 A/B.1 for char, short, and B.1 alone also for int,

where the speed-up is in the range from roughly

20% to more than 30% (the best for int-B1);

 A/B.3 for char and short, and B.3 alone also for

int, with the speed-up from 20% to 25%.

On the other hand, we see that the execution times

for the A.2 benchmarks lag from those of our standard

benchmarks (in Table 1) for the first three integer array

types, especially so for the char and short, and then

also for the floating-point types. B.2 is better for char,

but then greatly lags for the same types as A.2.

In our third test program, the benchmarks were the

same as in Listing 1, except that in the A-types the

array elements are assigned numerical constants, as it

was discussed §3.2.4. The aim was to investigate the

influence of this less-then-general case. The table with

BETs for these benchmarks are not shown here, but

will be just briefly discussed. Since the B-type bench-

marks are the same as in Program 1, one can check that

their BETs follow those from Table 1 within the

standard deviation values. As for the A-type bench-

marks, the BETs for A.1 and A.3 are very close to each

other and rather short for all integer types. In opposite

to that, the times of the integer versions of A.2 are

approx. 55% to 72% longer(!) than those of A.1 and

A.3, and slightly less so than of the A.2 types of our

standard benchmarks. For the floating-point types, the

situation is reversed, with A.2 BETs being very short.

Summarily, the shorter loop body greatly improved

the performance of the A.1 and A.3 benchmarks with

the arrays of the first three integer types. For the A.2

benchmark, the opposite happens for the arrays of the

first two integer types.

4.3.3 BETs of Our Older Benchmarks

In the older version of our benchmarks, now

marked as Program 3-old, there is another use of a

constant: in the upper limit of the conditions in the for-

loops with running indices (benchmarks A/B.1 & 2).

We have discussed that in §3.2.1, showing that this

kind of for-loop compiled into one instruction and 2B

less than the for-loop of our standard benchmarks,

hinting at the possible speed-ups. To resume, in these

A-type benchmarks, there are constants in both the

514 ___ Proceedings of the Central European Conference on Information and Intelligent Systems

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

Table 1. Average ∆𝑡̅̅ ̅
𝐵𝐸𝑇 (Benchmark Execution Times), for the benchmarks from Listing 1. The benchmarks

run in the order stated in §4.2.1, in the release version of the program, on the computer specified in 4.2.3. ∆𝑡̅̅ ̅
𝐵𝐸𝑇

and the corresponding standard deviations are calculated for 10 (nonconsecutive) measurements and expressed in

ms (milliseconds). For the benchmarks A/B.2 and A/B.3, the second column gives the relative ∆𝑟𝑒𝑙 difference of

their averages from the benchmark A/B.1 ∆𝑡𝐵𝐸𝑇. Those are marked in green (red) if ≤ −10% (≥ +10%).

 20 × 106

elements A: Arr. El. = r-Value, (∆𝑡̅̅ ̅
𝐵𝐸𝑇 ± 𝑠𝑑𝑒𝑣) ms⁄ B: l-Value = Arr. El., (∆𝑡̅̅ ̅

𝐵𝐸𝑇 ± 𝑠𝑑𝑒𝑣) ms⁄

 Array
 Type

A.1
Arr[i]

A.2
*(p0 + i)

∆𝑟𝑒𝑙
to A.1

A.3
 *(++p)

∆𝑟𝑒𝑙
to A.1

B.1
Arr[i]

B.2
*(p0 + i)

∆𝑟𝑒𝑙
to B.1

B.3
 *(++p)

∆𝑟𝑒𝑙
to B.1

char
35.50
±0.45

33.68
±0.43

−5.1%
34.90
±0.47

−1.7%
36.96
±0.32

35.36
±0.37

−4.3%
35.95
±0.29

−2.7%

short
35.45
±0.45

23.89
±0.43

−32.6%
35.05
±0.48

−1.1%
36.78
±0.36

22.63
±0.26

−38.5%
35.90
±0.26

−2.4%

int
38.45
±0.50

22.65
±0.34

−41.1%
37.81
±0.34

−1.7%
36.78
±0.53

23.28
±0.23

−36.7%
35.96
±0.32

−2.2%

llint
23.47
±0.38

36.92
±0.41

+57.3%
23.34
±0.22 −0.6%

24.16
±0.22

34.42
±0.47 +42.4%

23.84
±0.48 −1.4%

float
39.02
±0.48

22.42
±0.28 −42.5%

37.85
±0.32 −3.0%

36.88
±0.37

23.42
±0.31 −36.5%

36.09
±0.40 −2.1%

double
38.93
±0.28

23.04
±0.15

−40.8%
38.28
±0.52

−1.7%
37.35
±0.20

25.46
±0.36

−31.8%
36.20
±0.08

−3.1%

Table 2. A set of the BET measurements for slightly altered benchmarks (Prog. 2): in the benchmarks from

Listing 1, the assignment operator (=) is replaced by the compound addition-assignment operator (+=).

20 × 106

elements A: Arr. El. = r-Value, (∆𝑡̅̅ ̅
𝐵𝐸𝑇 ± 𝑠𝑑𝑒𝑣) ms⁄ B: l-Value = Arr. El., (∆𝑡̅̅ ̅

𝐵𝐸𝑇 ± 𝑠𝑑𝑒𝑣) ms⁄

 Array
 Type

A.1
Arr[i]

A.2
*(p0 + i)

∆𝑟𝑒𝑙
to A.1

A.3
 *(++p)

∆𝑟𝑒𝑙
to A.1

B.1
Arr[i]

B.2
*(p0 + i)

∆𝑟𝑒𝑙
to B.1

B.3
 *(++p)

∆𝑟𝑒𝑙
to B.1

char
28.02
±0.58

37.24
±0.32

+32.9%
27.64
±0.41

−1.4%
27.74
±0.29

29.58
±0.39

+6.7%
27.17
±0.32

−2.1%

short
28.12
±0.36

36.21
±0.63 +28.8%

27.26
±0.27 −3.1%

27.92
±0.24

34.19
±0.30 +22.5%

27.22
±0.29 −2.5%

int
38.62
±0.34

40.43
±0.40 +4.7%

38.67
±0.39 +0.1%

24.78
±0.29

35.15
±0.15 +41.8%

24.17
±0.10 −2.5%

llint
35.21
±0.38

36.01
±0.40 +2.3%

35.02
±0.17 −0.5%

30.28
±0.29

35.00
±0.35 +15.6%

29.44
±0.23 −2.8%

float
39.07
±0.66

40.95
±0.61 +4.8%

38.49
±0.65 −1.5%

40.53
±0.35

39.55
±0.74 −2.4%

39.36
±0.37 −2.9%

double
39.61
±0.82

41.55
±0.86

+4.9%
39.14
±0.80

−1.2%
40.83
±0.79

40.16
±1.08

−1.7%
39.61
±0.58

−3.0%

array-element assignment statements and in the for-

loop conditions, while in B.1 & 2, only the latter

applies. In fact, in the early version of the program,

there were only A.1 and A.3 benchmarks, for only the

short and int types, but we have upgraded it to

include also all the other benchmarks and array types

as in the present test programs.

In Table 3, we compare the BETs of these bench-

marks to the corresponding execution times for our

standard benchmarks. Despite the expectations to see

only improvements, we can see all three cases: decrea-

ses, invariabilities, and increases in the execution

times, which do not necessarily follow the decrease in

the number and length of the machine instructions. For

instance, besides the usual unexpected behavior of the

llint array elements in A(B).1 benchmarks, with the

delay of 41% (27%), we also see the great decreases

of BETs of A/B.2 benchmarks for the first two integers

and both floating-point types. On the other hand, there

are also quite significant improvements in A.3 for the

first three integer types, etc.

By observing solely the old benchmark’s execution

times, it can be deduced that the A.3 benchmark BETs

for all integer types (that is, now including the llint

type, which has otherwise been a notorious exception)

are from around 30% up to 35% shorter than for A.1s!

This result roughly confirms our early, much less

systematic findings, obtained on the same (old)

benchmarks, but only on the arrays of the short and

int types, and mentioned in sec. 1.

Proceedings of the Central European Conference on Information and Intelligent Systems ___ 515

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

Table 3. Relative differences of the BETs for our old

benchmarks (as in our preliminary research), now in

Program 3-old, to the BETs of our standard

benchmarks (from Table 1).

 ∆𝑡̅̅ ̅
𝐵𝐸𝑇,𝑟𝑒𝑙 (Prog. 3-old / Prog. 1)/ %

 Arr. typ. A.1 A.2 A.3 B.1 B.2 B.3

char −4.7% −29.3% −36.9% −13.6% −2.1% +0.6%

short −5.0% +37.3% −38.0% −13.3% +47.2% +0.1%

int −12.2% +46.1% −36.9% −12.6% +43.6% 0.0%

llint +40.6% −14.2% −0.3% +26.9% −10.3% −0.6%

float −14.6% +68.0% −0.2% −13.7% +42.6% 0.2%

double −16.4% +55.1% −0.5% −13.1% +34.2% +1.2%

4.3.4 A Brief Overview of the BETs With x64

Compilation and on Other Computers

The 64-bit, x64 machine code did not result in much

faster executions (cf. §3.2.3). By inspecting Table 4,

we see the noticeable improvements from our standard

benchmarks (Prog. 1) only for the A/B.1 and B.3 BETs,

again except for the llint array type. Here, this bad

behavior of the 64-bit integer type is particularly odd,

because one would expect that the x64 compilation

would improve at least the executions for the

compatible, 64-bit data types. In addition, the A.3, and

even more A/B.2 benchmarks show much worse

behavior than the corresponding x86 code.

In Program 2, the 64-bit compilation produces

faster execution than the 32-bit compilation for all A-

benchmarks, but not for the first two integer types (not

shown in a comparison table). The improvements are

in the range from around 10% up to 25%. The B-type

benchmarks’ BETs are from 10% shorter to 20%

longer. In Program 3, A.1 (B.1) benchmarks’ BETs

show slow-downs of about 40% (40% to 60%!) for all

integer types, and diverse behavior for the other

benchmarks and array types.

Finally, for our old benchmarks (Program 3-old),

the x64 machine code shows quite uniform BETs: for

the A.1 benchmarks they are in the approximate range

from 31ms to 34ms, for A.2 from 32ms to 37ms, and

for all the B-type benchmarks from 32ms to 34ms.

Comparing them to the BETs of the corresponding x86

versions, it turns out they are significantly faster (from

10% to 12%) only for the B.3 benchmarks (except for

the llint type!). Furthermore, since the BETs for the

A.3 benchmarks are in this case similar to the other

values, and in the x86 version those were much better,

their relative lags are quite large: for char 55%, short

53%, int 40%, and llint 38%. Because of that, in

the x64 version of the benchmarks, the A.3-type of

access is no longer significantly faster than A.1, as it

was in their x86 version.

We have repeated the same measurements on a few

other computers with the same, Wintel platform. One

of them has Intel® Core™ i3-6100U CPU @ 2.30GHz,

Table 4. Relative differences of the BETs for our

standard benchmarks (Program 1) compiled to the x64

machine code from the BETs of the same benchmarks

compiled as x86 code, in Table 1.

 ∆𝑡̅̅ ̅
𝐵𝐸𝑇,𝑟𝑒𝑙 (Prog. 1 x64 / Prog. 1 x86)/%

 Arr. typ. A.1 A.2 A.3 B.1 B.2 B.3

char −11.9% +23.1% +32.9% −14.8% −6.2% −11.0%

short −12.1% +70.1% +23.5% −14.4% +46.9% −10.8%

int −17.7% +68.6% +1.0% −14.0% +44.8% −10.8%

llint +35.9% −2.3% +53.0% +34.9% −0.2% +37.4%

float −18.2% +72.4% +2.9% −14.8% +44.8% −11.4%

double −18.2% +62.2% −5.4% −14.3% +33.4% −9.2%

with (only) two cores and relatively low energy cons-

umption, and is running on the Windows 10 OS. It

executes our benchmarks for roughly twice the time of

the much more powerful computer described in §4.2.3.

The BETs obtained on it follow the trends described in

the previous text for our all test programs, with a few

smaller discrepancies for certain benchmarks and array

types. It also resembles the results of our old bench-

marks, i.e., show the decrease of the BETs when using

the pointer incrementing (A.3) over the use of the array

indices (A.1), though slightly less than in our case: 25%

for char, 32% for short and int, and 15% for llint.

The 64-bit compilations on this computer behave

similarly to those on our primary computer, i.e., there

are minor speed-ups in some cases, but also slow-

downs in the other. In addition, regarding the Program

3-old, there are no improvements in A.3 over A.1

benchmarks, same as on the primary computer.

5 Conclusion

The first intention of this research seemed to be quite

simple: to investigate whether one can improve the

time efficiency of a program code by replacing the

standard, index-based access to 1D-array elements,

with access to them via pointers. However, this paper

shows that the answer to this question is neither unique

nor simple, and even less easy to explain.

Here we upgraded the benchmarks from our ad-hoc

measurements from a decade ago, in which the array-

element assignment statements were kept as simple as

possible and had only two types of accesses: via indices

(No. 1), and via the incremented pointer (now No. 3).

In their for-loop bodies, there was a single assignment

statement with the array elements as the l-values. From

the arrays of the short and int types only, these benc-

hmarks were expanded to all six standard numerical

array (data) types). Then, we included also the bench-

marks with the mirror symmetrical assignments, in

which the array elements are the r-values. Thus, the

two types of benchmarks were formed and named A

and B (Listing 1). Both of them are simple and because

of that their compilation with the optimization turned

516 ___ Proceedings of the Central European Conference on Information and Intelligent Systems

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

on can produce very simplified machine code, particu-

larly the B type. We have discussed this matter in detail

in §3.1 and justified running and investigating the non-

optimized machine code, especially if analyzing its

disassembly in assembly language. These benchmarks

can be regarded as the starting ones upon which the

future methodology will be built. In the rest of section

3, we have explained the machine instructions of the

compiled code and discussed a few pitfalls that we had

encountered in this research and had to deal with. In

doing that, we could notice the consequences of the

non-orthogonality of Intel’s x86 instruction set, in the

sense that not all addressing modes are allowed with all

operations, which can result in changes in how the

source code can and will be compiled (§3.2).

However, despite all the analysis, explaining and

understanding many varieties and peculiarities of the

benchmark execution times (BETs) in section 4 was

everything but an easy task. That is, not only that

Intel’s x86 instructions are of variable length — which

complicates the analysis of their execution times — but

we have shown that these times significantly depend on

the broader context within which these instructions

appear. Such as the data type of the array elements and

the use of special operations and the corresponding

(special) registers.

By looking at the results of this research, there is no

simple conclusion and no unique best choice. The best

method largely depends on the type of the assignment/

operation in the loop body and on the array (data) type.

We have managed to repeat the results of the early

measurements on our old benchmarks and showed an

even greater advantage of the use of the incrementing

pointers over indices than before. However, the

analysis showed that these benchmarks are rather non-

general because they have constants in the crucial parts

of their loops. Besides that, the advantage occurs for

only the first three integer types (Table 3).

For our standard benchmarks, with the assignment-

only statements in the loop bodies, we have given the

concrete advice based on the execution times in Table

1, summarizing them in the (bulleted) list in §4.3.1. For

the modified benchmarks, with addition and assign-

ment, the conclusion based on the results in Table 2 is

summarized in the list in §4.3.2. Interpreting these

results the other way around, we could say that using

the indices can be as good as anything else if we

primarily do iterative summations and if a few percent-

ages better performance by incrementing the pointer is

irrelevant. Alternatively, we could say that the access

via indices is considerably outperformed by the use of

the pointer arithmetic in the case of the assignment-

only operations, but not forgetting that the llint type

is an exception. Etc.

Though, one conclusion is rather simple: the x64

code does not improve the benchmark performance

significantly, not even for the 64-bit types. Quite the

contrary, from Table 4 we see that the execution times

for most cases are worse than for the x86 code.

From all this we can derive a conclusion of the

presented subject on the standard Wintel platform: the

best approach — especially in critical applications — is

to measure the execution times of the intensively used

piece of code as we did, and to choose the access

method with the shortest execution times.

This conclusion, and especially the last piece of

advice, also hints us at a few suggestions for future

work. First, the additional benchmarks should be

written in a way that could not be trivialized by the

compiler optimizations, despite the fact that this would

prevent easy disassembly within the VS-CV 2019 IDE.

Some of them could perform the standard array and

matrix operations. Second, it would be interesting to

make these measurements on some other platforms.

6 References

C++ reference (2022). std::chrono library, high_

resolution_clock class. Web contents: https://

en.cppreference.com/w/cpp/chrono/high_

resolution_clock.

Evans, D (2022). x86 Assembly Guide. Web contents:

https://www.cs.virginia.edu/~evans/cs216/guides/

x86.html.

Intel (2022-1). View disassembly code in the Visual

Studio debugger. Web contents: https://docs.

microsoft.com/en-us/visualstudio/debugger/how-

to-use-the-disassembly-window?view=vs-2022

Intel (2022-2). Intel® 64 and IA-32 Architectures

Software Developer Manuals. Web contents:

https://www.intel.com/content/www/us/en/

developer/articles/technical/intel-sdm.html.

Kernighan, B. W., & Ritchie D. M. (1978, 1988). The

C Programming Language (1st and 2nd Editions,

respectively), Englewood Cliffs, NJ: Prentice Hall.

Logozar, R. (2012-1). Recursive and Nonrecursive

Traversal Algorithms for Dynamically Created

Binary Trees. Computer Technology and

Application (David Publishing), 3(5), 374-382.

Logozar, R. (2012-2). Algorithms and Data Structures

for the Modeling of Dynamical Systems by Means

of Stochastic Finite Automata. Technical Gazette

(Tehnički vjesnik), 19(2), 227-242.

Microsoft, MS (2022-1). Documentation: SYSTEM-

TIME structure (miniwinbase.h). Web contents:

https://docs.microsoft.com/en-us/windows/win32/

api/minwinbase/ns-minwinbase-systemtime

Microsoft, MS (2022-2). Documentation: Acquiring

high-resolution time stamps. Web contents:

https://docs. microsoft.com/en-us/windows/win32

/sysinfo/acquiring-high-resolution-time-stamps?

redirectedfrom=MSDN#resolution-precision-

accuracy-and-stability

Stroustrup, B. (1997), The C++ Programming

Language (3rd Edition). Murray Hill, New Jersey:

AT&T Labs.

Proceedings of the Central European Conference on Information and Intelligent Systems ___ 517

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia

https://en.cppreference.com/w/cpp/chrono/high_resolution_clock
https://en.cppreference.com/w/cpp/chrono/high_resolution_clock
https://en.cppreference.com/w/cpp/chrono/high_resolution_clock
https://www.cs.virginia.edu/~evans/cs216/guides/x86.html
https://www.cs.virginia.edu/~evans/cs216/guides/x86.html
https://docs.microsoft.com/en-us/visualstudio/debugger/how-to-use-the-disassembly-window?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/debugger/how-to-use-the-disassembly-window?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/debugger/how-to-use-the-disassembly-window?view=vs-2022
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.researchgate.net/publication/265686389_Recursive_and_Nonrecursive_Traversal_Algorithms_for_Dynamically_Created_Binary_Trees
https://www.researchgate.net/publication/265686389_Recursive_and_Nonrecursive_Traversal_Algorithms_for_Dynamically_Created_Binary_Trees
https://www.researchgate.net/publication/265686389_Recursive_and_Nonrecursive_Traversal_Algorithms_for_Dynamically_Created_Binary_Trees
https://www.researchgate.net/publication/265686532_Algorithms_and_data_structures_for_the_modelling_of_dynamical_systems_by_means_of_stochastic_finite_automata
https://www.researchgate.net/publication/265686532_Algorithms_and_data_structures_for_the_modelling_of_dynamical_systems_by_means_of_stochastic_finite_automata
https://www.researchgate.net/publication/265686532_Algorithms_and_data_structures_for_the_modelling_of_dynamical_systems_by_means_of_stochastic_finite_automata
https://docs.microsoft.com/en-us/windows/win32/api/minwinbase/ns-minwinbase-systemtime
https://docs.microsoft.com/en-us/windows/win32/api/minwinbase/ns-minwinbase-systemtime
https://docs.microsoft.com/en-us/windows/win32/sysinfo/acquiring-high-resolution-time-stamps?redirectedfrom=MSDN%23resolution-precision-accuracy-and-stability
https://docs.microsoft.com/en-us/windows/win32/sysinfo/acquiring-high-resolution-time-stamps?redirectedfrom=MSDN%23resolution-precision-accuracy-and-stability
https://docs.microsoft.com/en-us/windows/win32/sysinfo/acquiring-high-resolution-time-stamps?redirectedfrom=MSDN%23resolution-precision-accuracy-and-stability
https://docs.microsoft.com/en-us/windows/win32/sysinfo/acquiring-high-resolution-time-stamps?redirectedfrom=MSDN%23resolution-precision-accuracy-and-stability

