Techniques for traversal operation on an object structure:
a comparison

Blind Review

Abstract. In the paper we present several approaches
of a traversal operation implementation on an ob-
ject structure. Such operations and structures are
often used in engineering software, e.g., in compiler
design, code analytics, plagiarism-detection tools,
etc. We focus on the following approaches (and
their variants): dedicated methods, type checking
and casting, visitor design pattern, and reflection
based approach. The main goal of this paper is to
explore and compare those approaches on a clear
working example. Additionally, we describe several
variants of reflection-based approach rather than the
most straightforward one usually implemented. The
presented approaches vary in many properties such as
programming skills involved, separation of operation
from the structure, performance, extensibility etc. Our
detailed presentation enables an effective comparison
based on such criteria which present the technical and
practical aspects of each approach. In this way pro-
gramming practitioners gain a complete insight into
pros and cons of different traversal implementations.

Keywords. traversal, object structure, visitor, design
pattern, type casting, reflection, comparison

1 Introduction

In practice software engineering contains study of
many different areas on how to efficiently solve actual
problems using software. The definition of how the
software is produced is one important aspect of these
studies, which are aimed on research of new program-
ming techniques and approaches [1].

The successful design of object-oriented program is
hard. Even experienced designers have problems to
find a general enough solution, which is flexible and
reusable. Such solution enables the designers to find
recurring patterns of classes and communicating ob-
jects which are common in many object-oriented sys-
tems. These design patterns are reused to solve specific
problems and make the object-oriented design flexible
(2].

A good example of design pattern is the visitor pat-
tern. It enables the definition of a traversal operation
performed on all elements of object structure without
changing the classes of the elements on which it oper-
ates [2]. Obviously, its use enables developer to write a

simpler and clearer solution, even in the case when the
access to element classes is unavailable. In the litera-
ture there are several examples of visitor design pattern
use [3], especially in the area of compilers, for instance
SIC/XE assembler [4].

However the use of traditional visitor has an impor-
tant demand - it has to know the classes of all objects it
visits in advance. When the structure changes, the vis-
itor has to be rewritten. Additionally, each class must
have an accept method, which is used to pass the name
of the class back to the visitor through dynamic binding
[2,5, 6].

This can be omitted with the use of reflection to ac-
cess the structure of the objects it visits, thus the ac-
cess to objects is separated from acting on them [7, 8].
Unfortunately, this totally flexible solution seems to be
considerably slower [6].

In general, the traversal of all elements can be im-
plemented in several ways. Simple implementations
are designed ad-hoc and without the use of design pat-
terns. They are (partly) implemented in each class of
the elements visited, usually by adding similar parts of
code to each. Better solutions introduce less or even
none interference with those classes, but they are more
complex to design and use. While sometimes the latter
implementations are preferable or even the only pos-
sible (i.e., when classes of elements visited are un-
changeable), in other cases such implementation may
be over-designed as they introduce unnecessary com-
plexity, thus yielding problems of solution understand-
ing, development and maintenance. Consequently the
decision on most suitable implementation is problem
specific. However to be able to select the optimal visi-
tor implementation the program designer needs a clear
understanding of different approaches.

The goal of this paper is to address this issues. In
particular, we examine the whole range of traversal im-
plementations in detail and compare them using differ-
ent criteria. To clearly introduce specifics we present
a working example of all implementations and discuss
their characteristics. The comparison in last part of ar-
ticle enables practitioners to access the suitability of
the solutions presented for their specific needs.

In Section 2 we present necessary preliminaries con-
cerning the definition of our working example. The
Section 3 introduces the simplest traversal implemen-
tation by dedicated methods. The Section 4 presents
the implementation via run-type checking and type cas-

ing in two ways: as a structured approach and a proper
object-oriented approach. The traditional visitor de-
fined as a design pattern is demonstrated in two ways in
Section 5. Section 6 presents the visitor implemented
by reflection. In Section 7 the comparison of all ap-
proaches is presented. The last section contains the
conclusion and future work.

2 Preliminaries

The aim of all techniques presented is to traverse an
object structure and to apply some sort of processing
on every visited object. To demonstrate the techniques
we use an example object structure. The motivation
for the example comes from the field of compilers and
programming languages. The structure represents an
abstract syntax tree (AST) of a hypothetical program-
ming language. AST is a common approach to rep-
resent a parsed source code. It is usually processed
and/or transformed in multiple passes to finally obtain
a compiled code [9]. AST consists of nodes (repre-
senting programming constructs) and links (also called
edges) from nodes to sub-nodes.

The example AST supports only a few programming
constructs, but enough to demonstrate the traversal pro-
cess. Each construct is represented by its own class.
The complete class hierarchy is as follows. The base
interface for the objects to be visited is the Visitable
interface:

interface Visitable {}

Depending on the traversal technique it may be filled
with various details (explained later in the text).

The base class representing AST nodes is Node. It is
an abstract class, thus it can not be instantiated. Several
other classes such as Comment, Print, PrintBold and
Block represent various programming constructs and
statements, which are also descendants of an abstract
class Statement. The class hierarchy is the following
(the subtyping relation is represented with line inden-
tation):

interface Visitable
abstract class Node
class Comment
abstract class Statement
class Print
class PrintBold
class Block

This simple hierarchy exhibits important relations be-
tween nodes. It includes nodes related by inheritance,
e.g., Print and PrintBold. Additionally, it includes a
composite node Block which can, without loss of gen-
erality, contain two nodes.

We define several example operations on the struc-
tures represented by this class hierarchy:

print This kind of traversal pretty prints the program
represented by a given AST.

dump Similar to the print operation, but the classes of
given AST nodes are printed.

exec Executes the program represented by a given
AST. In our case comments are ignored, Print’s
do the obvious, and Block delegate execution to
its composite elements.

size Calculates and returns the size of a given AST.
This operation demonstrates how to return a result
of operation to the caller.

compile Compiles the program represented by a given
AST. In our example, the compilation is only
a simple transformation of a given AST, where
comments are removed and PrintBold is replaced
with a corresponding combination of Print’s and
Block’s.

The above class hierarchy, object structure and
traversal operations are used in the following sections
as a demonstration example. The complete source code
for all the presented examples can be obtained online
[10] from the GitHub portal.

3 Dedicated methods approach

The approach described in this section is the most
straightforward one. The main idea is to implement
each operation on an object structure with a set of
methods. In particular, for each class in the object-
structure class hierarchy (i.e., instantiable class extend-
ing the Visitable interface) a method implementing a
particular visit operation must be provided.

To accomplish this one must first provide the inter-
face which declares all the methods — one for each op-
eration. For example, in our case of five different op-
erations on the object structure the Visitable interface
looks like this:

interface Visitable {
void print(int indent);
void dump();
void exec();
int size();
Node compile();

¥

Notice that, two of the methods, namely int size() and
Node compile() also return the result of the operation.

Afterwards, for each class the programmer has to
implement these methods. Let us here present the code
excerpt for the Block class (only methods exec() and

size()):

class Block extends Statement {
void exec() {
first.exec();
second.exec();

}

int size() {
return first.size() + second.size();

}

For example, the execution of a block, i.e., the
Block.exec() method, sequentially delegates the exe-
cution to both parts composing the block. Similarly,
the size-calculation operation, i.e., the size() method,
simply sums the sizes of both block parts (assuming no
additional cost for the block size).

The advantage of this approach is in its simplicity
and object orientation. However, in the case of a com-
plex object structure consisting of many classes a lot of
similar methods must be implemented for each opera-
tion. These methods are distributed all over the code
implementing the class hierarchy of object structure.
As a result the hierarchy implementation is polluted
with programming code implementing operations, i.e.,
the object structure implementation is not clean. Con-
sequently, the full separation of the object structure and
operation implementations is not possible with this ap-
proach.

On the other side, due to the simplicity of the dedi-
cated methods approach it may be suitable for smaller
object structures without many operations involved,
where a complete control over source code is at hand.

4 Type checking and type casting

In this section we present two variants of an ap-
proach that is based on the programming language
run-time type checking capability and type casting
functionality mainly. In Java the former is presented
via the instanceof built-in operator, and the latter via
well-known "(type) object" syntax which converts a
compile-time type of object to a given type.

The advantage of both variants is that the object
structure remains clean, thus no additional methods
and/or attributes are needed and full separation of the
operation from the structure can be achieved. Conse-
quently, the Visitable interface may be empty:

interface Visitable {}

The disadvantage of this approach is in fact that the
type conversion is generally considered as a poor pro-
gramming practice. However, the approach may still
be viable when the others are unavailable.

4.1 Structured form

Let us first present a variant which is not object-
oriented, thus it can be used (with some modifi-
cations) in programming languages not supporting
object-oriented programming as well.

Each operation can be implemented with only one
(possibly static) method. The method is responsible
for processing each kind of element of object struc-
ture. To ensure correct processing of each element the

type checking using instanceof construct is employed.
Everything is usually packed in one (potentially long)
conditional statement.

Additionally, type casting is used to access attributes
and call methods specific to the processed element. In
case of the composite element the recursion is typically
used to proceed with the operation on composing parts
of the element.

Let us present an example of the operation imple-
menting size calculation of a given object structure:

static int size(Node node) {
if (node instanceof Comment)
return 0;
else if (node instanceof PrintBold)
return
((PrintBold) node) .message.length();
else if (node instanceof Print)
return ((Print) node) .message.length();
else if (node instanceof Block)
return size(((Block) node).first) +
size(((Block) node).second);
else ... // ERROR

It is obvious that the approach is not object oriented
and that the length of conditional statement may be
undesirably blown up. Additionally, the programmer
must be aware of the common pitfall: the instanceof
operator evaluates to true if the type of a given object,
i.e., node in the above code excerpt, is equal to a given
type or its supertype. In the above example if the Print-
Bold and Print conditions are switched the PrintBold
part would never be executed since PrintBold is inher-
ited from Print.

4.2 Object-oriented form

Now let us do the same but in a more object-oriented
manner. The main idea here is to write the type check-
ing and casting code only once and to implement each
traversal operation within a single class.

First let us define the Visitor interface which repre-
sents an operation on object structure and declares a
method for each type of element of the structure:

interface Visitor {
void visit(Comment comment) ;
void visit(Print print);
void visit(PrintBold printBold);
void visit(Block block);

Next we implement the abstract class AbstractVisi-
tor which includes a method visit(Node node) in order
to be available to any element. The implementation
of this method is similar to the conditional statement
above, i.e., a set of instanceof operators.

However, now the processing of each element is del-
egated to the corresponding visit(...) method. No-
tice also, that type casting on the node argument must
be used in order to ensure that the correct visit(. ..)
method (specified in the Visitor interface) is called.

Our example now looks like this:

abstract class AbstractVisitor implements Visitor {
void visit(Node node) {

if (node instanceof Comment)
visit ((Comment)node) ;

else if (node instanceof PrintBold)
visit ((PrintBold)node) ;

else if (node instanceof Print)
visit ((Print)node) ;

else if (node instanceof Block)
visit ((Block)node) ;

else ... // ERROR

}

This version is arguably more elegant and readable, but
the same pitfall (condition checking order) still applies.

Finally, the operation is implemented in a separate
class which only needs to implement the methods of
Visitor interface. For example, the size-calculation
code excerpt is now:

class Sizer extends AbstractVisitor {
int size;

void visit(Print print) {
size += print.message.length();

}

void visit(Block block) {
visit(block.first);
visit(block.second);

}

In the following section we basically use the object-
oriented form and take it to the next level by eliminat-
ing the type checking and casting at a cost of minorly
polluting the object structure.

5 Visitor design pattern

Visitor design pattern is one of the most-used behav-
ioral design patterns. The pattern is mainly used to
implement an (traversal) operation to be performed on
all elements of object structure. Its main advantage
is to allow separation of the operation from the object
structure while disregarding any explicit type checking
and type casting. For a more thorough discussion see
[2,5, 11].

The pattern is based on the so called double-dispatch
technique. Here the selection of the concrete method
to execute is based on the run-time time types of two
objects. In particular, it depends on the run-time type
of the object (receiving the method call) and run-type
type of the object, which is given as the first argument.

However, most of the object-oriented languages sup-
port only single dispatch. Nevertheless, the double dis-
patch can be simulated with two single dispatches. This
approach is also used in the following example.

First let us present necessary additions to classes rep-

resenting the object structure. Every class representing
different elements of the object structure defines the so
called accept(Visitor visitor) method which polymor-
phically accepts the visitor. Thus, we extend the Vis-
itable interface:

interface Visitable {
void accept(Visitor visitor);

}

Notice that, it is necessary that each class imple-
menting Visitable overrides the accept(Visitor visi-
tor) method. Notwithstanding, the implementations of
overridden methods are all the same. In particular, the
processing is delegated to the visitor by a simple call
of the corresponding visitor’s method:

void accept(Visitor visitor) {
visitor.visit(this);

}

Such implementation is necessary as the run-time type
of this is the same as its run-time type, thus the correct
overloaded visit(. . .) method is called. Notice that, all
operations implement the Visitor interface presented in
the Section 4.2.

5.1 Classical form

Once the object structure is defined, a programmer
must only implement the Visitor interface to define a
new operation. Each method must specify two thinghs:
the action to be performed , e.g., the size-calculation
operation for a non-composite element Print:

void visit(Print print) {
size += print.message.length()

}

and, optionally in case of a composite element also the
access order in which composing elements are to be
visited, e.g., the size-calculation of a composite ele-
ment Block:

void visit(Block block) {
block.first.accept(this);
block.second.accept(this);

}

The visitation of composing elements is done via a
call to the element’s accept(. ..) method. Notice that
the direct call to, e.g., visit(first) would be incorrect
since first’s compile-time type is Node and the appro-
priate method is non-existent in the visitor’s class.

5.2 A simple refinement

As we see, in a composite object one must call the ac-
cept(...) method for each composing element of the
object. A simple refinement to this is to additionally
create a base abstract class for all visitors, e.g., Ab-
stractVisitor, implementing the following method:

void visit(Node node) {

node.accept (this);
}

The idea is the same as in case of the method in Section
4.2. There a conditional statement and explicit type
checking is used, while here the object-oriented poly-
morphism takes care for correct dispatching.

5.3 Visitor notes

Visitor design pattern is in general an elegant solution
to implementing the operation on object structure as
it enables the full separation. To explain the pattern
we use the following code fragment which pretty prints
(e.g. the Printer visitor) the given program (AST):

Visitable prog = new Block(...);
Visitor visitor = new Printer();
prog.accept (visitor) ;

The compile-time type of prog is Visitable and its run-
time type is Block. Similarly, compile time and run
time types of visitor are Visitor and Printer, respec-
tively. See also Table 1.

variable ‘ compile-time type
prog Visitable
visitor Visitor

run-time type
Block
Printer

Table 1: Compile-time and run-time types of variables.

The printing operation on the given object structure
is started with a call to prog.accept(visitor). Since Java
supports subtyping polymorphism (via virtual meth-
ods) actually the Block’s accept(visitor) method is
called (i.e., not Visitable’s). The first method’s argu-
ment is of type Visitor as it is the type of visitor. This
method call is also referred as the first dynamic dis-
patch.

The second dynamic dispatch is as follows. The ac-
cept(visitor) method delegates its work via a call to
visitor.visit(this). Because of subtyping polymorphism
the Printer’s visit(this) method is invoked. Notice that,
the compile-time type of this is Block (not Visitable as
it was before the method’s call). Additionally, method
overloading is also used here.

A disadvantage of visitor design pattern is that the
accept(...) method must be present in the object struc-
ture. In some cases, e.g., external libraries and frame-
works, such method may not be present. The other
drawback is that the object structure is not clean. How-
ever, one can argue that the pollution is minimal.

6 Visitor by reflection

In this section we present a flexible approach to tra-
verse the object structure using the programming lan-
guage reflection capabilities. The reflection is a pro-
gram’s ability to examine (or even modify) itself [12].

Hence, this approach is infeasible in languages not sup-
porting reflection mechanism (i.e., C, C++).

Similarly to the refinement technique described in
Section 5.2 we use a base abstract class for visitors,
e.g., AbstractVisitor. In this class we implement the
visit(Node node) method using the reflection to invoke
the corresponding visit(...) method. The basic im-
plementation of AbstractVisitor.visit(Node node) is as
follows:

void visit(Node node) {
Method method = findVisitMethod(
getClass (), node.getClass());
if (method == null) return;
try {
method.invoke (this, node);
} catch (InvocationTargetException e) {

} catch (IllegalAccessException e) {

}
}

The corresponding visit(...) method is found via
a call to findVisitMethod(...) which searches the
classes in visitors class hierarchy. The method accepts
the starting class of visitor and the starting class of
node. The graphical demostration is provided in Figure
1. In the figure classes of visitors and their inheritance
is shown on the left-hand side and visit(...) methods
for each visitor are specified on the right-hand side (the
type of first argument is shown).

We distinguish two basic directions in which the
search may proceed.

In breadth The given visitor’s class is examined for
the corresponding visit(...) method. However,
the search varies in the type of first argument. In
particular, the run-time class of argument and, af-
terwards, its super classes are checked.

For example, in Figure 1 the search for
visit(PrintBold) in a visitor of type HtmlPrinter
one finds visit(Printer).

In depth The given visitor’s class and, afterwards,
its ancestors are examined for the corresponding
visit(. . .) method.

For example, in Figure 1 the search for
visit(PrintBold) in a visitor of type HtmlPrinter,
one finds it later in its superclass XmlPrinter.

In the following subsections, we describe four search
variants based on these directions:

- breadth-only search (the receiver’s class hierarchy
is ignored),

- depth-only search (the argument’s class hierarchy
is ignored),

- breadth-first search (both class hierarchies are ex-
plored, breadth direction first),

Visitor
AbstractVisitor —| Statement |
T ~ Comment

Printer } Block
T _ PrintBold — Print |

XmlPrinter — PrintBold |
HtmlPrinter — | Print |

Figure 1: An example object-structure class hierarchy
with provided visit(. . .) methods for each class.

- depth-first search (both class hierarchies are ex-
plored, depth direction first).

With reflection one can do much more: automati-
cally visit also all members of visited object. See [6]
for an example.

6.1 Breadth-only search

In breadth-only search the method-call receiver’s class
hierarchy is ignored and only the method’s first argu-
ment is used. The search is implemented with the fol-
lowing method:

Method findVisitBreadth(Class visitorClass, Class
nodeClass) {
while (checkClasses(visitorClass, nodeClass)) {
try {
Method m = visitorClass.getMethod(s
new Class[] { nodeClass });
if (m != null) return m;
} catch (NoSuchMethodException e) {}
nodeClass = nodeClass.getSuperclass();
}
return null;

}

The reflection is employed via the getMethod()
method which returns the visit(. ..) method of which
the first argument type is a given class, e.g. nodeClass.
Notice that checkClasses(...) is a helper function
which checks the given classes are not null and they
are not at the bottom of class hierarchy (to prevent un-
necessary errors). The implementation is as follows:

boolean checkClasses(Class visitorClass, Class
nodeClass) {
return visitorClass != null &&
visitorClass != Visitor.class &&
nodeClass != null &&
nodeClass != Node.class;

6.2 Depth-only search

In depth-only search the method-call receiver’s class
hierarchy is examined, but the method’s first-argument
class hierarchy is ignored. The code for the depth-only
search is basically the same as before except the line

nodeClass = nodeClass.getSuperclass();

which is replaced with

visitorClass = visitorClass.getSuperclass();

6.3 Breadth-first search

The breadth-first search is similar to breadth-only
search. However, in case the method is not found
in a given receiver’s class, its ancestors are examined
also. The techniques is implemented with the follow-
ing code:

Method findVisitBFS(Class visitorClass, Class

nodeClass) {

while (checkClasses(visitorClass, nodeClass)) {
Method m = findVisitBreadth(visitorClass,

nodeClass) ;

if (m !'= null) return m;
visitorClass = visitorClass.getSuperclass();

}

return null;

}

6.4 Depth-first search

Finally, the implementation of the depth-first search
technique is shown. It is similar to the breadth-first
search except that the call to findVisitBreadth is re-
placed with findVisitDepth (depth-only search). Ad-
ditionally, the line

visitorClass = visitorClass.getSuperclass();

is replaced with

nodeClass = nodeClass.getSuperclass();

6.5 Implementing visitor

The implementation of a traversal operation is straight-
forward, i.e., one only needs to extend Visitor or Ab-
stractVisitor class and implement the corresponding
visit methods. For example the execution of AST is
done like this:

class Executor extends AbstractVisitor {
void visit(Comment comment) {3}

void visit(Print print) {
System.out.println(print.message) ;

}

void visit(PrintBold printBold) {
System.out.println(+ printBold.message +

);

}

void visit(Block block) {
visit(block.first);
visit(block.second);

}

7 Discussion

In this section we discuss the presented approaches for
implementation of traversal operation. In particular,
all nine described implementations (namely one using
dedicated methods, two using type casting, two using
visitor pattern, and four based on reflection) are com-
pared using eleven selected criteria. Most of criteria are
focused on technical aspects, while some aim on prac-
tical use of implemented solutions. Together they em-
phasize the important specifics of each approach. Next
a more detailed discussion is presented. The summary
of comparison is given in Table 2.

Object orientation All approaches but the first form
of type casting (i.e., structured form) exploit OO
capabilities of programming language. Conse-
quently, only this form may be used (with some
minor modifications) in a language without OO
capabilities. Notice that, if instanceof operator is
not supported one may simulate it via a special tag
field [13].

Structure cleanliness Several approaches require ad-
ditional methods to be provided in the imple-
mentation of object structure. More precisely,
the dedicated-methods approach clearly demands
separate implementation of many methods — one
in each class of the class hierarchy representing
the object structure, while approaches based on
visitor pattern require additional accept() method.
Both forms of type-casting and reflection-based
approaches leave the object structure intact.

Operation/structure separation All approaches ex-
cept the dedicated methods support the separation
of implementations of traversal operation and ob-
ject structure. As a result the source code of op-
eration and structure can be independently devel-
oped [11].

Operation implementation To implement the traver-
sal operation the code in dedicated-methods ap-
proach is dispersed over multiple classes. The
structured type casting requires one method, while
all other approaches require one class (with multi-
ple but possibly simple methods) for the operation
implementation.

Recompilation When a new traversal operation is
added or changed only the approach using dedi-
cated methods requires a recompilation of source

code containing the implementation of operation.
Notice that, this is a direct consequence of sepa-
ration property.

Commence traversal To commence the traversal op-
eration there are basically two options: to invoke
an appropriate method (e.g., dedicated methods
and first variant of type-casting) or to create a new
class (and invoke one of its methods).

Special features The use of type checking and type
casting is generally considered an undesired pro-
gramming practice which often causes unex-
pected run-time type/cast errors [14]. Obviously,
the type-casting approaches cannot avoid their
use while all others can. Similarly the last ap-
proach uses reflection which is often considered
advanced feature [12].

Dispatch technique For the dedicated-methods ap-
proach only single dispatch is needed. All other
approaches need double dispatch (traditional via
accept() method, via type casting, or via reflec-
tion).

Performance The performance of the approach is rep-
resented with the time required for completing
traversal operation. Most of the approaches pre-
sented perform really well. The only exception
here is the reflection-based approach which is
considerably slower (for the obvious reason the
dispatch is implemented by the programmer her-
self). On the other hand, this is the price paid for
the flexibility the approach offer. Still, due to the
rapid development of compilers this may not be
a mayor pitfall. See [6] for more details on the
performance.

Programming skills From the point of view of pro-
gramming skills required to implement an ap-
proach anew the presentation order in the paper
is from the simplest to the most complex one.
We classified the approaches into three categories:
easy, medium, and advanced, based on the level of
programmer’s understanding of concepts used.

Maintenance skills We argue the maintenance (i.e.,
changing existing operations and structure) is eas-
ier for the approaches that require more advanced
programming skills as these approaches exhibit
clear implementation rules. Notice also, that
both casting approaches require the programmer
to carefully plan the order of type checking.

Extensibility The performance in this criterion is a di-
rect consequence of other technical criteria such
as structure cleanliness and separation. To extend
the object structure or to add another operation is
usually more involved in approaches without clear
separation of structure and operations and easier

dedicated casting casting pattern pattern reflection
methods (structured) (OO form) (classical) (refinement)
object oriented y n y y y y
structure cleanliness methods clean clean accept() accept() clean
operation/structure separation n y y y y y
operation implementation classes method class class class class
recompilation needed y n n n n n
operation commence invoke invoke create create create create
special features - type cast type cast - - reflection
dispatch technique single via casts via casts double double via reflection
performance fast fast fast fast fast slow
programming skills easy medium medium advanced advanced advanced
maintenance medium hard hard easy easy easy
extensibility hard hard hard easy easy easy
suitability simple simple simple complex complex complex

Table 2: A summary of comparison

in the other. For the visitor design pattern and re-
flection approaches one only needs to create new
class with several visit(. . .) methods.

Suitability Finally, the approaches should be consid-
ered in the light of the problem they are solving.
Hence, simpler approaches may be suitable for
problems involving similar object structures with
a small number of operations, where the use of
more demanding approach may be even consid-
ered as over design (the principle of Occam’s Ra-
zor may apply). On the other hand complex prob-
lems involving large object structure with multi-
ple operations demand more advanced and flexi-
ble approaches.

8 Conclusion

In the paper we presented a simple working exam-
ple to review a number of selected approaches for de-
sign and implementation of an object structure sup-
porting a traversal operation. Apart precise description
of more commonly known techniques we presented a
reflection-based approach and several of its variants.
The main outcome of the paper is a valuable compari-
son of all approaches based on eleven criteria, which
enable the interested programmers to deeper under-
stand and use the presented techniques in practice.

References

[1] Sommerville, I. Software Engineering, Eighth Edi-
tion. Pearson Education Limited, Harlow, England,
2007.

[2] Gamma, E., Helm, R., Johnson, R., Vlissides,
J. Design Patterns, Elements of Reusable Object-
Oriented Software. Addison-Wesley, Boston, USA,
1995.

[3] The Groovy programming language page, http:
//www.groovy-lang.org/design-patterns.
html, accessed: May 19*" 2015.

[4] Author, 2015.

[5] Nordberg III, M. E. The Variations on the Visi-
tor Pattern. In Proceedings of the PLoP’96 Writer’s
Workshop, 1996.

[6] Palsberg, J., Jay, C. B. The Essence of Visitor
Pattern. In Proceedings of the 22nd International
Computer Software and Applications Conference -
COMPSAC’98, pages 9-15, Vienna, Austria, 1998.

[7] Sebring, J. Reflecting on the Visitor Design Pat-
tern. Java Report, March 2001.

[8] Mai, Y., de Champlain, M. Reflective Visitor Pat-
tern. In Proceedings of the PLoP’2001 Writer’s
Workshop, 2001.

[9]1 Appel, A. W. Modern compiler implementation in
Java, 2nd ed. Cambridge University Press, 2002.

[10] Author,sic 2015.

[11] Oliveira, Bruno C. d. S. and Wang, Meng
and Gibbons, Jeremy. The VISITOR Pattern as
a Reusable, Generic, Type-Safe Component, Pro-
ceedings of the 23rd ACM SIGPLAN conference
on Object-oriented programming systems languages
and applications, 2008.

[12] Forman, I. R., Forman, N. Java Reflection in Ac-
tion. Manning Publications, Shelter Island, USA,
2004.

[13] Schreiner, Axel-Tobias. Objektorientierte Pro-
grammierung mit ANSI C, Hanser, Miinchen, 1994.

[14] Pierce, Benjamin C., Types and Programming
Languages, The MIT Press, 2002.

