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Abstract. The increasing threat of malware is a 
constant problem for information system security. 
Current detection methods are showing lack in 
sufficiency and are bulky, with a slow response to 
high traffic needs and for new samples. In this work 
we will present a method for in-depth malware 
identification and classification. We will show a 
concept of a multi layered approach where we can 
detect and classify malware mixed with legit data 
samples based on speed or precision trade-offs. We 
will employ a classification and risk based method 
with various detection criteria that can identify 
various hazardous aspects of various malware 
instances. The classifiers will be organized in layers 
which will help us in building various high speed or 
high precision detectors based on the protection 
needs and requirements. 

 
Keywords. malware identification, multilayer 

classification, malware, botnets, static analysis, 
runtime analysis   

 
1. Introduction 

 
Today, malware is a growing concern for 

computer security. From 2003 till today, there have 
been significant incidents involving malware, such as 
Titan Rain and GhostNet attacks that have been 
perpetrated with the help of malware. Most current 
methods of malware detection are based on pattern 
(signature) matching or behavior analysis. Signature 
matching is quick, easy and very reliable if you can 
match the correct signature which is usually stored in 
a signature base which is updated every couple of 
hours. The problem with signature detection is when 
we want to match a malicious sample for which we 
don't have the signature. Anti-malware houses have to 
analyze the malware and then issue a signature for it's 
anti-malware software so the malware can be 
detected.  

Unfortunately, there is a gap between the 
following events:  

 
1. A new malware type begins its infection run 

(outbreak)  
2. Anti-malware houses receive a sample of the 

malware  
3. Anti-malware houses issue updates for their 

software that can detect and remove the sampled 
malware  

4. Users of the anti-malware software begin 
removing the malware  

5. The infection rates for the specified malware 
type drop because of the detection mechanisms  

 
Currently, there are about 40 anti-malware 

applications that are issued by their respective anti-
malware houses or companies. About 50% of these 
houses are predominantly using signature detection, 
where the other half uses signature detection mixed 
with heuristics, behavior analysis or other proprietary 
methods. The downside on the behavior based 
methods is the time that is needed to detect a sample. 
On the other side, signature detection by that works 
only after the stage 3, when we can detect the sample 
with the signatures. We would like to propose a new 
model that should be able to work from stage 1, 
because it wouldn't be confide in only signature 
detection, but also would be more flexible to detect a 
wider variety of malicious code. 

 
2. Prior research 
 

Much research has been done in the field of 
malware analysis and prevention. One of the few 
formal results has shown us that it is not possible to 
create an algorithm that can perfectly detect all 
possible viruses (malware software) [3, page 1]. 
Although this result is discouraging, researchers have 
found a way to increase the detection rate for malware 
samples. Some researchers have tried to approach the 
problem using strict formalization. In [9] authors have 
proposed a malware formalization based on process 
algebra. Authors have also stressed that using such a 
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formalization can improve detection and prevention 
of malware samples. There have also been attempts at 
classification of metamorphic and polymorphic 
malware samples using formalism. In [10] authors use 
value set analysis to detect different instances of the 
same metamorphic malware family. Authors in [2] 
have demonstrated the usage of Strong Token-Pair 
(STP) signatures scheme for detecting polymorphic 
worms. These papers provide a valuable advancement 
in the field of malware detection, but they are 
focusing only on a few classes of malware. 

Other researchers have focused on analysis of 
different behavioral aspects of malware. In [8] 
researches propose a system for detecting malware 
infection that monitors network communication 
between internal and external entities. Authors in [14] 
have created Pandora, a system for detecting malware 
that focuses on processing behavior and information 
access. It works by detecting which information 
malware accesses and checks if this access breaches 
user privacy. 

 
3. Methods used by malware 

authors 
 
In order to evade detection as long as possible, 

malicious software uses many anti-reversing 
techniques. These techniques significantly prolong the 
time required for successful analysis of malware, and 
thereby reduce the detection rate of modern anti-virus 
software.  

Most malware does not use direct code 
obfuscation but instead rely on packer to hide from 
analysis. Packers are programs designed to compress 
or encrypt another executable program in place and 
therefore be completely invisible to the end-user [5, 
page 287]. Although it is very difficult to say exactly 
how many malware is packed, some studies estimate 
that over 80% of them use some form of packing [7, 
page 1]. The most widely used packer is UPX, while 
behind him we can find ASPack, FSG and UPack [7, 
page 2.].  There are also malware samples that use 
more advanced packer programs which represent the 
pinnacle of the packing technology, while some of 
them use packing methods not currently seen in the 
wild.  

Malicious software also uses more direct anti-
reversing techniques for which malware authors write 
code themselves. For example, Conficker approaches 
the problem of anti-reversing using multiple layers. 
On one layer it’s packed with UPX, second layer is 
packed with a custom made packer and it also uses 
cryptography to hide its network traffic [4].  

There is a large number of anti-reversing 
techniques, but most of them can be categorized to 
one of the following categories (as presented in [5]):  

• Code Encryption  
• Anti-debugger techniques  
• Anti-Dissasembler techniques  

• Code obfuscation  
• Control flow transformation  
• Data transformation  

   
No matter what anti-reversing technique malicious 

software uses in the end it’s functionality doesn’t 
change. And based on that, we think that a multiple 
layered approach to identifying malware would be 
more suited, because we don't want to invest a large 
amount of time in bypassing anti-reversing 
techniques. 

 
4. Analyzing detection and 

response rates 
  
As a part of our preliminary research we wanted to 

experiment with the detection rates of popular anti-
malware software. Since [13] offers almost all current 
and up to date scanners and forwards the sample to 
anti-malware houses for analysis, we used it to assess 
some samples. In the course of the authors work, we 
managed to collect a few thousand unique malware 
samples, and used a small subset of those for testing. 
In this work, we will list only some most interesting 
conclusions from our experiments:  

The main weakness of signature matching is that 
even basic alterations to the core of the malware will 
be undetectable to the scanner.  We can show this 
problem easily with the following experiment. We 
took a number random malware samples out of our 
batch, and employed a simple packing method. For 
example, here we list 5 very popular malware samples 
and the detection success with the regard to 39 
popular anti-malware scanners provided by an online 
service [13] at the time of our analysis. Our results are 
presented in table 1: 

 

Table 1: Detection rates for selected malware 
samples 

Malware sample: Detection rate:  

alpha  37/39 (94.87%)  

beta  38/39 (97.44%)  

gamma  37/39 (94.87%)  

delta  33/39 (84.62%)  

eta  28/39 (71.8%)  
 

 
After that, we took a simple packer [12] and ran it 

each of those samples trough the same scanners. It is 
important to note that the demo version is free to 
download, and anyone can download and run the 
packer and pack any common malware type, which 
doesn't require any special malware writing skills. 
Our results follow in table 2: 

Proceedings of the 21st Central European Conference on Information and Intelligent Systems 430
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Table 2: Detection rates for packed samples 

Malware sample: Detection rate:  Difference: 

alpha-vmp 18/39 (46.16%) 48.71%  

beta-vmp 18/39 (46.16%) 51.28%  

gamma-vmp 16/39 (41.03%) 53.84%  

delta-vmp  15/39 (38.47%) 46.15%  

eta-vmp 17/39 (43.59%) 28.21%  
 
According to this, even simple trivial obfuscation 

mechanisms like packing can defeat a lot of signature 
based scanners. The anti-malware applications that 
detected the sample were either using behavior or 
some other in-depth analysis, so they could unpack 
the malware and test it. It is important to note that 
behavior based detection takes longer than signature 
matching, and it is logical to assume that even lower 
detection rates could be achieved with a better or 
custom built method.  Since [13] automatically sends 
the sample to anti-malware houses, we wanted to 
assess the speed in which the anti-malware houses 
would recognize our packed sample as malicious and 
issue signatures to detect our packed variant. For that 
experiment we used the evaluation VMProtect packer, 
picked an extremely popular and simple malware 
sample (which had 100% detection rate by all anti-
malware tools), we packed the sample and uploaded it 
and scanned it with [13] in 24 hour intervals for 10 
days. That way we can see how fast can anti-malware 
houses deploy signatures for new malware variants. 
Our results are in table 3: 

Table 3: Daily detection rates for a selected 
sample 

Day Detection rate 

1 16/40 (40.0%) 

2 19/40 (47.5%) 

3 21/40 (52.50%) 

4 23/41 (56.1%) 

5 27/42 (64.29%) 

6 27/40 (67.5%) 

7 27/41 (65.86%) 

8 27/41 (65.86%) 

9 28/41 (68.3%) 

10 29/41 (70.74%) 
 
As we can see, it took the 40 anti-malware houses 

about 10 days to improve their detection rate for about 
20%. It is important to note that this is a simple single 
stage obfuscation mechanism and better results could 
be had by coding a custom packer. Also, the results 
could be skewed because our sample was just 
forwarded as a malicious one to the anti-malware 

houses and was not released into the wild. We believe 
that if our malware sample was a real live high risk 
malware, the anti-malware houses hopefully would 
have a faster response. Unfortunately, there is no 
representative, ethical and legal way to assess this 
response. 

 
5. Classifier elements 
 
Our classifier uses a multiple layered approach to 

malware identification. Each layer of identification 
performs one test on the malware subject. With each 
test performed, our classifier engine computes the 
total score of malware risk. This score indicates if the 
subject in question is legit malware sample or not.  

Our test’s can roughly be divided in two groups.  
• Static tests  
• Behavioral analysis tests  

Static check include test that are performed 
without executing the malware sample and do not 
pose any risk to the machine running the tests.  On 
other hand, behavioral analysis test observe the 
patterns that malware is exhibiting after it’s been 
executed, preferably in a virtual machine. 
 
Here are some static tests that we recommend:  

 
1. Entropy analysis:  
 
An average standard PE executable or other non 

compressed files have low to medium Shannon 
entropy, if additional compression, encryption or 
packing is used the entropy will rapidly approach to 8 
bits. The samples that we analyzed gave the same 
conclusion that high entropy samples use encryption 
or packers. This is a low complexity, fast check that 
can help us to decide will we try to scan the sample 
with known malware patterns or try to unpack the 
sample and maybe continue with further analysis.  

 
2. Packer analysis and unpacking  
 
If the entropy value is high, we can try and detect 

packers. We can use some publicly known patterns 
like [packpatterns], where we can use PeID [11] or 
other methods like Ero Carrera's python pefile 
package [6], which we used to implement a custom 
packer detector which we compared to PeID. If we 
detect a common packer like UPX, we can try and 
unpack it. Failure to unpack a standard packer should 
raise a red flag that would mean that some kinds of 
anti-debugging/disassembly or obsfucation methods 
are used. Some custom packers are custom built for 
malware or are made to obfuscate the file to thwart 
reversing. The use of custom malware centric packers 
or usage of standard packers with anti-reversing 
methods should automatically raise a high risk 
warning. 
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3. Identify crypto signatures  
 
Cryptographic algorithms can be detected by their 

implementation in code. S-Boxes, P-Boxes, standard 
initialization vectors, library calls, machine code 
patterns or other elements are static in code, and can 
be detected. Encrypted chunks are not necessary a 
high risk case, but are a good indicator that we need 
to submit the sample to behavior testing.  

 
4. Known code patterns  
 
Malware authors, especially the ones that created 

multiple malicious code variants share the common 
trait as each programmer: They reuse their code. 
Similar code chunks like update processes for 
malware, fast flux techniques, stealth or 
polymorphism segments, payloads, 
exploits/shellcode, rootkit or other elements are 
reused between the malware created by the same 
authors or by the same group. If detected, such 
malicious code patterns are a high risk threat.  

   
Complementing those static tests we can run 

behavior or dynamic tests:  
 
1. Self removal test  
 
A large percentage of malware samples will 

remove itself from current working directory to some 
obscure location on the system in hope of avoiding 
user detection. Most legit software doesn't exhibit this 
characteristic. This classifier should monitor the 
executable that’s being analyzed and check if it has 
deleted itself from the current working directory. 
Although this is not a definite indication of malware 
behavior it will raise suspicion.  

 
2. Persistency test  
 
Most malware samples (excluding only memory 

resident malware) will try to use some known auto-
start method in order to ensure the survival of system 
shutdown or reboot. Although legit software also uses 
this method, there is a big difference - malware will 
not ask user for permission and it will try to insert 
itself in less known locations that are not reserved for 
user software but for operating system use. If we 
cross-reference this test with self removal test, we can 
get a strong indication of malware behavior.  

 
3. Third-party injection  
 
Malware inject their code or dll in another process 

using mechanism provided by operating system. 
Using this techniques malware can go undetected by 
executing its code in trusted applications process. 
Legit software rarely has any need to create threads in 
remote processes or load rouge dll's. Our classifier 
should monitor the subject for any such attempt and 

logs it adding it to the global score of the samples 
malware behavior.  

 
4. System call tracing  
 
Most AV solutions employ some kind of 

heuristics based on examining which system calls an 
executable is using, also, the order of system calls is 
of significance. However, most AV solutions have 
problems with packed or encrypted malware. Our 
classifier employs a novel approach at tracing system 
calls that can't be circumvented by regular user-mode 
malware. Using this technique we can apply advanced 
heuristic on which system calls is application using 
and in which order.  

 
5. Hooking techniques (IAT, SSDT, SSDT 

Shadow, IDT)  
 
In order to control the infected computer and steal 

users information malware tries to insert itself into 
normal execution path. One of the most common 
techniques for achieving this is hooking. Our 
classifier should monitor the system for presence of 
such hooks, if any of them is found this will be a 
strong indication of malware behavior.  

   
Tests don’t have equal significance, and therefore 

carry different weights that are used to compute the 
final score of for the malware being tested. 

 
6. Classifier design 
 
Our classifier should be created in phases, where 

we group similar activities to achieve better 
performance. The two most costly operations are disk 
reads and behavior testing. Considering we separated 
the tests in two distinct groups, we consider the 
following: 

 
Phase 1: Single pass testing 

 
The first phase tests are Entropy testing, packer 

detection, cryptographic signature detection and 
known code pattern scanning. The optimization is that 
all those measures require one read/scan per sample. 
By implementing those measures in parallel, we can 
achieve better performance. The most significant 
weight would be if a sample has common malicious 
code elements found in other malware samples, 
followed by packing information if a malware centric 
packer was used.  

Our suggestion is, if a malware specific packer is 
used, to automatically flag the sample as high risk or 
malicious. If a packer is used, the sample can be 
unpacked and rescanned for code samples or other 
data.  

Other interesting information can be obtained if a 
packing attempt fails, or if we can see anti-debugging 
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methods in the file.  Crypto signatures can add a low 
risk score. 

All above mentioned operations can be multi-
threaded, so a multiple threaded implementation 
would have a speed gain. Also, it is important to note 
that the searching algorithms are slower as we have 
more samples to search. Therefore, we can say it is 
better to search for a smaller concrete subset of 
patterns then a large malware pattern base 

After all those methods, we can parallelize 
scanning for known malware patterns, which is costly 
by time. We suggest ordering the patterns where 
newer malware samples are at the beginning of the 
list, where they can be matched faster and other 
methods can use a quick hash function lookup, where 
we calculate a hash function from a sample and try to 
check if the sample is widely known as malicious. 

 
Phase 2: Simple runtime tests 

 
There are two simple runtime tests, Self removal 

and persistence. If a sample removes itself from its 
current runtime location, then this is a medium risk 
flag. Adding itself to a automatic run location is 
another medium risk flag. If both are present at a 
same time, then it is a very high risk flag as this 
behavior is not exhibited in installing applications, but 
only malware.  

 
Phase 3: Advanced runtime tests 

 
Advanced tests are runtime injection, syscall 

tracing and hooking detection. Those tests are highly 
reliable, but as phase 2 they require executing the 
sample. Therefore, it would be highly recommended 
to run the samples in a bare-bone virtual machine that 
can be scrubbed after testing. Unfortunately, the most 
reliable tests are the slowest and should be used as a 
last resort measure. 

 
7. Future research  
 
Our future research will be concentrated on 

benchmarking the classifier speeds with various 
methods and parameters. Also, we have collected a 
wide malware sample base, and we want to tune and 
benchmark the model against other commercial and 
open source providers to obtain the optimum speed 
and classification precision considering each 
classifiers importance and reliability. One of our 
research areas will cover other methods that are even 
faster than the ones covered here or the importance of 
some methods that we have shown here. 

 
 
 
 
 
 
 

8. Conclusion 
 
In this work, we have shown a concept for 

malware detection that does not rely solely on 
signature matching or behavior detection. We have 
presented a concept that is both faster and We believe 
while an increasing number of malware samples is 
presented each day the methods of malware detection 
at the gateways and routers to our networks are not 
improving as fast as they should. Complex malwares 
like Conficker or custom malware like the ones used 
in GhostNet and Aurora attacks are gaining 
popularity. We can only conclude that additional 
research needs to be done in this area. 
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