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Abstract. In this paper we focus on Shortest Proof 

Games (SPG) as one important genre of retrograde 

chess analysis. SPG's serve to establish the legality of 

a position in given chess problems by searching for 

the shortest sequence of moves that lead to the initial 

chess position. First we give an overview of existing 

computer programs for solving SPG's, but due to the 

absence of any research papers on the topic, we 

provide informal descriptions obtained by the authors 

via e-mail and from partial information from 

programs' Web sites. In the second part of the paper 

we propose some systematic ideas for the 

establishment of a formal system for solving SPG's by 

using Coq - a formal proof management system. Our 

approach is based on the shortest trajectories 

(shortest planning paths which certain pieces might 

follow from initial square to achieve the target 

square), admissible trajectories (trajectories longer 

than the shortest trajectory) and bundles of 

trajectories. We show how these forms can be 

recursively generated using Coq and how they can be 

used in order to solve an SPG. 

 

Keywords. Retrograde chess analysis, Shortest proof 

games, Trajectories, Coq 

 

1 Introduction 
 

Retrograde chess analysis (RCA) is a method to 

determine which moves were played leading up 

to a given chess position. There are several main 

types of retrograde chess problems which can be 

classified on the basis of different criteria. In this 

paper we focus on Shortest Proof Games (SPG).
1
 

SPG can serve to establish the legality of a 

position. The problem of SPGs is the search for 

the shortest sequence of moves leading from the 

                                                      
1 For other types see [8] or [13]. 

given to the initial chess position. Here we give a 

general definition of retrograde chess moves. 

Due to the inability to axiomatization of 

retrograde chess, definition is indirect and based 

on a definition of moves in “standard” chess: “If 

in accordance with the laws of chess, position 

Pn+1 arises from position Pn due to the move m of 

piece p, then the retrograde chess move m’ of 

move m is the movement of piece p due to the 

position Pn arising from position Pn+1.” If we do 

not restrict ourselves only to chess then we can 

say that the retrograde analysis may be applied to 

any system that can display different states and 

in which a set of rules defines the change of one 

state to another. The purpose of such retrograde 

analysis can be: avoidance of undesirable final 

states or determination of action sequences 

which lead to some of the desirable final states. 

For a build-up model for solving SPGs we 

use Coq, a computer tool for verifying theorem 

proofs in higher-order logic, whose complete 

theory and possibility of practical applications is 

given in [1] and [18]. The underlying theory of 

the Coq is the Calculus of Inductive 

Constructions [5], a formalism that combines 

logic from the point of view of λ-calculus and 

typing. OCaml is the implementation language 

for Coq [9]. Concerning a proposition that one 

wants to prove, the Coq system proposes tactics, 

to construct a proof, using elements taken from a 

context, namely, declarations, definitions, 

axioms, hypotheses, lemmas, and already proven 

theorems. In addition, the Coq system provides 

the language Ltac of operators called tacticals 

which make it possible to combine tactics and, in 

such a way, to build more complex tactics that 
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can be defined as integral function called Ltac 

functions [2], [1, 61], [18, 213]. 

Why use Coq for solving retrograde chess 

problems? We offer a short answer by quoting 

from [20, 5]: “Even most problem composers 

feel that the basis of retrograde chess analysis is 

rather mathematical logic than the game of 

chess.” Apart from [10], [11] and [12], so far the 

Coq system has not been applied in the field of 

chess. But, in these three last publications Coq is 

applied to different types of retrograde chess 

problems than the problems we deal with in this 

paper, and this was reason for applying different 

methodology for solving these problems here. 

Specifically, the publications mentioned deal 

with problems of proving invalidity of any given 

position, such as determining if castling is 

disallowed or an en passant capture is possible or 

determining a certain number of moves played 

leading up to a given position, but under the 

premise of the lengths of the entire paths of the 

figures from initial to the given position being 

irrelevant. 

There are several computer programs for 

solving SPGs but there is no research paper in 

this field. Therefore, below we offer descriptions 

of existing programs given by the authors (by E-

mail) and from programs’ web sites. Retractor 

[7] is an old program developed in 1991 in the 

Department of Computer Science at Stanford 

University, California. Retractor uses a simple, 

classical backtracking search. All possible 

retromoves are generated at each node, with 

backtracking when a position is hit that can be 

proven to be either illegal, or previously reached. 

If the search reaches an implied given maximum 

depth without hitting a position it can prove 

illegal, then that branch is counted as a solution. 

But this does not guarantee that the solution is 

correct, only that the preprogrammed ruleset isn't 

able to prove the position illegal. Natch [19] 

identifies pieces that have never moved (pawns 

first, and then pieces blocked by pawn). On a 

board where the squares identified in the 

previous phases cannot be used, or crossed, it 

builds many tables, where the minimum number 

of moves is given from one square to any other 

square, for all piece types. After this, it searches 

for all combinations of pieces. There are two 

constraints that must be respected. The number 

of moves must not exceed the total number of 

moves. The second constraint is only for pawns. 

When they are not on the same column, there 

must be enough pieces missing in the opposite 

camp. Then Natch tries to order moves. When 

cycle in the moves order is detected, the position 

is eliminated. “Natch isn't able to verify every 

SPG problem. There are many kinds of positions 

where Natch needs days, if not weeks, to find a 

solution.” [19]. Euclide [3] is a program divided 

in four major parts. The first one, called the 

preliminary analysis, tries to make obvious 

deductions directly from the position. Without 

going into details, Euclide counts the required 

moves for each piece to reach their possible 

destinations and then eliminates impossibilities. 

In the second part Euclide uses so-called 

strategies. For each of the initial 32 pieces it is 

determined: the final square of the piece, whether 

this piece was captured or not, the promotion 

square if any and the promotion piece, the order 

of the various captures made, the castling side if 

applicable. One subset of all these possible 

choices for each piece forms a strategy. All 

possible strategies are built by going through a 

large number of permutations. The possible 

permutations are built from data provided by the 

preliminary analysis, without further analysis. If 

Euclide failed to make many deductions in the 

first part, the total number of possible strategies 

is immensely huge, hence Euclide will run 

“forever”. The third part, in order to eliminate 

strategies, consists of a partial analysis of move 

dependencies. For each strategy built in the 

previous step, Euclide performs further counting 

deductions, exactly like in the first part but this 

time, for a given strategy, each piece has a 

known final square, known captures, etc. This 

can eliminate immediately a large number of 

possible strategies. Finally, the fourth part simply 

plays, from the initial position, moves until 

solutions are found or the move tree is 

exhausted. For each strategy, Euclide plays all 

possible games. Again, this can be very time 

consuming. The computations of the third part 

are carefully used to truncate huge branches of 

moves. Euclide fails to make obvious deductions 

that a human is able to make, hence the program 

sometimes considers a huge number of strategies 

that are obviously impossible. When there are 

many missing pieces, Euclide has much trouble 

finding where the captures have occurred and 

again considers a large number of strategies that 

are obviously not possible. 

 

2 Bases of RCA using Coq 
 

Here we load the List module [6, 51], since our 

model is going to use lists: 
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Require Import List. 
 

The coordinates of the squares according to 

the orientation of chessboard are shown in Fig. 1. 

As we see, the standard labels of rows and 

columns of the chessboard are mapped into the 

natural numbers as follows: a→1, ..., h→8, 1→8, 

..., 8→1. The set of squares on the chessboard 

can be defined in Coq as record type [1, 145] 

with two functions column and row of type nat: 
 

Record chessboard : Set := square {column : nat; row : nat}. 
 

8  #  #  #  # 
7 #  #  #  #  
6  #  #  #  # 
5 #  #  # 6,4 #  
4  #  #  #  # 
3 #  #  #  #  
2  #  #  #  # 
1 #  #  #  #  
 

a b c d e f g h 

Figure 1. The coordinates of the squares 
 

Set of pieces in order: king, knight, rook, 

bishop, queen and pawn, as well as pieces’ colors 

(black and white) we introduce as enumerated 

inductive types without recursion [1, 137]: 
 

Inductive piece : Set := k | n | r | b | q | p. 
Inductive color : Set := W | B. 

 

3 Trajectories in Coq 
 

The Language of Trajectories is developed in 

Linguistic Geometry [17], as the lowest level 

language of the Hierarchy of Languages [14]. In 

accordance with the domain of this paper, we can 

informally describe trajectories as planning paths 

between two squares which certain pieces might 

follow to achieve the target square. We first want 

to consider shortest trajectories for an piece P of 

color C (abbreviation PC) with the beginning at 

square (x0,y0) and the end at square (xn,yn). 

Trajectories will be defined as predicate whose 

attributes are: P, C and a list of squares which 

represent path. The set of shortest trajectories is a 

subset of set of admissible trajectories of some 

degree which are formally defined in [17, 51]. 

We define admissible trajectories as follows (in 

given definition is with tP((xm,ym),(xn,yn),l) 

assigned set of trajectories of piece P from 

(xm,ym) as the starting square and (xn,yn) as end 

square and of length l): “An admissible trajectory 

of degree 1 is a shortest trajectory. An admissible 

trajectory of degree k (k is an integer, k>1) is a 

trajectory ttP((x0,y0),(xl,yl),l) if there is a square 

(xi,yi) at chessboard such that t is a concatenation 

of an admissible trajectory of degree k-1 from 

tP((x0,y0),(xi,yi),l1) and a shortest trajectory 

tP((xi,yi),(xl,yl),l2), l1+l2=l.” 

Admissible trajectories are defined 

inductively and therefore, the first idea that arises 

is to define them in Coq as inductive type with 

recursion [1, 160]. But, for the starting and end 

square related to some piece there is generally 

more than one trajectory and we can’t 

theoretically establish a whole system without 

differentiation of such trajectories. Therefore we 

just declare admissible trajectories of some 

degree (type nat) as predicate: 
 

Parameter At : nat -> piece -> color -> list chessboard -> Prop. 
 

Bundle of trajectories of some degree and for 

some piece, in accordance with [17, 50], is a set 

of trajectories which all have the same starting 

and end square: 
 

Parameter bt : 
nat -> piece -> color -> nat -> nat -> nat -> nat -> list (list chessboard) -> Prop. 

 

4 Starting state of the system 
 

Let us consider SPG problem given at Fig. 2. 
 

ä # à é â á ä # 
ë ê ë æ ë ê ë ê 
 #  ë  #â  # 
#  #  #  #  
 #  Á  #  # 

# # Ê Ã  #  #  
Ê É Ê Ë Ê Ë Ê Ë 
Å Æ #  # À Ã Ä 

 

Figure 2. Shortest Proof Game in 8.0 
 

In SPG problems every piece has to reach its 

own end square. Here one problem appears: Do 

we know what square is an end square for every 

piece? Generally, in all of SPG problems we 

only know what the end square is for kings 

because the other figures on the board can be 

promoted (except for pawns, of course, but 

pawns can change a column in which they are). 

But, in the problem given in Fig. 2 we know 

what the end square for more pieces is. This is 

because problem 2 is a simplified SPG problem 

for several reasons. First, all pieces from the 

initial chess position are still on the chessboard 

because no piece was captured and no piece was 

promoted in the previous moves. This means that 

we know what is the end square also for queens, 

bishops, and pawns. There are two squares that 

each of the knights could get to and this also 

applies to rooks. Moreover, some knight or rook 

can, in a given position, stay at the end square of 
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another knight or rook of the same color and this 

square can be just his temporarily square. Our 

current intention isn’t to resolve such issues. Due 

to this we just discover to the reader that the 

knight at f6 come from square g8 and knight at 

c3 from b1.
2
 To setup starting state of problem 

shown in Fig. 2, we declare predicate ON where 

term ON P C x0 y0 xn xn means that peace PC 

stays at square (x0,y0) and that square (xn,yn) is its 

target square. Then we just list all the instances 

of predicate ON for all pieces on the chessboard: 
 

Parameter ON : piece -> color -> nat -> nat -> nat -> nat -> Prop. 
Variable ON1 : ON k W 2 7 5 8. 
Variable ON2 : ON q W 2 8 4 8. 
... 
Variable ON32 : ON p B 8 2 8 2. 

 

5 Distances at chessboard 
 

In order to construct the shortest trajectories, in 

accordance with [17, 52] and [16, 95], we define 

function MAP which gives the number of moves 

necessary for piece P staying at (x0,y0) to reach 

square (xn,yn) along the shortest path. For each 

kind of piece a different function exists, but these 

functions don’t differ for the same kind of pieces 

of different colors apart for pawns. Let us first 

describe function MAP informally. For each kind 

of piece P we specify table 15×15 with number 0 

on the central square of the table. The remaining 

squares are filled with the numbers equal to the 

number of moves necessary for piece P to reach 

the given square from the central square along 

the shortest path or, if the square is not reachable 

then with 2×the number of points in 

chessboard=128. To define such tables in Coq 

for various kinds of pieces we use function 

MAP_start with five initial lists of lists over 

natural numbers which belong to kings, knights, 

rooks, bishops and queens (we show here only 

part of function which belongs to kings): 
 

Definition MAP_start (P : piece) := match P with 
| k => (7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: nil) :: 
       (7 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 7 :: nil) :: 
       (7 :: 6 :: 5 :: 5 :: 5 :: 5 :: 5 :: 5 :: 5 :: 5 :: 5 :: 5 :: 5 :: 6 :: 7 :: nil) :: 
       (7 :: 6 :: 5 :: 4 :: 4 :: 4 :: 4 :: 4 :: 4 :: 4 :: 4 :: 4 :: 5 :: 6 :: 7 :: nil) :: 
       (7 :: 6 :: 5 :: 4 :: 3 :: 3 :: 3 :: 3 :: 3 :: 3 :: 3 :: 4 :: 5 :: 6 :: 7 :: nil) :: 
       (7 :: 6 ::-5 :: 4 :: 3 :: 2 :: 2 :: 2 :: 2 :: 2-:: 3 :: 4 :: 5 :: 6 :: 7 :: nil) :: 
       (7 :: 6 ::-5 :: 4 :: 3 :: 2 :: 1 :: 1 :: 1 :: 2-:: 3 :: 4 :: 5 :: 6 :: 7 :: nil) :: 
       (7 :: 6 ::-5 :: 4 :: 3 :: 2 :: 1 :: 0 :: 1 :: 2-:: 3 :: 4 :: 5 :: 6 :: 7 :: nil) :: 
       (7 :: 6 ::-5 :: 4 :: 3 :: 2 :: 1 :: 1 :: 1 :: 2-:: 3 :: 4 :: 5 :: 6 :: 7 :: nil) :: 
       (7 :: 6 ::-5 :: 4 :: 3 :: 2 :: 2 :: 2 :: 2 :: 2-:: 3 :: 4 :: 5 :: 6 :: 7 :: nil) :: 
       (7 :: 6 ::-5 :: 4 :: 3 :: 3 :: 3 :: 3 :: 3 :: 3-:: 3 :: 4 :: 5 :: 6 :: 7 :: nil) :: 
       (7 :: 6 ::-5 :: 4 :: 4 :: 4 :: 4 :: 4 :: 4 :: 4-:: 4 :: 4 :: 5 :: 6 :: 7 :: nil) :: 
       (7 :: 6 ::-5 :: 5 :: 5 :: 5 :: 5 :: 5 :: 5 :: 5-:: 5 :: 5 :: 5 :: 6 :: 7 :: nil) :: 
       (7 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 6 :: 7 :: nil) :: 
       (7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: 7 :: nil) :: 
       nil... 
 

                                                      
2 It is clear that all rooks are at their side and no castling is done. 

The required results of function MAP for the 

king standing at f6 is represented by a 8×8 sub-

table (internal shaded table) in which number 0 is 

located in the square where observed piece 

stands.
3
 

To define function MAP over function 

MAP_start we first define several auxiliary 

recursive functions [4, 27], [18, 38], [1, 164]. 
 

Fixpoint beginning_of_linear_list (x0 : nat) (l : list nat) {struct l} : list nat := match l with 
nil => nil | l'::l1 => match 16-x0 with 0 => nil | S x0' => l'::beginning_of_linear_list 
(x0+1) l1 end end. 

 

Fixpoint rest_of_linear_list (x0 : nat) (l : list nat) {struct l} : list nat := match l with nil => 
nil | l'::l1 => match 8-x0 with 0 => l | S x0' => rest_of_linear_list (x0+1) l1 end end. 

 

Fixpoint beginning_of_2_dim_list (y0 : nat) (l : list (list nat)) {struct l} : list (list nat) := 
match l with nil => nil | l'::l1 => match 16-y0 with 0 => nil | S y0' => 
l'::beginning_of_2_dim_list (y0+1) l1 end end. 

 

Fixpoint rest_of_2_dim_list (y0 : nat) (l : list (list nat)) {struct l} : list (list nat) := match l 
with nil => nil | l' :: l1 => match 8-y0 with 0 => l | S y0' => rest_of_2_dim_list (y0+1) l1 
end end. 

 

Fixpoint MAP_temp (x0 y0 : nat) (l : list (list nat)) {struct l} : list (list nat) := match l with 
  nil => nil | l' :: l1 => app (0 :: nil) (rest_of_linear_list x0 (beginning_of_linear_list x0 l')) 
:: MAP_temp x0 y0 l1 end. 

 

The attributes of function MAP are the 

coordinates of the starting square of piece P and 

starting 15×15 table which belong to pieces of 

the type P: 
 

Definition MAP x0 y0 l := app ((0 :: nil) :: nil) (MAP_temp x0 y0 (rest_of_2_dim_list y0 
(beginning_of_2_dim_list y0 l))). 

 

6 Generating shortest trajectories 
 

In this section we show how in Coq all shortest 

trajectories for piece P from (x0,y0) to (xn,yn) can 

be iteratively generated, mostly in accordance 

with the steps given in [17, 196]. For example, in 

the position shown at Fig. 3 we have to find all 

the shortest trajectories for the white king from 

c7=(3,2) to his target square e1=(5,8). 
 

 #  #  # è # 
#  É  #  #  
 #  #  #  # 
#  #  #  #  
 #  #  #  # 

# #  #  #  #  
 #  #  #  # 
#  #  #  #  

 

Figure 3. By which shortest paths can white king from 

c7=(3,2) come to his target square e1=(5,8)? 
 

First we compute the shortest distance l0 

between the starting and end square by 

computing MAP for given starting square (x0,y0) 

                                                      
3 Now we can see that asymmetry is not only the reason for 
problem of creating lists for pawns. The situation is more 

complicated also because of the following: impossibility of 

standing of pawns in 1th and 8th row, because of move two squares 
backward only from 4th row (for white) or from 5th row (for black) 

and because of diagonally moves (retrograde capturing). 
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and given piece. In our example we have to 

compute MAP 3 2 (MAP_start k). The value in 

the resulting list which corresponds to the end 

square is the shortest distance l0 (in our example 

l0=6). Further, we compute MAP for end square 

(xn,yn) and same piece (in our example MAP 5 8 

(MAP_start k)). Now, we find the set of squares 

such as MAP x0 y0 (MAP_start k)+MAP xn yn 

(MAP_start k)=l0. To find this set which we 

denote by SUM, we define function Sum which is 

the sum of two 2-dimensional matrices: 
 

Fixpoint Sum_linear (M1 M2 : list nat) {struct M1} : list nat := match M1 with nil => nil | 
M :: M1' => match M2 with nil => nil | N :: M2' => nth 0 M1 0 + nth 0 M2 0 :: 
Sum_linear M1' M2' end end. 
 

Fixpoint Sum (M1 M2 : list (list nat)) {struct M1} : list (list nat) := match M1 with nil => 
nil | M :: M1' => match M2 with nil => nil | N :: M2' => Sum_linear M N :: Sum M1' M2' 
end end. 
 

After computing SUM we get: 
 

Sum (MAP 3 2 (MAP_start k)) (MAP 5 8 MAP_start k)) = 
(0 :: nil) :: 
(0 :: 9 :: 8 :: 8 :: 8 :: 9 :: 10 :: 11 :: 12 :: nil) :: 
(0 :: 8 :: 7 :: 6 :: 7 :: 8 :: 9 :: 10 :: 11 :: nil) :: 
(0 :: 7 :: 6 :: 6 :: 6 :: 7 :: 8 :: 9 :: 10 :: nil) :: 
(0 :: 6 :: 6 :: 6 :: 6 :: 6 :: 7 :: 8 :: 9 :: nil) :: 
(0 :: 7 :: 6 :: 6 :: 6 :: 6 :: 6 :: 7 :: 8 :: nil) :: 
(0 :: 8 :: 7 :: 6 :: 6 :: 6 :: 6 :: 6 :: 8 :: nil) :: 
(0 :: 9 :: 8 :: 7 :: 6 :: 6 :: 6 :: 7 :: 8 :: nil) :: 
(0 :: 10 :: 9 :: 8 :: 7 :: 6 :: 7 :: 8 :: 9 :: nil) :: nil 

 

All the first possible moves from the starting 

square are from the intersection of three sets: 

• SUM 

• ST1(x0,y0)={square x y | nth x (nth y (MAP 

x0 y0 (MAP_start k)) nil) 0=1} 

• STl
0
-l+1(xl

0
-l+1,yl

0
-l+1)={square x y | nth x (nth 

y (MAP xl0-l+1 yl0-l+1 (MAP_start k)) nil) 

0=l0-l+1} for l=l0 

For example, in the case shown in Fig. 3, b6, 

c6 and d6 are three end squares of all the 

possible first moves from c7 related to e1. These 

squares are now new starting squares for the next 

step of generation. The SUM is the same for all 

steps of the generation, while ST1 and STl
0
-l+1 

iterative changed in the way that ST1 in every 

next step as arguments takes coordinates of the 

new square, while in STl
0
-l+1 in every next step 

value l decreases by one. In such a way, after l0 

steps we get all possible shortest trajectories. 

To iteratively generate bundles of shortest 

trajectories for all pieces on the chessboard we 

create very complex auxiliary function GM, 

function GBT1 and main recursive function GBT: 
 

Fixpoint GM (i : nat) (j : nat) (n : nat) (P : piece) (C : color) (t0 : list chessboard) (xl yl : 
nat) {struct n} : list (list chessboard) := match n with S n' => match j with S j' => match 
i with S i' => if eq_nat (nth i (nth j (MAP (column (last t0 (square 0 0))) (row (last t0 
(square 0 0))) (MAP_start P)) nil) 0) 1 then if eq_nat (nth i (nth j (MAP (column (nth 0 
t0 (square 0 0))) (row (nth 0 t0 (square 0 0))) (MAP_start P)) nil) 0) (length t0) then if 
eq_nat (nth i (nth j ((Sum (MAP (column (nth 0 t0 (square 0 0))) (row (nth 0 t0 (square 
0 0))) (MAP_start P)) (MAP xl yl (MAP_start P)))) nil) 0) (nth xl (nth yl (MAP (column 
(nth 0 t0 (square 0 0))) (row (nth 0 t0 (square 0 0))) (MAP_start P)) nil) 0) then if 
eq_nat i xl then if eq_nat j yl then (app t0 (square i j :: nil)) :: nil else app (GM i' j n' P C 
t0 xl yl) ((app t0 (square i j :: nil)) :: nil) else app (GM i' j n' P C t0 xl yl) ((app t0 

(square i j :: nil)) :: nil) else GM i' j n' P C t0 xl yl else GM i' j n' P C t0 xl yl else GM i' j 
n' P C t0 xl yl | _ => GM 8 j' n' P C t0 xl yl end | _ => nil end | _ => nil end. 

 

Fixpoint GBT1 (P : piece) (C : color) (bt : list (list chessboard)) (xl yl : nat) {struct bt} := 
match bt with nil => nil | bt0 :: bt' => app (GM 8 8 128 P C bt0 xl yl) (GBT1 P C bt' xl 
yl) end. 

 

Fixpoint GBT (P : piece) (C : color) (bt : list (list chessboard)) (xl yl n : nat) {struct n} := 
match n with | O => bt | S n' => GBT1 P C (GBT P C bt xl yl n') xl yl end. 
 

Now we introduce axiom AGBT which will 

allow us to compute a bundle of shortest 

trajectories as result of the function GBT: 
 

Axiom AGBT : forall x0 y0 xl yl k : nat, forall P : piece, forall C : color, ON P C x0 y0 xl 
yl -> bt k P C x0 y0 xl yl (GBT P C ((square x0 y0 :: nil) :: nil) xl yl (nth xl (nth yl (MAP 
x0 y0 (MAP_start P)) nil) 0)). 

 

We can create the Ltac function LGBST 

which will from hypotheses in the initial state of 

system generate bundles of shortest trajectories 

for all pieces for which trajectories exists: 
 

Ltac LGBST := repeat match goal with [h : ON ?P ?C ?X0 ?Y0 ?XL ?YL |- _ ] => 
apply AGBT with (k:=1) in h;compute in h end. 
 

The resulting bundles will appear in context 

as lists of lists of squares. For example, bundle of 

shortest trajectories of the white king in Problem 

2 will look like this: 
 

bt 1 k W 2 7 5 8 ((square 2 7 :: square 3 6 :: square 4 7 :: square 5 8 :: nil) :: (square 2 
7 :: square 3 7 :: square 4 7 :: square 5 8 :: nil) :: (square 2 7 :: square 3 7 :: square 4 
8 :: square 5 8 :: nil) :: (square 2 7 :: square 3 8 :: square 4 7 :: square 5 8 :: nil) :: 
(square 2 7 :: square 3 8 :: square 4 8 :: square 5 8 :: nil) :: nil) 

 

To generate single trajectories from such 

bundles we need one new recursive function, one 

axiom and one Ltac function as follows: 
 

Fixpoint FGT (P : piece) (C : color) (bt : list (list chessboard)) {struct bt} : Prop := 
match bt with nil => True | bt0 :: bt' => At 1 P C bt0 /\ (FGT P C bt') end. 

 

Axiom AGT : forall k x0 y0 xl yl : nat, forall P : piece, forall C : color, forall bt_list : list 
(list chessboard), bt k P C x0 y0 xl yl bt_list -> FGT P C bt_list. 

 

Ltac LAGT := repeat match goal with [h : _ |- _ ] => apply AGT in h;compute in h end; 
repeat match goal with h : (_ /\ _) |- _ ] => case h;clear h;intros end; repeat match 
goal with [ h : True |- _ ] => clear h end. 

 

7 Obstacles 
 

In RCA a piece P can’t reach some square 

(blocked destination) if it is occupied by another 

element P’ and can’t cross the square (blocked 

beam) if it is occupied by another element P’ 

although P and P’ can belong to the same or the 

opponents side. Blocked destinations and 

blocked beams are called obstacles. In some 

position two kinds of obstacles can exist for 

pieces to reach a square: unmovable and 

movable. Unmovable obstacles are pieces which 

stay at their target square and can’t move 

anymore. Such obstacles have to be bypassed. 

In the context we get after applying the 

function LAGT, some trajectories can be of 

length 1. Those trajectories correspond to 

unmovable obstacles. We introduce type 

At_block, axiom A_block and Ltac function 

L_block_end_square by whose application we 
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can assign all trajectories of length 1 as 

unmovable obstacles: 
 

Parameter At_block : piece -> color -> list chessboard -> Prop. 
 

Axiom A_block : forall P : piece, forall C : color, forall x y : nat, At 1 P C (square x y :: 
nil) -> At_block P C (square x y :: nil). 

 

Ltac L_block_end_square := repeat match goal with | [h : At ?k ?P ?C (square ?X ?Y 
:: nil) |- _] => apply A_block in h end. 
 

Movable obstacles are pieces that can still 

move and other pieces can wait their move. In 

order to consider movable and unmovable 

obstacles we create a new important function: 

function obstacle whose result will indicate 

whether a piece obstructs another piece to reach 

the planned square. The term obstacle x y x1 y1 x2 

y2 will return the boolean value true if square 

(x,y) is the obstacle for the move of a piece from 

square (x1,y1) to square (x2,y2) and the value false 

otherwise. The function obstacle is based on a 

comparison of the coordinates of the considered 

squares which we will not show here. 

 

8 Goal 
 

To solve an SPG means to find the shortest 

sequence of alternating white and black moves 

leading from the initial to a given chess position. 

Generally, one move is given by the kind of 

piece, its color and the starting and end squares. 

For the purposes of this paper, in the declaration 

of a move we have to add the attribute of type 

nat which indicates the ordinal number of moves 

in SPG: 
 

Parameter move : nat -> piece -> color -> chessboard -> chessboard -> Prop. 
 

To establish the order of moves first we have 

to know whose move was the last. In problem 2 

it is known that the last move was the 16
th
 move 

and it was black’s move. Finally, now we can 

designate a goal which we have to prove 

according to problem 2 and this goal claims that 

there is a list of moves of length 16: 
 

Goal exists P : piece, exists x1 : nat, exists y1 : nat, exists x2 : nat, exists y2 : nat, 
move 16 P W (square x1 y1) (square x2 y2). 

 

9 Impossible trajectories 
 

All trajectories which contain a move with an 

unmovable obstacle have to be eliminated from 

consideration and we call these trajectories 

impossible trajectories. To find and eliminate 

impossible trajectories we create the recursive 

function F_s_on_t, axiom A_block_t and Ltac 

function L_Block_t. The term F_s_on_t x y P C l 

with the help of function obstacle gives as a 

result the boolean value of true if at the square 

(x,y) an unmovable obstacle for the trajectory l of 

the piece PC is to be found. Also, axiom 

A_block_t claims that if some unmovable 

obstacle is blocking a trajectory then this 

trajectory corresponds to the blocked trajectory 

at its starting square while Ltac function 

L_Block_t provides the elimination of the 

trajectory if the conditions are satisfied:
4
 

 

Fixpoint F_s_on_t (x y:nat) (P:piece) (C:color) (l:list chessboard) {struct l} : bool := 
match l with nil => false | l' :: l1 => match l1 with nil => false |_ => match obstacle x y 
(column l') (row l') (column (nth 0 l1 (square 0 0))) (row (nth 0 l1 (square 0 0))) with 
true => true | false => F_s_on_t x y P C l1 end end end. 

 

Axiom A_block_t : forall P : piece, forall C : color, forall t : list chessboard, forall k x y : 
nat, At k P C t -> F_s_on_t x y P C t = true -> At_block P C (nth 0 t (square 0 0) :: nil). 
 

Ltac L_Block_t := repeat match goal with [h1 : At 1 ?P1 ?C1 (square ?X1 ?Y1 :: ?t1), 
h2 : At_block ?P2 ?C2 (square ?X2 ?Y2 :: nil) |- _ ] => apply A_block_t with (P:=P1) 
(C:=C1) (t:=square X1 Y1 :: t1) (x:=X2) (y:=Y2) in h1; [compute in h1;try (match goal 
with [h3 : At 1 P1 C1 (square X1 Y1 :: ?t2) |- _ ] => clear h1 end) | tauto] end. 

 

10 Generating SPGs 
 

With the help of the shortest trajectories we can 

minimize the number of obvious moves in SPG. 

We can see that after the elimination of 

impossible trajectories from context of problem 

2, the sum of number of moves in trajectories is 

equal to 16 provided that we take into account 

one trajectory for every piece. This is in 

accordance with the assumption of problem 

which is given as “SPG in 8.0”. Now we have, in 

the correct order, to add up the moves from the 

remaining trajectories in context. If At 1 P C 

(square x1 y1 :: square x2 y2 :: l :: nil) is an 

trajectory of degree 1 for some piece PC with 

first move from (x1,y1) to (x2,y2) and with l as rest 

of the path, then, if we want to add hypothesis 

move i P C (square x1 y1) (square x2 y2) to the 

context, the considered trajectory has to be 

reduced for its first square. This can be formally 

introduced in our system as the following axiom: 
 

Axiom AGSPG : forall P : piece, forall C : color, forall x1 y1 x2 y2 i k : nat, forall l : list 
chessboard, At k P C (square x1 y1 :: square x2 y2 :: l) -> At k P C (square x2 y2 :: l) 
/\ move i P C (square x1 y1) (square x2 y2). 

 

We now need to generate as many hypotheses 

about the possible first moves as there are 

possible moves for a player whose turn it is. For 

now, the moves have to satisfy the conditions not 

to skip any piece and not to arrive at a square 

occupied by another piece. So, we need the 

                                                      
4 In addition, function L_Block_t does these steps: 1. If in context 

appears more than one trajectories with the same starting square 

and if one of them is blocked by a piece, then this trajectory can be 
cleared from the context (this step is iteratively repeated); 2. If after 

step 1 in context remain only one trajectory from a starting square 

and if this trajectory is blocked by an unmovable obstacle then this 
trajectory is designated as a blocked piece at its starting square; 3. 

Clearing double trajectories. 

Proceedings of the 21st Central European Conference on Information and Intelligent Systems 16
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following axiom by which those moves that do 

not meet these conditions can be eliminated: 
 

Axiom Move_Obstacle : forall P1 P2 : piece, forall C1 C2 : color, forall x y x1 y1 x2 y2 
i k : nat, forall l : list chessboard, move i P1 C1 (square x1 y1) (square x2 y2) -> At k 
P2 C2 (square x y :: l) /\ obstacle x y x1 y1 x2 y2 = true -> False. 

 

Each of the possible moves will be generated 

in a separate subgoal. From all of these subgoals 

we will generate new subgoals which will 

contain second moves which belong to the 

opponent. And so we continue to build a tree 

until we generate one subgoal which will contain 

the solution. For this purpose we create the 

following Ltac function LGSPG with the 

attributes col which indicates a players’ color 

whose turn it is and attribute i which indicates 

what the ordinal number of moves is:
5
 

 

Ltac LGSPG col I := assert (H_goal : exists P : piece, exists x1 : nat, exists y1 : nat, 
exists x2 : nat, exists y2 : nat, move 16 P W (square x1 y1) (square x2 y2)); 
[match goal with [h : At 1 ?P col (square ?X1 ?Y1 :: square ?X2 ?Y2 :: ?l) |- _ ] => 
apply AGSPG with (i:=I) in h;case h;clear h;intro h;pattern 1 in h;intro end | match 
goal with [h : At 1 ?P col (square ?X1 ?Y1 :: square ?X2 ?Y2 :: ?l) |- _ ] => pattern 1 in 
h end]; repeat match goal with [H_goal : exists P : piece, exists x1 : nat, exists y1 : 
nat, exists x2 : nat, exists y2 : nat, move 16 P W (square x1 y1) (square x2 y2) |- _ ] 
=> clear H_goal; assert (H_goal : exists P : piece, exists x1 : nat, exists y1 : nat, 
exists x2 : nat, exists y2 : nat, move 16 P W (square x1 y1) (square x2 y2)); [match 
goal with [h : At 1 ?P col (square ?X1 ?Y1 :: square ?X2 ?Y2 :: ?l) |- _ ] => apply 
AGSPG with (i:=I) in h;case h;clear h;intro h;pattern 1 in h;intro end | match goal with 
[h : At 1 ?P col (square ?X1 ?Y1 :: square ?X2 ?Y2 :: ?l) |- _ ] => pattern 1 in h end] 
end; try assumption; simpl in * |-; try match goal with [h1 : move ?I ?p1 ?c1 (square 
?X1 ?Y1) (square ?X2 ?Y2), h2 : At 1 ?p2 ?c2 (square ?X2 ?Y2 :: ?L2), h3 : At 1 ?p3 
?c3 (square ?X ?Y :: ?L) |- _ ] => apply Move_Obstacle with (P2:=p3) (C2:=c3) (x:=X) 
(y:=Y) (l:=L) in h1;[tauto | (split;[assumption | tauto])] end; match goal with [h1 : move I 
?P col (square ?x1 ?y1) (square ?x2 ?y2) |- _] => repeat match goal with [h2 : At 1 P 
col (square x1 y1 :: ?l2) |- _] => clear h2 end end. 
 

Whilst generating SPGs and reducing 

trajectories, new trajectories of length 1, which 

represent unmovable obstacles can appear in the 

context of new subgoals. Due to this, we have to 

try to use the function L_block_end_square 

again. After this it can occur that new blocked 

trajectories appear in context and they have to be 

eliminated from consideration by applying 

function L_Block_t. Now we have to find all the 

possible moves of the player whose turn it is and 

so on. In this way our system gives us a unique 

solution of the problem 2, and this solution is: 

1. Pb3 Pd6 2. Bb2 Nd7 3. Bd4 Nf6 4. Nc3 Qd7 5. 

Qb1 Kd8 6. Kd1 Ne8 7. Kc1 Nf6 8. Kb2 Rg8. 

 

11 Admissible trajectories 
 

Let us now consider problem showed in Fig. 4. 

By the problem it’s not given number of moves 

of SPG. Due to this we don’t know who made 

the last move. If we count all obvious white and 

black moves we get number 6 for both players. 
 

                                                      
5 Note that at the end of the function LGSPG we clear trajectories 

that are no longer valid because the same piece has already made a 

move on another trajectory. 

ä #â  # è á â å 
ë ê Á  ë ê ë ê 
 #  ë  #  # 
# æ ë  #  #  
 Ç Ê #  #  # 

# #  # Ê #  #  
Ê Ë à # Ê Ë Ê Ë 
Å Â #  É À Ã Ä 

 

Figure 4. Markus Ott, feenschach 1982, 16+16. SPG? 
 

So, we can conclude that the last move was 

made by black and that SPG is 12 moves long. If 

we try to solve the problem under these 

conditions and in the way described in previous 

sections, system finds a sequence of 9 moves as 

the longest sequence. A longer sequence doesn’t 

exist because in all cases a piece remains 

blocked. So, something with our assumptions is 

wrong. First, the black did not make the last 

move since it there would have to exist a SPG 

with at least 12 moves long. This means that 

white made the first move. From this, it arises 

that SPG is longer than 12 moves, at least 

because the number of moves must be odd. This 

means that the trajectory of at least one piece is 

longer than the shortest trajectory. 

Problem 5 has to be solved by constructing 

admissible trajectories of some degree k. First we 

have to try to solve problem 5 by generating at 

least one trajectory of degree 2. By definition, 

every admissible trajectory t of degree 2 can be 

generated by two shortest trajectories t1 and t2 

where the end square of t1 and starting square of 

t2 correspond to each other and this square is 

called dock. So, we have to find one dock for 

trajectory for which we have to find an 

admissible trajectory of degree 2. The first 

question that arises is for what piece do we have 

to generate an admissible trajectory. We have to 

generate bundles of admissible trajectories of 

degree 2 for the white bishop from (3,2) to (3,8) 

because this bishop has to avoid some movable 

or unmovable obstacles. It can be shown that it is 

very useful to find all docks first, that is in our 

example, all squares (xD,yD) for which MAP 3 2 

(MAP_start b)+MAP 3 8 (MAP_start b)=3. 

After that we have to generate for every dock 

(xD,yD) a bundle of shortest trajectories from 

(x0,y0) to (xD,yD) and a bundle of shortest 

trajectories from (xD,yD) to (xn,yn). Finally, we 

have to merge these two obtained bundles in a 

set of trajectories as combinations of every 

trajectory from the first bundle with every 

trajectory from the second bundle. Therefore, we 

define the recursive function which makes such 
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combinations and combines all trajectories into a 

single bundle: 
 

Fixpoint Add_bundles (b1 b2 : list (list chessboard)) (i j n : nat) {struct n} : list (list 
chessboard) := match n with S n' => match i with S i' => match j with S j' => (app (nth 
(i-1) b1 (square 0 0 :: nil)) (nth (j-1) b2 (square 0 0 :: nil))) :: (Add_bundles b1 b2 i j' n') 
| _ => Add_bundles b1 b2 i' (length b2) n' end | _ => nil end | _ => nil end. 
 

After generating bundles we can proceed to 

solve the problem in a manner analogous to the 

methods proposed in previous sections.
6
 

 

12 Conclusion 
 

In this paper we propose some systematic ideas 

for the establishment of a formal system for 

solving SPG's as special type of retrograde chess 

problems by using Coq - a formal proof 

management system, while in [10], [11] and [12] 

we presented a formal system for reasoning 

about other types of retrograde chess problems, 

also using Coq. The formal bases of the system 

described in above publications are very similar 

to the one in this paper. The systems differ in 

detail in accordance with their purposes, which 

are described in the introduction to this article. In 

this way we get a good foundation for the 

integration of these two systems into one that 

will be able to find the SPGs much more 

complex than those presented in this paper. 

There is a general deficit of scientific articles 

and developed computer systems covering this 

area. We also think that this approach can be 

extended to a wide range of complex practical 

problems. As can be seen from our work, built-in 

tactics provided with the standard distribution of 

Coq frequently results in long scripts. In addition 

to the general improvement of the system 

described in this article, it is possible to extend 

this work towards the development of new Coq’s 

tactics. 
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