
Modeling Epistemic Actions in Dynamic Epistemic

Logic using Coq

Marko Maliković

The Faculty of Humanities and Social Sciences

University of Rijeka

Omladinska 14, 51000 Rijeka, Croatia
marko.malikovic@ffri.hr

Mirko Čubrilo

Faculty of Organization and Informatics

University of Zagreb

Pavlinska 2, 42000 Varaždin, Croatia
mirko.cubrilo@foi.hr

Abstract. In this paper we reason about knowledge in

multiagent systems composed of intelligent agents by

using Coq - a formal proof management system. We

use the dynamic logic of common knowledge which is

an extension of common knowledge logic with a

dynamic operator that enables us to express the

epistemic consequences of epistemic actions of agents

in the form of agents’ knowledge about the state of the

system, knowledge about other agents’ knowledges,

higher-order agents’ knowledge and so on, up to

common knowledge. We define epistemic actions as a

special type in Coq, which allows us to add a general

form of interchange principle that connects

knowledge and time in systems with perfect recall. As

an example of multiagent systems we consider

knowledge games defined by van Ditmarsch. To the

best of our knowledge, there are no papers in which

such games are considered using a Coq proof

assistant. We use an axiomatization of such games as

given by van Ditmarsch but extended with some new

axioms required in our approach. Due to a deficit in

implementations grounded in theory which enable

players to compute their knowledge in any state of the

game, our approach provides a good basis for it.

Keywords. Multiagent systems, Dynamic logic of

common knowledge, Epistemic actions, Coq

1 Introduction

In this paper we reason about knowledge in

multiagent systems composed of intelligent

agents by using Coq - a formal proof

management system. Coq is available for

download at http://coq.inria.fr and his complete

theory and possibility of practical applications is

given in [6] and [29]. Coq implements a program

specification and mathematical higher-level

language called Gallina that is based on an

expressive formal language called the Calculus

of Inductive Constructions. It combines both

higher-order logic and a richly-typed functional

programming language. Through a vernacular

language [29, 39] which is the language of

commands of Gallina, Coq allows: to define

functions or predicates that can be evaluated

efficiently; to state mathematical theorems and

software specifications; to interactively develop

formal proofs of these theorems; to machine-

check these proofs; to extract certified programs

to languages like Objective Caml
1
, Haskell or

Scheme. As a proof development system, Coq

provides interactive proof methods and a tactic

language [9], [6, 61], [29, 213] for letting the

user define its own proof methods.

Due to the many different definitions of

multiagent systems that are present in the

literature, the following definition will suffice in

this paper: “Multiagent systems are those

systems that include multiple autonomous

entities with either diverging information or

diverging interests, or both.” [28, xvii]. Under

“entities” we mean intelligent agents that are

computer systems that have the following

characteristics: autonomy, social ability,

reactivity, pro-activeness, veracity, benevolence

and rationality.
2

In order to reason about agents’ knowledge in

a multiagent system, propositional classical logic

is insufficient. In propositional logic, a formula

can be true or false. But in the area of multiagent

systems in which multiple agents are in different

mutual interactions, it is necessary to introduce

1 Coq is written in the OCaml language [19], with a bit of C.

2 The meaning of these terms can be found in [43, 118].

Proceedings of the 21st Central European Conference on Information and Intelligent Systems 3

Varaždin, Croatia Faculty of Organization and Informatics September 22-24 2010

other modalities for the truth. Some of these

modalities are “necessarily true”, “known to be

true”, “believed to be true” and others. Therefore

propositional logic extends to the various types

of modal logic [41, 267], [40, 335], [28, 396],

[26]. Modal logic is interesting for us due to the

possibility of epistemic interpretation and the

interpretation of the modal operator as

knowledge operator. Such logic we call epistemic

logic [7], [11], [14], [32], [26], [42], [41, 278].

To study multiagent systems we use multimodal

propositional epistemic logic S5n [11, 59]. In

accordance with [11, 31], language of S5n logic

is the language of classical propositional logic

extended by modal operators for knowledge K1,

..., Kn, where index number indicates the agent.

Expression of Ki we read “agent i knows the

formula ”. Formally, the language of S5n logic

is defined as follows:

1. Each atomic proposition (atom) is an epistemic

formula
3

2. If  and  are epistemic formulae then ,

, ,  → , ↔  are epistemic

formulae

3. If  is epistemic formula then Ki is epistemic

formula for i = 1, ..., n

Axioms of S5n logic that apply to each of the

agents are the following:

1. Axioms of classical propositional logic

2. Distribution axiom: (Ki  Ki(→ )) → Ki

3. Knowledge axiom: Ki→ 

4. Positive introspection: Ki → KiKi

5. Negative introspection: Ki→ KiKi

The rules used to perform logical

consequences are the Modus ponens (MP) from

classical propositional logic and Knowledge

generalization rule (RN)
4
 for epistemic logic:

MP: “From  →  and  infer ”

RN: “From  infer Ki”

Multimodal epistemic logic can be extended

with three new operators that are related to the

knowledge in entire groups of agents. The first of

these operators is the operator E for shared

knowledge, which read “everybody knows”. If all

3 Atoms describe some state of affairs in the “actual world”.

4 RN acronym comes from the Rule of Necessitation in modal logic.

agents in the group of agents A know the

formula  we write EA.
5
 The second term is

distributed knowledge. Informally, distributed

knowledge is knowledge that has an omniscient

observer of a group of agents, with the ability to

know each agent’s knowledge, to “pool” the

collective knowledge of the group of agents, and

generally to deduce more than any one agent in

the group. The concept of distributed knowledge

will not be used in the paper, but it’s formal

description may be found in [11], [41] and [42].

The third operator is the operator of common

knowledge. The definition of common

knowledge in many references is given

informally alike as follows: “A fact  is a

common knowledge in group of agents if

everyone knows , everyone knows that

everyone knows , and so on”, and we write

CA. The formal definition of common

knowledge as a fixed point in accordance with

[11, 433] and [28, 406] is: CA if and only if

EA
k
for k=1,2,... where is EA

k
 = EAEA

k-1
. The

multimodal epistemic logic with a modal

operator which describes common knowledge

condition we call common knowledge logic.

2 Epistemic logic in Coq

Before we introduce epistemic logic by using

Coq we have to open a new section and to import

module List because in some points on our

system we use lists:
6

Section EaDel.
Require Import List.

We introduce agents as enumerated inductive

type Agents used to describe finite sets [6, 137].

In the example of the multiagent system which

we considered in Section 3, we have seven

agents, so our definition consists of seven

constructors. We define the whole group of

agents as list G:
7

5 Note that in the case when all agents in a group know some

formula that does not mean that any of these agents know anything
about the knowledge of other agents.

6 Coq version 8.0 or higher has to be run with the -impredicative-set

option because the definition of proposition which we introduce
below is based on a non predicative notion of Set [13, 31].

7 Most often the agents are in Coq defined as natural numbers. It

may seem more natural, because in that case we could say that the
definition of agents is more general. Also, the definition we have

introduced may seem somewhat “cumbersome”. But, in this paper,

the set of agents which makes the multiagent system is required to
be finite and for this reason, we do not want to use the infinite

structures to describe finite types.

Proceedings of the 21st Central European Conference on Information and Intelligent Systems 4

Varaždin, Croatia Faculty of Organization and Informatics September 22-24 2010

Inductive Agents : Set := A1 | A2 | A3 | A4 | A5 | A6 | A7.
Definition G := A1 :: A2 :: A3 :: A4 :: A5 :: A6 :: A7 :: nil.

As is given in [20], [21], [22] and [8],

epistemic logic cannot be represented directly in

Coq's logical framework. Reason is knowledge

generalization rule for epistemic logic. By using

deduction rules from propositional logic in

combination with knowledge generalization rule

we can infer that “if  holds then agent Ai knows

”. But, the knowledge generalization rule does

not mean this. What it means is that if  is true in

every world that an agent considers to be a

possible world, then the agent must know  at

every possible world.
8
 So, if we want to

introduce epistemic logic in Coq we need to

present predicate calculus in Hilbert-style as a

metatheory and epistemic logic as a theory. To

do so we first introduce a type proposition as an

inductive type with four constructors, namely the

implication Imp, the quantifier Forall and two

operators for modalities K and C for knowledge

and common knowledge in a group of agents

(then we abreviate connector Imp and quantifier

Forall with “==>”, “\-/”):

Inductive proposition : Set :=
 | Imp : proposition -> proposition -> proposition
 | Forall : forall A : Set, (A -> proposition) -> proposition
 | K : Agents -> proposition -> proposition
 | C : list Agents -> proposition -> proposition.

Infix "==>" := Imp (right associativity, at level 85).
Notation "\-/ p" := (Forall _ p) (at level 70, right associativity).

To define quantifier Exists as well as the

connectors AND, OR, TRUE, FALSE and NOT

we use the above defined connector ==> and the

quantifier \-/ (we abbreviate connectors AND and

OR with “&” and “V”):

Definition Exist (A : Set) (P : A -> proposition) := \-/ (fun p : proposition => \-
/ (fun a : A => P a ==> p) ==> p).
Definition FALSE := \-/ (fun p : proposition => p).
Definition TRUE := Exist proposition (fun p : proposition => p).
Definition NOT (p : proposition) := p ==> FALSE.
Definition AND (p q : proposition) := \-/ (fun r : proposition => (p ==> q ==>
r) ==> r).
Definition OR (p q : proposition) := \-/ (fun r : proposition => (p ==> r) ==>
(q ==> r) ==> r).

Infix "&" := AND (left associativity, at level 50).
Infix "V" := OR (left associativity, at level 50).

Common knowledge logic requires

introducing a modality E for shared knowledge

and we have done it recursively by using the

Fixpoint definition [12, 27], [13, 42], [29, 115],

[18, 43]:

8 More about concept of possible worlds can be found for example

in [11], [41, 270], [7, 15], [43, 126], [28, 398] or [42, 14].

Fixpoint E (G : list Agents) (p : proposition) {struct G} : proposition := match
G with

| nil => TRUE
| i :: G' => K i p & E G' p

end.

Finally, we can introduce the predicate

theorem in the set proposition, which tells which

propositions are theorems. What we need are

three Hilbert-style axioms of propositional logic,

Modus Ponens, K-axiom, T-axiom, Knowledge

generalization rule as well as one axiom and one

rule for common knowledge. We abreviate

theorem with “|-”:

Inductive theorem : proposition -> Prop :=
| Hilbert_K : forall p q : proposition, theorem (p ==> q ==> p)
| Hilbert_S : forall p q r : proposition, theorem ((p ==> q ==> r) ==> (p ==>
q) ==> p ==> r)
| Classic_NOTNOT : forall p : proposition, theorem (NOT (NOT p ==> p))
| MP : forall p q : proposition, theorem (p ==> q) -> theorem p -> theorem q
| K_K : forall (a : Agents) (p q : proposition), theorem (K a p ==> K a (p ==>
q) ==> K a q)
| K_T : forall (a : Agents) (p : proposition), theorem (K a p ==> p)
| K_rule : forall (a : Agents) (p : proposition), theorem p -> theorem (K a p)
| Fixpoint_C : forall (G : list Agents) (p : proposition), theorem (C G p ==> p
& E G (C G p))
| Least_Fixpoint_C : forall (G : list Agents) (p q : proposition), theorem (q
==> p & E G q) -> theorem (q ==> C G p).

Notation "|- p" := (theorem p) (at level 80).

3 Knowledge games in Coq

The multiagent systems that we consider in this

paper are knowledge games as “card games

where a number of cards are distributed over a

number of players, and where moves consist of

information exchange” [35, vii]. In other words,

knowledge games are card games where players

have limited information about other players'

cards and gradually gain information about the

states by observing the actions of other players.
9

Under state we understand the distribution of

cards among players (and maybe in piles on the

table), as well as a player’s knowledge acquired

during the play as well as knowledges about

distribution of cards, knowledges about

knowledges of other players, higher-order

knowledges, ..., right to common knowledges.
10

An example of knowledge games is the game

of Cluedo which was researched from the aspect

9 In this paper we use the terms "agent" and "player" depending on

the context, although under these terms they mean the same thing:

members of a multiagent system.

10 If needed, we can introduce special players with no knowledge

and no possibility of taking action. Thus, depending on the game,

player may be table as a player who possesses a subset of cards [25,
242], [24, 19]. For the other players these cards can be known,

partly known or completely unknown. In such a way, without loss

of generality, we can assume that all the cards are dealt.

Proceedings of the 21st Central European Conference on Information and Intelligent Systems 5

Varaždin, Croatia Faculty of Organization and Informatics September 22-24 2010

of reasoning about knowledge in several

publications using different formalisms. In [4]

and [5], it was investigated from the situation

calculus point of view, in [10] using temporal

epistemic logic, in [24] and [25] using epistemic

logic S5n with a simply introduced special

temporal parameter and in [35], [36], [38], [39]

using dynamic epistemic logic. This paper is the

first attempt to consider the game of Cluedo

using a Coq proof assistant.

In the game Cluedo the players gather

information about a murder. The players must

determine who has done it, where and with what

weapon. The suspects, the possible vehicle and

the location of the crime are displayed on the

cards. There are nine possible rooms in the

mansion, six suspects and nine possible murder

weapons. The deck of cards contains one card for

each of the rooms, suspects and weapons.
11

 So,

we have twenty four cards. One card

representing a room, one a suspect and one a

weapon is separated from the deck of cards and

put on the table upside down so that none of the

players see which cards they are. This triplet of

cards represents a real room, murderer and a

weapon. The remaining cards are mixed together

and are equally dealt out amongst the players.

There are seven players so every player gets

three cards. The players make suggestions about

which crime was committed in what room, by

what suspect and with what weapon. If a player

left of the player who has voiced his suggestion

has one of the suggested cards, then he shows a

card to the player who has given the suggestion

in a way that the other players don’t know which

card it is. He privately shows always only one

card irrespective of whether he has one, two or

all three cards. If the player who is left of the

player who gives the suggestion does not have in

his hand any of the suggested cards, then he

announces this and the following player does the

same: privately shows one of the suggested cards

or announces that he does not have any. This

continues until a player does show a card

privately or the round is not finished, and none of

the players show any cards. In the following

round the player who is to the right of the player

who gave the suggestion gives a new suggestion

and so on. The players apply their knowledge

11 There is more version of Cluedo game. In this paper we ignore

some aspects and some rules of the game as we are interested in

representing and reasoning about knowledge. The original and
complete equipment and rules of the game Cluedo is shown in

Hasbro web site: http://www.hasbro.com/.

about the cards and all other knowledge which

they get about the knowledge of the other players

in order to discover the room, the murderer and

the weapon. When a player solves the mystery he

proclaims it and that player is the winner. The

player who offers the suggestion is not allowed

to suggest any of the cards from the triplet which

they hold in their hand. Also, the player may not

suggest the same cards twice in one game,

because by doing so they stop the other players

getting any new information. A player can repeat

a suggestion only if he deduces which cards are

on the table.

The cards in the deck we introduce in Coq as

enumerated inductive type Cards:

Inductive Cards : Set := Hall | Dining_Room | Kitchen | Patio | Observatory
| Theater | Living_Room | Spa | Guest_House | Scarlet | Green | Mustard |
White | Plum | Peacock | Knife | Candlestick | Pistol | Poison | Trophy |
Rope | Bat | Axe | Dumbbell.

The fact that an agent holds in his hands some

card is an atom as is the fact that cards

representing the murder are on the table. To

introduce these atoms, first we have to declare

two predicate types [6, 74]. First is type Hold

where term Hold C A means that agent A holds

card C in his hand. On the other hand, for the

cards which represent murder we declare as

predicate type Murder where term Murder C

means that card C is one of the card on table:

Parameter Hold : Cards -> Agents -> proposition.
Parameter Murder : Cards -> proposition.

Now we can set up atoms as instances of

predicates Hold and Murder. Without losing

generality we can assume that the crime was

committed in Hall, by Kasandra Scarlet and with

Knife:

Hypothesis M_R : |- Murder Hall.
Hypothesis M_S : |- Murder Scarlet.
Hypothesis M_W : |- Murder Knife.

The rest of cards are distributed among the

players and we can assume distribution by

setting up atoms in this way:
12

Hypothesis H_A1_1 : |- Hold Dining_Room A1.
Hypothesis H_A1_2 : |- Hold Green A1.
Hypothesis H_A1_3 : |- Hold Candlestick A1.
...

4 Axioms of knowledge games

We axiomatize the initial state of the Cluedo card

game in accordance with axiomatisation of card

12 Here we present only the atoms that are related to the

three cards that holding a player A1.

Proceedings of the 21st Central European Conference on Information and Intelligent Systems 6

Varaždin, Croatia Faculty of Organization and Informatics September 22-24 2010

games given in [34] and [35]. In the afore-

mentioned publications it has been proved that

the given axiomatization describes a model that

in a technical sense all other models are bisimilar

to. Axiomatization is given for the initial state of

card games for any number of players and cards

and with these properties: players see their own

(and only their own) cards, all cards are different,

each player has a known number of cards and all

players know which cards are in the game. These

properties match the properties of the game

Cluedo with one exception: in the game Cluedo

some cards are on the table. As we explained in

footnote 10 in Section 3, it is possible to

introduce to the table a special player with no

knowledge and no possibility of taking action.

This is, for example, done in [27], [35] and [37].

But in this paper based on the theory of types it

is complicated to introduce restrictions to the

table as one of the constructor of type Agents in

accordance with its properties. This particularly

applies to the axiomatization of epistemic logic

introduced in Section 1. It seems easier to

upgrade the axiomatization of card games and

this is what we do. We introduce axiomatization

in our system as follows (axioms that are added

to the axiomatic system from [34] and [35] are

marked with an asterisk):

Players see their own cards: Axiom See : forall (A : Agents) (C : Cards),
|- Hold C A -> |- K A (Hold C A).

Players only see their own cards (don’t see cards of others): Axiom
DontSee : forall (A : Agents) (C : Cards), |- NOT (Hold C A) -> |- K A (NOT
(Hold C A)).

All cards are different 1 (one card can be held by at most one

player): Axiom AtMost_1 : forall (Ai Aj : Agents) (C : Cards), Ai <> Aj -> |-
NOT (Hold C Ai & Hold C Aj).

All cards are different 2 (one card can be held by one player or can

be on the table)*: Axiom AtMost_2 : forall (A : Agents) (C : Cards), |-
NOT (Hold C A & Murder C).

Each player has (at least) three cards: Axiom AtLeast_1 : forall A :
Agents, exists C1 : Cards, exists C2 : Cards, exists C3 : Cards, C1 <> C2
/\ C1 <> C3 -> |- Hold C1 A & Hold C2 A & Hold C3 A.

On table are (at least) three cards*: Axiom AtLeast_2 : exists C1 :
Cards, exists C2 : Cards, exists C3 : Cards, |- Murder C1 & Murder C2 &
Murder C3.

Players don’t know the cards of others: Axiom DontKnowThat_1 :
forall (Ai Aj : Agents) (C : Cards), Ai <> Aj -> |- NOT (K Ai (Hold C Aj)).

Players don’t know the cards on table*: Axiom DontKnowThat_2 :
forall (A : Agents) (C : Cards), |- NOT (K A (Murder C)).

Players can imagine others to hold other cards: Axiom
DontKnowNot_1 : forall (Ai Aj : Agents) (C : Cards), Ai <> Aj -> |- NOT
(Hold C Ai) -> |- NOT (K Ai (NOT (Hold C Aj))).

Players can imagine cards on table*: Axiom DontKnowNot_2 : forall (A
: Agents) (C : Cards), |- NOT (Hold C A) -> |- NOT (K A (NOT (Murder C))).

5 Dynamic epistemic logic and

epistemic actions in Coq

Unlike epistemic logic, which is about the

knowledge of the world, dynamic logic is about

the changes of the world that is about actions

which change the world. In this paper under

“actions” we mean epistemic actions which are

performed by agents in order to change their

information states [3, 2].
13

 Moreover, in [17,

440] are defined purely epistemic actions as

actions which not produce change in the physical

world, but only in the agent’s mental state.

Dynamic logic in combination with epistemic

logic can express epistemic consequences of

epistemic actions in the form of new agent’s

knowledges about the world as well as about

each other’s knowledges. In order to get dynamic

logic of common knowledge, in [39, 72] is

common knowledge logic extended with a new

operator “[]” where [] is a new modality and

where formula [] stands for “after every

announcement of , it holds that ”. So,

“announcement of ” is taken as an epistemic

action. In this paper we also introduce operator

"[]" but the term [a] refers to “after every

execution of action a, it holds that ”. Generally,

in dynamic logic there are as many modalities as

there are actions.

As stated in [15] and [16], if we consider

systems with perfect recall or no learning then

knowledge and time do interact.
14

 One of the

axioms which connect knowledge and time

informally reads as “If a proposition is known to

be always true, then it is always known to be

true.”. This axiom is known as the interchange

principle [30, 231], [31, 167]) or as KT1 axiom

from linear temporal epistemic logic [11, 308],

[15, 681], [33, 104]). In our context we can

formally write this axiom as KA[a] → [a]KA.
15

In [23], the only existing paper in which

dynamic logic of common knowledge using Coq

13 Unlike in some other publications where is using term “event”

(for example in [1] and [2]) we use the term “action”.

14 Informally, a perfect recall system assumes that an agent
remembers the complete history of state transitions in the past.

Formal definition of perfect recall can be found in [15] where is

also explained why no learning is the dual notion to perfect recall.

15 There are other axioms that connect knowledge and time, but as

pointed out in [31], epistemic agents may have different powers of

observation and reasoning. According to the same reference,
“General dynamic-epistemic logic has no significant interaction

axioms for knowledge and action. If such axioms hold, this is due

to special features of agents.”

Proceedings of the 21st Central European Conference on Information and Intelligent Systems 7

Varaždin, Croatia Faculty of Organization and Informatics September 22-24 2010

is formalised and the first paper that combines

the two aforementioned logics using proof

assistant, the notion of epistemic actions is not

sufficiently elaborated so that it could be used in

more general cases of multiagent systems. Only

two specifically epistemic actions are considered

in relation to a concrete problem (muddy

children puzzle) in which in fact only two

epistemic actions can happen. They are listed

with the assumption that it is quite clear how

these actions actually produce new knowledges

of agents. Therefore, if we follow this, for each

of the possible actions in the system it is

necessary to introduce a special instance of the

interchange principle as in [23]. Furthermore,

from Coq’s point of view, the actions are not in

any way “grouped” with the aim to define the

type of “actions” where each action belonged. In

contrast, in this paper we introduce a special type

(from the perspective of Coq) which will belong

to all epistemic actions which may occur in some

multiagent system, and only to them. But

epistemic actions in different multiagent systems

in general can be very different with respect to

the rules of actions established in that system.

Because of this, it is necessary to focus on the

multiagent system where we know what these

rules are. So, in this paper we focus on the game

Cluedo described in Section 3. After the agents

look at their cards, in the game “Cluedo” three

epistemic actions may be conducted:

1. An agent publicly makes a suggestion that

some three cards represent the murder;

2. An agent privately shows one of the suggested

cards to an another agent;

3. An agent publicly announces that he does not

have any of the three suggested cards.

At first glance it seems that among these

actions there is too great a difference in terms of

their structure and the changes they cause in the

system. In fact, all of these actions can be

informally reduced to the following structure:

information is given → knowledge of agents is

upgraded and some common knowledge is built

into the system. Furthermore, the given

information has the following attributes: agent Ai

who gave the information, agent Aj who is

informed, publicity of the information PI and

information content IC. Publicity of the

information means that the information is given

as public or private and we introduce two

possible values: Pri and Pub. Any public

information automatically becomes common

knowledge, and information that is given to an

agent in private builds on its knowledge of its

contents.
16

 Since actions 1 and 3 can be divided

into three independent actions, the information

content of these actions is “an agent has not

some card” while information content of action 2

is “an agent has some card”. Generally, the

information content is always related to have/do

not have some card.

In Coq, first we have to introduce the type of

publicity as enumerated inductive type PI:

Inductive PI : Set := Pri | Pub.

Based on the informal description given

above, all of the epistemic actions in game

Cluedo can be included in a unique record type

[6, 145] Action with four functions in accordance

with the attributes given above. In addition, to

indicate that an action is really executed in some

state of system, we introduce a predicate ex_act:

Record Action : Set := act {Ai : Agents; Aj : Agents; pi : PI; c : Cards}.
Parameter ex_act : Action -> proposition.

Now we can consider all the actions that

agents can execute in the game of Cluedo as a

unique type Action which can have different

instances depending on instances of their

attributes. Also, now we have all prerequisites to

declare predicate aft_ex_act which instance

aft_ex_act a p stands for: “after every execution

of action a, it holds that p” that is for “[a] p”:
17

Parameter aft_ex_act : Action -> proposition -> proposition.

Now we can add a general form of

interchange principle as a new axiom as follows:

Axiom IP : forall (A : Agents) (a : Action) (p : proposition), |- (K A
(aft_ex_act a p) ==> aft_ex_act a (K A p)).

We introduce axioms which describe how

epistemic actions, depending on their attributes,

produce new knowledge in the system:

If Ai informs (in public) Aj that he haven’t card c then it become a

theorem and it become common knowledge:

Axiom Not_Hold_Pub :
forall (Ai Aj : Agents) (c : Cards), |- ex_act (act Ai Aj Pub c) -> |- (NOT
(Hold c Ai) ==> (C G (NOT (Hold c Ai))).

If Ai informs (in private) Aj that he have card c then Aj knows that:

Axiom Hold_Pri :
forall (Ai Aj : Agents) (c : Cards), |- ex_act (act Ai Aj Pri c) -> |- (K Aj (Hold
c Ai)).

16 It is clear that any information given to the private also builds
system with some common knowledge. For example, if agent Ai

privately show one card to agent Aj, then become common

knowledge that Aj know that Ai have “some” card.

17 In contrast to [23] where each action is separately declared as

type proposition -> proposition.

Proceedings of the 21st Central European Conference on Information and Intelligent Systems 8

Varaždin, Croatia Faculty of Organization and Informatics September 22-24 2010

6 Goal and implementation

The game ends when at least one of the players

knows the room where the murder took place,

the murderer and the weapon. The end of the

game will be in Coq presented as a Goal that

must be proved in order for the game to finish:

Goal exists A : Agents, |-K A (Murder Hall) & K A (Murder Scarlet) & K A
(Murder Knife).

Once the goal is set, it is possible, with

regards to the actions carried out during the

game, using the appropriate axioms, to calculate

what knowledge players have after specific

actions. For example, let us assume that the first

actions executed in the game are that A1 makes

the suggestion that Kitchen, Plum and Pistol

represent the murder cards and that A2 privately

shows Kitchen card to A1. If we code these

actions in a sequence of instances of predicates,

then we can apply the appropriate sequence of

Coq tactics, for example:

repeat match goal with [h : |- Hold ?C ?A |- _] => apply See in h end.
assert (a : |- ex_act (act A1 A2 Pub Kitchen) /\ |- ex_act (act A1 A2 Pub
Plum) /\ |- ex_act (act A1 A2 Pub Pistol)). Focus 2.
destruct a as [a1 a2]. destruct a2 as [a2 a3].
assert (a : |- ex_act (act A2 A1 Pri Kitchen)).Focus 2.
repeat match goal with [h : |- ex_act (act ?Ai ?Aj ?pi ?C) |- _] =>
(apply Not_Hold_Pub in h || apply Hold_Pri in h) end.
repeat match goal with [h : |- (?P ==> ?Q) |- exists A : Agents, |-K A
(Murder Hall) & K A (Murder Scarlet) & K A (Murder Knife)] =>
apply MP with (q:=Q) in h end. Focus 1.

By applying such tactics we get knowledge of

players and common knowledge among the

whole group of players after the first two actions.

Then move on to the next action and so on. After

each action, it is necessary to check whether it is

possible to prove the goal and whether some of

the players know which cards are on the table.

7 Conclusion

In this article we have shown how epistemic

actions can be modelled in dynamic common

knowledge logic using Coq - a formal proof

management system. All this is in order to

express the epistemic consequences of epistemic

actions of agents in the form of agents’

knowledge about the state of the system and

higher-order agents’ knowledge, up to common

knowledge. We show how our approach enables

us to reason about knowledge games as an

example of knowledge-based multiagent system.

The most interesting question for further

research is: whether this approach can serve for

reasoning about optimal strategies for players in

multiagent competitive games, whether this

approach can be extended in order to incorporate

distributed knowledge among the agents and for

more efficient dealing with common knowledge.

References

[1] Aumann, R. J.: Interactive epistemology I:

Knowledge, International Journal of Game

Theory 28, 1999, pp. 263–300.

[2] Aumann, R. J.: Interactive epistemology II:

Probability, International Journal of Game

Theory 28, 1999, pp. 301–314.

[3] Baltag, A.: A logic of epistemic actions, (in

electronic) Proceedings of the ESSLLI 1999

workshop on Foundations and Applications of

Collective Agent-Based Systems, 1999.

[4] Bart, B.: Representations of and strategies for

static information, noncooperative games with

imperfect information, M.S. thesis, Simon Fraser

University, Vancouver, Canada, 2000.

[5] Bart, B., Delgrande, J., Schulte, O.: Knowledge

and planning in an action-based multi-agent

framework: A case study, Advances in Artificial

Intelligence, Springer Lecture Notes in AI 2056,

2001, pp. 121-130.

[6] Bertot, Y., Castéran, P.: Interactive Theorem

Proving and Program Development, Springer-

Verlag, Berlin and Heidelberg, Germany, 2004.

[7] Davis, E., Morgenstern, L.: Epistemic Logic and

its Applications: Tutorial Notes, International

Joint Conferences on Artificial Intelligence,

1993.

[8] de Wind, P.: Modal logic in COQ, M.S. thesis,

Vrije Universiteit Amsterdam, 2002.

[9] Delahaye, D.: A Tactic Language for the System

Coq, Proceedings of Logic for Programming and

Automated Reasoning, 2000, pp. 85-95.

[10] Dixon, C.: Specifying and Verifying the Game

Cluedo using Temporal Logics of Knowledge,

Technical Report number ULCS-04-003,

University of Liverpool, 2004.

[11] Fagin, R., Halpern, J. Y., Moses, Y., Vardi, M.

Y.: Reasoning about Knowledge, MIT Press,

Cambridge, Massachusetts, 2003.

[12] Giménez, E.: A tutorial on recursive types in

coq, Technical report, The French national

institute for research in computer science and

control (INRIA), 1998.

[13] Gimenez, E., Castéran, P.: A Tutorial on [Co-

]Inductive Types in Coq, available at

http://www.labri.fr/perso/casteran/RecTutorial.p

df, January, 31
st
 2007.

[14] Halpern, J. Y.: Reasoning About Knowledge: A

Survey, Handbook of Logic in Artificial

Intelligence and Logic Programming, Volume 4:

Epistemic and Temporal Reasoning, 1995.

Proceedings of the 21st Central European Conference on Information and Intelligent Systems 9

Varaždin, Croatia Faculty of Organization and Informatics September 22-24 2010

[15] Halpern, J. Y., van der Meyden, R., Vardi, M.

Y.: Complete Axiomatizations for Reasoning

about Knowledge and Time, SIAM Journal on

Computing 33:2, 2004, pp. 674-703.

[16] Halpern, J. Y., Vardi, M. Y.: The Complexity of

Reasoning about Knowledge and Time:

Synchronous Systems, Technical Report RJ

6097, IBM, 1988.

[17] Herzig, A.: Review of “Dynamic Epistemic

Logic” by Hans van Ditmarsch, Wiebe van der

Hoek, and Barteld Kooi (Springer Verlag,

Synthese Library No. 337, 2007), Studia Logica

89, 2008, pp. 439-443.

[18] Huet, G., Kahn, G., Paulin-Mohring, C.: The

Coq Proof Assistant - A Tutorial, available at

http://coq.inria.fr/V8.2pl1/files/Tutorial.pdf,

February, 27
st
 2009.

[19] Leroy, X., Doligez, D., Garrigue, J., R´emy, D.,

Vouillon, J.: The Objective Caml system,

available at http://caml.inria.fr/distrib/ocaml-

3.11/ocaml-3.11-refman.pdf, April, 15
st
 2010.

[20] Lescanne, P.: Epistemic logic in higher order

logic: an experiment with COQ, Technical

Report RR2001-12, LIP-ENS de Lyon, 2001.

[21] Lescanne, P.: Mechanizing common knowledge

logic using Coq, Annals of Mathematics and

Artificial Intelligence, Volume 48, Numbers 1-2,

2006, pp. 15-43.

[22] Lescanne, P.: Mechanizing epistemic logic with

Coq, Research Report RR2004-27, LIP-ENS de

Lyon, 2004.

[23] Lescanne, P., Puisségur, J.: Dynamic Logic of

Common Knowledge in a Proof Assistant,

Research Report RR2007-50, LIP-ENS de Lyon,

2007.

[24] Maliković, M.: Reasoning about multiagent

systems by using OTTER system for automatic

theorem proving on the example of card games,

M.S. thesis, Faculty of Organization and

Informatics, Varaždin, Croatia, 2006.

[25] Maliković, M.: Reasoning about the Game

“Clue” by using OTTER, Journal of Information

and Organizational Sciences, Vol. 30, No. 2,

2006, pp. 241-249.

[26] Meyer, J.-J.: Modal Logics for Intelligent

Agents, available at

http://www.cs.uu.nl/docs/vakken/iag/Handbook.

modal.pdf, January, 7
th

 2006.

[27] Neufeld, E.: Clue as a Testbed for Automated

Theorem Proving, Proceedings of the 15th

Conference of the Canadian Society for

Computational Studies of Intelligence on

Advances in Artificial Intelligence, 2002, pp. 69-

78.

[28] Shoham, Y., Leyton-Brown, K.: Multiagent

Systems: Algorithmic, Game-Theoretic, and

Logical Foundations, Cambridge University

Press, 2008.

[29] The Coq Development Team: The Coq Proof

Assistant Reference Manual Version 8.2,

available at http://coq.inria.fr/refman/, February,

27
st
 2009.

[30] van Benthem, J.: Games in Dynamic Epistemic

Logic, Bulletin of Economic Research, 53:4,

2001, pp. 219-248.

[31] van Benthem, J., Fenrong Liu.: Diversity of

Logical Agents in Games, Philosophia Scientiæ,

8 (2), 2004, pp. 165–181.

[32] van der Hoek, W., Meyer, J.-J.: A complete

epistemic logic for multiple agents: combining

distributed and common knowledge. In P.

Mongin, M. Bacharach, L. Gerard-Valet, H. Shin

(eds.), Epistemic Logic and the Theory of Games

and Decisions, pp. 35-68. Kluwer, Dordrecht,

1997.

[33] van der Meyden, R., Wong, K.: Complete

Axiomatizations for Reasoning about Knowledge

and Branching Time, Studia Logica, Volume 75,

Number 1, 2003, pp. 93-123.

[34] van Ditmarsch, H. P.: Axioms for card games,

available at http://dare.uva.nl/document/1238,

February, 21
st
 2006.

[35] van Ditmarsch, H. P.: Knowledge games, Ph. D.

Thesis, Grafimedia Groningen University, 2000

(ILLC Dissertation Series 2000-06).

[36] van Ditmarsch, H. P.: The description of game

actions in Cluedo, Game Theory and

Applications, Volume VIII, 2002, pp. 1-28.

[37] van Ditmarsch, H. P.: The logic of knowledge

games: showing a card, Proceedings of the

Netherlands/Belgium Conference on Artificial

Intelligence (BNAIC 99), 1999, pp. 35-42.

[38] van Ditmarsch, H. P., Kooi, B. P.: The Secret of

My Success, Synthese, 2006.

[39] van Ditmarsch, H. P., van der Hoek, W., Kooi,

B.: Dynamic Epistemic Logic, Synthese Library

volume 337, Springer, 2007.

[40] Weiss, G. (editor).: Multiagent Systems: A

Modern Approach to Distributed Artificial

Intelligence, MIT Press, Cambridge, 1999.

[41] Wooldridge, M.: An Introduction to Multiagent

Systems, John Wiley & Sons, 2002.

[42] Wooldridge, M.: The logical modelling of

computational multi-agent systems, Ph. D.

Thesis, University of Manchester, 1992.

[43] Wooldridge, M., Jennings, N. R.: Intelligent

Agents: Theory and Practice, Knowledge

Engineering Review, Vol. 10, 1995, pp. 115-152.

Proceedings of the 21st Central European Conference on Information and Intelligent Systems 10

Varaždin, Croatia Faculty of Organization and Informatics September 22-24 2010

