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Abstract. In this paper we reason about knowledge in 

multiagent systems composed of intelligent agents by 

using Coq - a formal proof management system. We 

use the dynamic logic of common knowledge which is 

an extension of common knowledge logic with a 

dynamic operator that enables us to express the 

epistemic consequences of epistemic actions of agents 

in the form of agents’ knowledge about the state of the 

system, knowledge about other agents’ knowledges, 

higher-order agents’ knowledge and so on, up to 

common knowledge. We define epistemic actions as a 

special type in Coq, which allows us to add a general 

form of interchange principle that connects 

knowledge and time in systems with perfect recall. As 

an example of multiagent systems we consider 

knowledge games defined by van Ditmarsch. To the 

best of our knowledge, there are no papers in which 

such games are considered using a Coq proof 

assistant. We use an axiomatization of such games as 

given by van Ditmarsch but extended with some new 

axioms required in our approach. Due to a deficit in 

implementations grounded in theory which enable 

players to compute their knowledge in any state of the 

game, our approach provides a good basis for it. 

 

Keywords. Multiagent systems, Dynamic logic of 

common knowledge, Epistemic actions, Coq 

 

1 Introduction 
 

In this paper we reason about knowledge in 

multiagent systems composed of intelligent 

agents by using Coq - a formal proof 

management system. Coq is available for 

download at http://coq.inria.fr and his complete 

theory and possibility of practical applications is 

given in [6] and [29]. Coq implements a program 

specification and mathematical higher-level 

language called Gallina that is based on an 

expressive formal language called the Calculus 

of Inductive Constructions. It combines both 

higher-order logic and a richly-typed functional 

programming language. Through a vernacular 

language [29, 39] which is the language of 

commands of Gallina, Coq allows: to define 

functions or predicates that can be evaluated 

efficiently; to state mathematical theorems and 

software specifications; to interactively develop 

formal proofs of these theorems; to machine-

check these proofs; to extract certified programs 

to languages like Objective Caml
1
, Haskell or 

Scheme. As a proof development system, Coq 

provides interactive proof methods and a tactic 

language [9], [6, 61], [29, 213] for letting the 

user define its own proof methods. 

Due to the many different definitions of 

multiagent systems that are present in the 

literature, the following definition will suffice in 

this paper: “Multiagent systems are those 

systems that include multiple autonomous 

entities with either diverging information or 

diverging interests, or both.” [28, xvii]. Under 

“entities” we mean intelligent agents that are 

computer systems that have the following 

characteristics: autonomy, social ability, 

reactivity, pro-activeness, veracity, benevolence 

and rationality.
2
 

In order to reason about agents’ knowledge in 

a multiagent system, propositional classical logic 

is insufficient. In propositional logic, a formula 

can be true or false. But in the area of multiagent 

systems in which multiple agents are in different 

mutual interactions, it is necessary to introduce 

                                                      
1 Coq is written in the OCaml language [19], with a bit of C. 

2 The meaning of these terms can be found in [43, 118]. 
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other modalities for the truth. Some of these 

modalities are “necessarily true”, “known to be 

true”, “believed to be true” and others. Therefore 

propositional logic extends to the various types 

of modal logic [41, 267], [40, 335], [28, 396], 

[26]. Modal logic is interesting for us due to the 

possibility of epistemic interpretation and the 

interpretation of the modal operator as 

knowledge operator. Such logic we call epistemic 

logic [7], [11], [14], [32], [26], [42], [41, 278]. 

To study multiagent systems we use multimodal 

propositional epistemic logic S5n [11, 59]. In 

accordance with [11, 31], language of S5n logic 

is the language of classical propositional logic 

extended by modal operators for knowledge K1, 

..., Kn, where index number indicates the agent. 

Expression of Ki we read “agent i knows the 

formula ”. Formally, the language of S5n logic 

is defined as follows: 

 

1. Each atomic proposition (atom) is an epistemic 

formula
3
 

2. If  and  are epistemic formulae then , 

, ,  → , ↔  are epistemic 

formulae 

3. If  is epistemic formula then Ki is epistemic 

formula for i = 1, ..., n 

 

Axioms of S5n logic that apply to each of the 

agents are the following: 

 

1. Axioms of classical propositional logic 

2. Distribution axiom: (Ki  Ki(→ )) → Ki 

3. Knowledge axiom: Ki→  

4. Positive introspection: Ki → KiKi 

5. Negative introspection: Ki→ KiKi 

 

The rules used to perform logical 

consequences are the Modus ponens (MP) from 

classical propositional logic and Knowledge 

generalization rule (RN)
4
 for epistemic logic: 

 

MP: “From  →  and  infer ” 

RN: “From  infer Ki” 

 

Multimodal epistemic logic can be extended 

with three new operators that are related to the 

knowledge in entire groups of agents. The first of 

these operators is the operator E for shared 

knowledge, which read “everybody knows”. If all 

                                                      
3 Atoms describe some state of affairs in the “actual world”. 

4 RN acronym comes from the Rule of Necessitation in modal logic. 

agents in the group of agents A know the 

formula  we write EA.
5
 The second term is 

distributed knowledge. Informally, distributed 

knowledge is knowledge that has an omniscient 

observer of a group of agents, with the ability to 

know each agent’s knowledge, to “pool” the 

collective knowledge of the group of agents, and 

generally to deduce more than any one agent in 

the group. The concept of distributed knowledge 

will not be used in the paper, but it’s formal 

description may be found in [11], [41] and [42]. 

The third operator is the operator of common 

knowledge. The definition of common 

knowledge in many references is given 

informally alike as follows: “A fact  is a 

common knowledge in group of agents if 

everyone knows , everyone knows that 

everyone knows , and so on”, and we write 

CA. The formal definition of common 

knowledge as a fixed point in accordance with 

[11, 433] and [28, 406] is: CA if and only if 

EA
k
for k=1,2,... where is EA

k
 = EAEA

k-1
. The 

multimodal epistemic logic with a modal 

operator which describes common knowledge 

condition we call common knowledge logic. 

 

2 Epistemic logic in Coq 
 

Before we introduce epistemic logic by using 

Coq we have to open a new section and to import 

module List because in some points on our 

system we use lists:
6
 

 

Section EaDel. 
Require Import List. 
 

We introduce agents as enumerated inductive 

type Agents used to describe finite sets [6, 137]. 

In the example of the multiagent system which 

we considered in Section 3, we have seven 

agents, so our definition consists of seven 

constructors. We define the whole group of 

agents as list G:
7
 

 

                                                      
5 Note that in the case when all agents in a group know some 

formula that does not mean that any of these agents know anything 
about the knowledge of other agents. 

6 Coq version 8.0 or higher has to be run with the -impredicative-set 

option because the definition of proposition which we introduce 
below is based on a non predicative notion of Set [13, 31]. 

7 Most often the agents are in Coq defined as natural numbers. It 

may seem more natural, because in that case we could say that the 
definition of agents is more general. Also, the definition we have 

introduced may seem somewhat “cumbersome”. But, in this paper, 

the set of agents which makes the multiagent system is required to 
be finite and for this reason, we do not want to use the infinite 

structures to describe finite types. 
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Inductive Agents : Set := A1 | A2 | A3 | A4 | A5 | A6 | A7. 
Definition G := A1 :: A2 :: A3 :: A4 :: A5 :: A6 :: A7 :: nil. 

 

As is given in [20], [21], [22] and [8], 

epistemic logic cannot be represented directly in 

Coq's logical framework. Reason is knowledge 

generalization rule for epistemic logic. By using 

deduction rules from propositional logic in 

combination with knowledge generalization rule 

we can infer that “if  holds then agent Ai knows 

”. But, the knowledge generalization rule does 

not mean this. What it means is that if  is true in 

every world that an agent considers to be a 

possible world, then the agent must know  at 

every possible world.
8
 So, if we want to 

introduce epistemic logic in Coq we need to 

present predicate calculus in Hilbert-style as a 

metatheory and epistemic logic as a theory. To 

do so we first introduce a type proposition as an 

inductive type with four constructors, namely the 

implication Imp, the quantifier Forall and two 

operators for modalities K and C for knowledge 

and common knowledge in a group of agents 

(then we abreviate connector Imp and quantifier 

Forall with “==>”, “\-/”): 
 

Inductive proposition : Set := 
  | Imp : proposition -> proposition -> proposition 
  | Forall : forall A : Set, (A -> proposition) -> proposition 
  | K : Agents -> proposition -> proposition 
  | C : list Agents -> proposition -> proposition. 
 

Infix "==>" := Imp (right associativity, at level 85). 
Notation "\-/ p" := (Forall _ p) (at level 70, right associativity). 
 

To define quantifier Exists as well as the 

connectors AND, OR, TRUE, FALSE and NOT 

we use the above defined connector ==> and the 

quantifier \-/ (we abbreviate connectors AND and 

OR with “&” and “V”): 
 

Definition Exist (A : Set) (P : A -> proposition) := \-/ (fun p : proposition => \-
/ (fun a : A => P a ==> p) ==> p). 
Definition FALSE := \-/ (fun p : proposition => p). 
Definition TRUE := Exist proposition (fun p : proposition => p). 
Definition NOT (p : proposition) := p ==> FALSE. 
Definition AND (p q : proposition) := \-/ (fun r : proposition => (p ==> q ==> 
r) ==> r). 
Definition OR (p q : proposition) := \-/ (fun r : proposition => (p ==> r) ==> 
(q ==> r) ==> r). 
 

Infix "&" := AND (left associativity, at level 50). 
Infix "V" := OR (left associativity, at level 50). 
 

Common knowledge logic requires 

introducing a modality E for shared knowledge 

and we have done it recursively by using the 

Fixpoint definition [12, 27], [13, 42], [29, 115], 

[18, 43]: 
 

                                                      
8 More about concept of possible worlds can be found for example 

in [11], [41, 270], [7, 15], [43, 126], [28, 398] or [42, 14]. 

Fixpoint E (G : list Agents) (p : proposition) {struct G} : proposition := match 
G with 

| nil => TRUE 
| i :: G' => K i p & E G' p 

end. 
 

Finally, we can introduce the predicate 

theorem in the set proposition, which tells which 

propositions are theorems. What we need are 

three Hilbert-style axioms of propositional logic, 

Modus Ponens, K-axiom, T-axiom, Knowledge 

generalization rule as well as one axiom and one 

rule for common knowledge. We abreviate 

theorem with “|-”: 
 

Inductive theorem : proposition -> Prop := 
| Hilbert_K : forall p q : proposition, theorem (p ==> q ==> p) 
| Hilbert_S : forall p q r : proposition, theorem ((p ==> q ==> r) ==> (p ==> 
q) ==> p ==> r) 
| Classic_NOTNOT : forall p : proposition, theorem (NOT (NOT p ==> p)) 
| MP : forall p q : proposition, theorem (p ==> q) -> theorem p -> theorem q 
| K_K : forall (a : Agents) (p q : proposition), theorem (K a p ==> K a (p ==> 
q) ==> K a q) 
| K_T : forall (a : Agents) (p : proposition), theorem (K a p ==> p) 
| K_rule : forall (a : Agents) (p : proposition), theorem p -> theorem (K a p) 
| Fixpoint_C : forall (G : list Agents) (p : proposition), theorem (C G p ==> p 
& E G (C G p)) 
| Least_Fixpoint_C : forall (G : list Agents) (p q : proposition), theorem (q 
==> p & E G q) -> theorem (q ==> C G p). 
 

Notation "|- p" := (theorem p) (at level 80). 
 

3 Knowledge games in Coq 
 

The multiagent systems that we consider in this 

paper are knowledge games as “card games 

where a number of cards are distributed over a 

number of players, and where moves consist of 

information exchange” [35, vii]. In other words, 

knowledge games are card games where players 

have limited information about other players' 

cards and gradually gain information about the 

states by observing the actions of other players.
9
 

Under state we understand the distribution of 

cards among players (and maybe in piles on the 

table), as well as a player’s knowledge acquired 

during the play as well as knowledges about 

distribution of cards, knowledges about 

knowledges of other players, higher-order 

knowledges, ..., right to common knowledges.
10

 

An example of knowledge games is the game 

of Cluedo which was researched from the aspect 

                                                      
9 In this paper we use the terms "agent" and "player" depending on 

the context, although under these terms they mean the same thing: 

members of a multiagent system. 

10 If needed, we can introduce special players with no knowledge 

and no possibility of taking action. Thus, depending on the game, 

player may be table as a player who possesses a subset of cards [25, 
242], [24, 19]. For the other players these cards can be known, 

partly known or completely unknown. In such a way, without loss 

of generality, we can assume that all the cards are dealt. 
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of reasoning about knowledge in several 

publications using different formalisms. In [4] 

and [5], it was investigated from the situation 

calculus point of view, in [10] using temporal 

epistemic logic, in [24] and [25] using epistemic 

logic S5n with a simply introduced special 

temporal parameter and in [35], [36], [38], [39] 

using dynamic epistemic logic. This paper is the 

first attempt to consider the game of Cluedo 

using a Coq proof assistant. 

In the game Cluedo the players gather 

information about a murder. The players must 

determine who has done it, where and with what 

weapon. The suspects, the possible vehicle and 

the location of the crime are displayed on the 

cards. There are nine possible rooms in the 

mansion, six suspects and nine possible murder 

weapons. The deck of cards contains one card for 

each of the rooms, suspects and weapons.
11

 So, 

we have twenty four cards. One card 

representing a room, one a suspect and one a 

weapon is separated from the deck of cards and 

put on the table upside down so that none of the 

players see which cards they are. This triplet of 

cards represents a real room, murderer and a 

weapon. The remaining cards are mixed together 

and are equally dealt out amongst the players. 

There are seven players so every player gets 

three cards. The players make suggestions about 

which crime was committed in what room, by 

what suspect and with what weapon. If a player 

left of the player who has voiced his suggestion 

has one of the suggested cards, then he shows a 

card to the player who has given the suggestion 

in a way that the other players don’t know which 

card it is. He privately shows always only one 

card irrespective of whether he has one, two or 

all three cards. If the player who is left of the 

player who gives the suggestion does not have in 

his hand any of the suggested cards, then he 

announces this and the following player does the 

same: privately shows one of the suggested cards 

or announces that he does not have any. This 

continues until a player does show a card 

privately or the round is not finished, and none of 

the players show any cards. In the following 

round the player who is to the right of the player 

who gave the suggestion gives a new suggestion 

and so on. The players apply their knowledge 

                                                      
11 There is more version of Cluedo game. In this paper we ignore 

some aspects and some rules of the game as we are interested in 

representing and reasoning about knowledge. The original and 
complete equipment and rules of the game Cluedo is shown in 

Hasbro web site: http://www.hasbro.com/. 

about the cards and all other knowledge which 

they get about the knowledge of the other players 

in order to discover the room, the murderer and 

the weapon. When a player solves the mystery he 

proclaims it and that player is the winner. The 

player who offers the suggestion is not allowed 

to suggest any of the cards from the triplet which 

they hold in their hand. Also, the player may not 

suggest the same cards twice in one game, 

because by doing so they stop the other players 

getting any new information. A player can repeat 

a suggestion only if he deduces which cards are 

on the table. 

The cards in the deck we introduce in Coq as 

enumerated inductive type Cards: 
 

Inductive Cards : Set := Hall | Dining_Room | Kitchen | Patio | Observatory 
| Theater | Living_Room | Spa | Guest_House | Scarlet | Green | Mustard | 
White | Plum | Peacock | Knife | Candlestick | Pistol | Poison | Trophy | 
Rope | Bat | Axe | Dumbbell. 
 

The fact that an agent holds in his hands some 

card is an atom as is the fact that cards 

representing the murder are on the table. To 

introduce these atoms, first we have to declare 

two predicate types [6, 74]. First is type Hold 

where term Hold C A means that agent A holds 

card C in his hand. On the other hand, for the 

cards which represent murder we declare as 

predicate type Murder where term Murder C 

means that card C is one of the card on table: 
 

Parameter Hold : Cards -> Agents -> proposition. 
Parameter Murder : Cards -> proposition. 

 

Now we can set up atoms as instances of 

predicates Hold and Murder. Without losing 

generality we can assume that the crime was 

committed in Hall, by Kasandra Scarlet and with 

Knife: 
 

Hypothesis M_R : |- Murder Hall. 
Hypothesis M_S : |- Murder Scarlet. 
Hypothesis M_W : |- Murder Knife. 

 

The rest of cards are distributed among the 

players and we can assume distribution by 

setting up atoms in this way:
12

 
 

Hypothesis H_A1_1 : |- Hold Dining_Room A1. 
Hypothesis H_A1_2 : |- Hold Green A1. 
Hypothesis H_A1_3 : |- Hold Candlestick A1. 
... 
 

4 Axioms of knowledge games 
 

We axiomatize the initial state of the Cluedo card 

game in accordance with axiomatisation of card 

                                                      
12 Here we present only the atoms that are related to the 

three cards that holding a player A1. 
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games given in [34] and [35]. In the afore-

mentioned publications it has been proved that 

the given axiomatization describes a model that 

in a technical sense all other models are bisimilar 

to. Axiomatization is given for the initial state of 

card games for any number of players and cards 

and with these properties: players see their own 

(and only their own) cards, all cards are different, 

each player has a known number of cards and all 

players know which cards are in the game. These 

properties match the properties of the game 

Cluedo with one exception: in the game Cluedo 

some cards are on the table. As we explained in 

footnote 10 in Section 3, it is possible to 

introduce to the table a special player with no 

knowledge and no possibility of taking action. 

This is, for example, done in [27], [35] and [37]. 

But in this paper based on the theory of types it 

is complicated to introduce restrictions to the 

table as one of the constructor of type Agents in 

accordance with its properties. This particularly 

applies to the axiomatization of epistemic logic 

introduced in Section 1. It seems easier to 

upgrade the axiomatization of card games and 

this is what we do. We introduce axiomatization 

in our system as follows (axioms that are added 

to the axiomatic system from [34] and [35] are 

marked with an asterisk): 
 

Players see their own cards: Axiom See : forall (A : Agents) (C : Cards), 
|- Hold C A -> |- K A (Hold C A). 
 

Players only see their own cards (don’t see cards of others): Axiom 
DontSee : forall (A : Agents) (C : Cards), |- NOT (Hold C A) -> |- K A (NOT 
(Hold C A)). 
 

All cards are different 1 (one card can be held by at most one 

player): Axiom AtMost_1 : forall (Ai Aj : Agents) (C : Cards), Ai <> Aj -> |- 
NOT (Hold C Ai & Hold C Aj). 
 

All cards are different 2 (one card can be held by one player or can 

be on the table)*: Axiom AtMost_2 : forall (A : Agents) (C : Cards), |- 
NOT (Hold C A & Murder C). 
 

Each player has (at least) three cards: Axiom AtLeast_1 : forall A : 
Agents, exists C1 : Cards, exists C2 : Cards, exists C3 : Cards, C1 <> C2 
/\ C1 <> C3 -> |- Hold C1 A & Hold C2 A & Hold C3 A. 
 

On table are (at least) three cards*: Axiom AtLeast_2 : exists C1 : 
Cards, exists C2 : Cards, exists C3 : Cards, |- Murder C1 & Murder C2 & 
Murder C3. 
 

Players don’t know the cards of others: Axiom DontKnowThat_1 : 
forall (Ai Aj : Agents) (C : Cards), Ai <> Aj -> |- NOT (K Ai (Hold C Aj)). 
 

Players don’t know the cards on table*: Axiom DontKnowThat_2 : 
forall (A : Agents) (C : Cards), |- NOT (K A (Murder C)). 
 

Players can imagine others to hold other cards: Axiom 
DontKnowNot_1 : forall (Ai Aj : Agents) (C : Cards), Ai <> Aj -> |- NOT 
(Hold C Ai) -> |- NOT (K Ai (NOT (Hold C Aj))). 
 

Players can imagine cards on table*: Axiom DontKnowNot_2 : forall (A 
: Agents) (C : Cards), |- NOT (Hold C A) -> |- NOT (K A (NOT (Murder C))). 
 

5 Dynamic epistemic logic and 

epistemic actions in Coq 
 

Unlike epistemic logic, which is about the 

knowledge of the world, dynamic logic is about 

the changes of the world that is about actions 

which change the world. In this paper under 

“actions” we mean epistemic actions which are 

performed by agents in order to change their 

information states [3, 2].
13

 Moreover, in [17, 

440] are defined purely epistemic actions as 

actions which not produce change in the physical 

world, but only in the agent’s mental state. 

Dynamic logic in combination with epistemic 

logic can express epistemic consequences of 

epistemic actions in the form of new agent’s 

knowledges about the world as well as about 

each other’s knowledges. In order to get dynamic 

logic of common knowledge, in [39, 72] is 

common knowledge logic extended with a new 

operator “[]” where [] is a new modality and 

where formula [] stands for “after every 

announcement of , it holds that ”. So, 

“announcement of ” is taken as an epistemic 

action. In this paper we also introduce operator 

"[]" but the term [a] refers to “after every 

execution of action a, it holds that ”. Generally, 

in dynamic logic there are as many modalities as 

there are actions. 

As stated in [15] and [16], if we consider 

systems with perfect recall or no learning then 

knowledge and time do interact.
14

 One of the 

axioms which connect knowledge and time 

informally reads as “If a proposition is known to 

be always true, then it is always known to be 

true.”. This axiom is known as the interchange 

principle [30, 231], [31, 167]) or as KT1 axiom 

from linear temporal epistemic logic [11, 308], 

[15, 681], [33, 104]). In our context we can 

formally write this axiom as KA[a] → [a]KA.
15

 

In [23], the only existing paper in which 

dynamic logic of common knowledge using Coq 

                                                      
13 Unlike in some other publications where is using term “event” 

(for example in [1] and [2]) we use the term “action”. 

14 Informally, a perfect recall system assumes that an agent 
remembers the complete history of state transitions in the past. 

Formal definition of perfect recall can be found in [15] where is 

also explained why no learning is the dual notion to perfect recall. 

15 There are other axioms that connect knowledge and time, but as 

pointed out in [31], epistemic agents may have different powers of 

observation and reasoning. According to the same reference, 
“General dynamic-epistemic logic has no significant interaction 

axioms for knowledge and action. If such axioms hold, this is due 

to special features of agents.” 
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is formalised and the first paper that combines 

the two aforementioned logics using proof 

assistant, the notion of epistemic actions is not 

sufficiently elaborated so that it could be used in 

more general cases of multiagent systems. Only 

two specifically epistemic actions are considered 

in relation to a concrete problem (muddy 

children puzzle) in which in fact only two 

epistemic actions can happen. They are listed 

with the assumption that it is quite clear how 

these actions actually produce new knowledges 

of agents. Therefore, if we follow this, for each 

of the possible actions in the system it is 

necessary to introduce a special instance of the 

interchange principle as in [23]. Furthermore, 

from Coq’s point of view, the actions are not in 

any way “grouped” with the aim to define the 

type of “actions” where each action belonged. In 

contrast, in this paper we introduce a special type 

(from the perspective of Coq) which will belong 

to all epistemic actions which may occur in some 

multiagent system, and only to them. But 

epistemic actions in different multiagent systems 

in general can be very different with respect to 

the rules of actions established in that system. 

Because of this, it is necessary to focus on the 

multiagent system where we know what these 

rules are. So, in this paper we focus on the game 

Cluedo described in Section 3. After the agents 

look at their cards, in the game “Cluedo” three 

epistemic actions may be conducted: 

 

1. An agent publicly makes a suggestion that 

some three cards represent the murder; 

2. An agent privately shows one of the suggested 

cards to an another agent; 

3. An agent publicly announces that he does not 

have any of the three suggested cards. 

 

At first glance it seems that among these 

actions there is too great a difference in terms of 

their structure and the changes they cause in the 

system. In fact, all of these actions can be 

informally reduced to the following structure: 

information is given → knowledge of agents is 

upgraded and some common knowledge is built 

into the system. Furthermore, the given 

information has the following attributes: agent Ai 

who gave the information, agent Aj who is 

informed, publicity of the information PI and 

information content IC. Publicity of the 

information means that the information is given 

as public or private and we introduce two 

possible values: Pri and Pub. Any public 

information automatically becomes common 

knowledge, and information that is given to an 

agent in private builds on its knowledge of its 

contents.
16

 Since actions 1 and 3 can be divided 

into three independent actions, the information 

content of these actions is “an agent has not 

some card” while information content of action 2 

is “an agent has some card”. Generally, the 

information content is always related to have/do 

not have some card. 

In Coq, first we have to introduce the type of 

publicity as enumerated inductive type PI: 
 

Inductive PI : Set := Pri | Pub. 
 

Based on the informal description given 

above, all of the epistemic actions in game 

Cluedo can be included in a unique record type 

[6, 145] Action with four functions in accordance 

with the attributes given above. In addition, to 

indicate that an action is really executed in some 

state of system, we introduce a predicate ex_act: 
 

Record Action : Set := act {Ai : Agents; Aj : Agents; pi : PI; c : Cards}. 
Parameter ex_act : Action -> proposition. 

 

Now we can consider all the actions that 

agents can execute in the game of Cluedo as a 

unique type Action which can have different 

instances depending on instances of their 

attributes. Also, now we have all prerequisites to 

declare predicate aft_ex_act which instance 

aft_ex_act a p stands for: “after every execution 

of action a, it holds that p” that is for “[a] p”:
17

 
 

Parameter aft_ex_act : Action -> proposition -> proposition. 
 

Now we can add a general form of 

interchange principle as a new axiom as follows: 
 

Axiom IP : forall (A : Agents) (a : Action) (p : proposition), |- (K A 
(aft_ex_act a p) ==> aft_ex_act a (K A p)). 

 

We introduce axioms which describe how 

epistemic actions, depending on their attributes, 

produce new knowledge in the system: 
 

If Ai informs (in public) Aj that he haven’t card c then it become a 

theorem and it become common knowledge: 

Axiom Not_Hold_Pub : 
forall (Ai Aj : Agents) (c : Cards), |- ex_act (act Ai Aj Pub c) -> |- (NOT 
(Hold c Ai) ==> (C G (NOT (Hold c Ai))). 
 

If Ai informs (in private) Aj that he have card c then Aj knows that: 

Axiom Hold_Pri : 
forall (Ai Aj : Agents) (c : Cards), |- ex_act (act Ai Aj Pri c) -> |- (K Aj (Hold 
c Ai)). 
 

                                                      
16 It is clear that any information given to the private also builds 
system with some common knowledge. For example, if agent Ai 

privately show one card to agent Aj, then become common 

knowledge that Aj know that Ai have “some” card. 

17 In contrast to [23] where each action is separately declared as 

type proposition -> proposition. 
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6 Goal and implementation 
 

The game ends when at least one of the players 

knows the room where the murder took place, 

the murderer and the weapon. The end of the 

game will be in Coq presented as a Goal that 

must be proved in order for the game to finish: 
 

Goal exists A : Agents, |-K A (Murder Hall) & K A (Murder Scarlet) & K A 
(Murder Knife). 
 

Once the goal is set, it is possible, with 

regards to the actions carried out during the 

game, using the appropriate axioms, to calculate 

what knowledge players have after specific 

actions. For example, let us assume that the first 

actions executed in the game are that A1 makes 

the suggestion that Kitchen, Plum and Pistol 

represent the murder cards and that A2 privately 

shows Kitchen card to A1. If we code these 

actions in a sequence of instances of predicates, 

then we can apply the appropriate sequence of 

Coq tactics, for example: 
 

repeat match goal with [h : |- Hold ?C ?A |- _ ] => apply See in h end. 
assert (a : |- ex_act (act A1 A2 Pub Kitchen) /\ |- ex_act (act A1 A2 Pub 
Plum) /\ |- ex_act (act A1 A2 Pub Pistol)). Focus 2. 
destruct a as [a1 a2]. destruct a2 as [a2 a3]. 
assert (a : |- ex_act (act A2 A1 Pri Kitchen)).Focus 2. 
repeat match goal with [h : |- ex_act (act ?Ai ?Aj ?pi ?C) |- _ ] => 
(apply Not_Hold_Pub in h || apply Hold_Pri in h) end. 
repeat match goal with [h : |- (?P ==> ?Q) |- exists A : Agents, |-K A 
(Murder Hall) & K A (Murder Scarlet) & K A (Murder Knife)] => 
apply MP with (q:=Q) in h end. Focus 1. 
 

By applying such tactics we get knowledge of 

players and common knowledge among the 

whole group of players after the first two actions. 

Then move on to the next action and so on. After 

each action, it is necessary to check whether it is 

possible to prove the goal and whether some of 

the players know which cards are on the table. 

 

7 Conclusion 
 

In this article we have shown how epistemic 

actions can be modelled in dynamic common 

knowledge logic using Coq - a formal proof 

management system. All this is in order to 

express the epistemic consequences of epistemic 

actions of agents in the form of agents’ 

knowledge about the state of the system and 

higher-order agents’ knowledge, up to common 

knowledge. We show how our approach enables 

us to reason about knowledge games as an 

example of knowledge-based multiagent system. 

The most interesting question for further 

research is: whether this approach can serve for 

reasoning about optimal strategies for players in 

multiagent competitive games, whether this 

approach can be extended in order to incorporate 

distributed knowledge among the agents and for 

more efficient dealing with common knowledge. 
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