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Abstract. When applying the standard 

Markowitz mean-variance model on a real 

portfolio selection problem, we are faced with 

certain limitations like cardinality of chosen 

assets, discrete nature of trading variables etc. 

While the classical mean-variance model can be 

successfully solved by standard algorithms 

(quadratic programming), modelling an actual 

investment leads to NP-hard optimization 

problem. In such circumstances heuristic 

methods appear as the only way out. 

This paper aims at finding efficient 

evolutionary inspired algorithm for cardinality 

constrained portfolio optimization. Among 

developed algorithms which were able to solve 

problems with very many possible assets, the 

algorithm with hybrid crossover presents itself as 

the most effective. In order to make obtained 

results comparable, test sample was chosen from 

databases that serve as a benchmark for this 

problem class. 
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1 Introduction 
 
On a market there is a variety of possible assets to 

invest in and an investor encounters decision problem 

what is the fraction of each asset that should be 

chosen to meet an investment goals. Although in 

reality there are many possible ways of investing, 

modern portfolio theory is based on a rational 

investor, who chooses these fractions in a manner to 

minimize risk and maximize an expected return on 

initial capital. The next question is how to measure 

risk and how to estimate expected return on a given 

asset – irrespective this being security or any another 

financial instrument. The most common approach of 

modelling risk and expected return was adopted by 

Markowitz [7] (standard portfolio optimization 

problem), and this model underlies all modern 

portfolio theory. 

Even in case when the number of given assets is 

very small, the number of possible combinations of 

fractions Nxxx ,...,, 21  is huge, increasing extremely 

with number of assets N. Solving the classical 

portfolio optimization problem with hundreds and 

thousands of assets is very hard optimization problem, 

but still in a scope of many standard algorithms [10]. 

Nevertheless, when this model is used as a real-world 

tool, respecting constraints like cardinality makes this 

optimization problem severely difficult and classifies 

it into NP-hard problems. In such circumstances, 

deterministic optimization methods do not work 

efficiently and heuristic algorithms can be the only 

solution.   

Genetic algorithms (GA) are search and 

optimization heuristic method, based on the natural 

evolution theory, which means that there are three 

basic rules underlying the algorithm: inheritance, 

variation and selection. The solution space of a 

treated problem is represented by the population – 

consisting of individuals (chromosomes). Each 

individual is an element of the solution space i.e. a 

candidate for the optimal solution (global optimum) of 

the problem. In each step of the algorithm 

chromosomes are evaluated by the fitness function 

and particular number of the best-ranked 

chromosomes (parents) is chosen to create the new 

generation of chromosomes (children) through 

crossover and mutation. The main role of the 

crossover is expected to be convergence towards 

optimum (since it is assumed that offspring resemble 

and even outperform, their parents), whereas mutation 
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operator should provide an escape from the local 

optimum. This procedure can be repeated until the 

evolution time expired. 

 

2 Standard mean–variance portfolio 

selection model 
 
The classical mean-variance portfolio selection model 

determines the proportions of the initial capital ix  to 

be invested in particular asset i, so as to minimize the 

risk of the whole selected portfolio (represented by its 

variance) and maximize the expected return of the 

portfolio (estimated by history mean).   More 

precisely, let a set of N assets is given, each having 

expected return ir  and standard deviation of history 

yield iσ , and let ijµ  is a correlation coefficient 

between history yields of asset i and asset j.  We 

denote a variance of the selected portfolio by V, 

whereas its expected return by P. Then, the classical 

mean-variance portfolio selection model is: 
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These equations tell us that for expected return P 

of a chosen portfolio, we are looking for such a 

combination of investment fractions Nxxx ,...,, 21 for 

which the risk (i.e. variance V) would be the least 

possible. On the other hand, the classical mean-

variance portfolio selection model can be defined in a 

way that for a given variance V, expected return P 

should be maximized: 
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The first definition determines an optimal 

portfolio for a given amount of risk, whereas the 

second definition gives an optimal portfolio for a 

particular amount of expected return. Since there are 

many possible risk figures, for a given set of N assets 

- as well as many possible expected returns, both of 

definitions lead us to the set of optimal portfolios. 

Furthermore, due to the fact that the definitions are 

equivalent, these two sets of optimal portfolios are the 

same; and can be graphically represented by a curve 

(efficient frontier) in the expected return–variance 

space.   

Throughout this work, upper expressions shell be 

used in matrix form. Let [ ]NxxxX ,...,, 21=  and  









=

221212

122111 ,

σσµσσ
µσσσσ

C , than eq. (1) can be 

written in a form 
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In order to illustrate previously described ideas, 

let consider an example of two possible assets: 

assume we are forming portfolio of one equity with 

%5.91 =r  and 018.01 =σ , and another one 

having %122 =r  and 026.02 =σ . We shall 

suppose two different correlation coefficients between 

the assets, in order to get better impression of solution 

space of the problem (mean-variance coordinate 

system). Figure 1 shows sets of portfolios solving this 

two assets problem (less convex curve for 

1.012 =µ , another one for 55.0
'

12 −=µ ).  
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Figure 1. Efficient frontiers for the 2-assets portfolio 

 

For example, an investor who is capable of taking a 

risk of 0.017 (in case 1.012 =µ ), has two possible 

portfolios on disposal: one [ ] [ ]1.0,9.0, 21 =xx  with 

expected return 0.0975 and other 

[ ] [ ]5.0,5.0,
'

2

'

1 =xx  with expected return 0.1075. 

Apparently, rational investor will choose combination 

[ ]5.0,5.0 , which has higher expected return. 

 

3 Genetic algorithms for the 

standard portfolio optimization 

problem 
 

In this paper, firstly we developed genetic 

algorithm with steady-state selection GAporto, for the 

standard portfolio optimization problem. The input 

parameters of the N-asset problem are expected return 

ir , standard deviation iσ  and correlation ijµ  

between every two assets i, j.  Instead of seeking for a 

maximal possible expected return P for a given risk V, 
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(or for a given P to minimize V) the algorithm will 

maximize the ratio VP / ; and a portfolio fulfilling 

this condition shall be called the optimal portfolio. 

This is a practice among researches in this field and 

we are going to keep it here making our results 

comparable with the others.  Moreover, for the same 

purpose we use problem instances from known 

database “Operational Research Library” (OR-

Library) [2] and from database which is prepared in 

work done by Cesarone, Scozzari, Tardella [3]. These 

databases are available on the internet 

(http://people.brunel.ac.uk/~mastjjb/jeb/info.html and 

http://w3.uniroma1.it/Tardella/homepage.html). From 

the first database we chose 5 problem instances which 

contain securities prices from capital markets Hang 

Seng, DAX 100, FTSE 100, S&P 100 and Nikkei; 

with number of possible assets in the portfolio from 

31 to 225. The second database reveals securities 

prices from EuroStoxx50, FTSE 100, MIBTEL, S&P 

500 and NASDAX; from 48 to 2196 prices in one 

portfolio. All these data were transformed in a way to 

serve only for scientific purpose.  Table 1 shows a 

name of portfolio, the number of assets in portfolio N 

and the best known solution best_known (according to 

[2] and [3]) for the standard portfolio optimization 

model. 

 

Table 1. Test sample 

 

Portfolio N best_known 

Hang Seng 31 0.210442 

DAX 100 85 0.363785 

FTSE 100 89 0.295636 

S&P 100 98 0.319684 

Nikkei 225 0.139380 

EuroStoxx50 48 0.388722 

FTSE 100 79 0.491485 

MIBTEL 226 0.607284 

S&P 500 476 0.513304 

NASDAQ 2196 - 

 

In the algorithm GAporto, every particular 

portfolio (candidate for the optimal one) is 

represented by chromosome consisting of N genes. 

Thus, genes represent the fractions Nxxx ,...,, 21  of 

the investment. Chromosome is implemented as a real 

N-length vector. We denote the number of 

chromosomes in the population by POP. The initial 

population is generated randomly, in a way that every 

chromosome picks up N values from the interval 

[0,1]. (One can notice that condition (3) is respected 

anyway. Namely, when dividing every element of the 

vector [ ]Nxxx ,...,, 21 by ∑
=

N

i

ix
1

, the value of the 

ratio VP /  will not be changed). In every iteration 

of the algorithm, POP-M chromosomes with the 

highest value of the fitness function are selected. 

These chromosomes serve as parents for the new 

generation – which is created by 2-point crossover, 

and which is written down on places of M worse 

candidates. After that, mutation operates so that every 

chromosome has probability pm to be replaced by a 

random number from the interval [0,1]. The procedure 

will stop when given number of iteration maxnumiter 

is reached. The output of the algorithm is the optimal 

portfolio [ ]Nxxx ,...,, 21 , its expected return P and 

variance V. Figure 2 gives the pseudocode of the 

described algorithm.  

 

Algorithm GAporto 

generate initial population P(0) 

evaluate each individual in the population 

t = 0 

repeat  

     select best-ranking individuals to reproduce  

     create new generation through crossover  

     and mutation (P(t) from P(t-1)) 

     evaluate each individual 

     t = t +1 

until (t<maxnumiter) 

return best chromosome 

 

Figure 2. Pseudocode of the algorithm GAporto 

 

3.1 Input parameters optimization  
 
When the algorithm was implemented, several series 

of experiments were done in a manner to optimize 

input parameters: mutation probability pm, selection 

pressure M and the number of individuals in the 

population POP. First interesting observation, during 

this algorithm development phase, was stability of the 

algorithm. Namely, when series of several runs (let 

denote the number of runs in certain series by 

numruns) for a given problem instance were 

performed, differences among obtained results were 

very small (which is not always a case [9]). This is 

illustrated in Table 2, where the best, the worst and 

average solution of 10 algorithm runs for 85-assets 

portfolio can be seen. 

 

Table 2. Results for 85-assets portfolio optimization 

(POP=100, M=90, pm=0.015, maxnumiter=5000) 
 

numruns 10 

max 0.362789 

min 0.362287 

average 0.362521 

 

Table 3 shows part of the results for pm 

optimization; in most cases the best probability was 

between 0.015 and 0.020, so we chose figure 0.015 as 

a reference in our following experiments.  

Except sensitivity to mutation probability, 

algorithm GAporto has shown very high sensitivity to 

the number of chromosomes M which will be 

replaced with the new generation (Table 4). Starting 
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with M=50 and gradually increasing it, we realized 

that the best results can be reached around figure 90. 

To get better insight into GA behaviour, we were 

curious to see what is a characteristic selection 

pressure for some another problem class. As it was 

expected, obtained results indicate the rule that both 

mutation probability and selection pressure strongly 

depend on problem class whereas they slightly depend 

on problem instance.  

 

Table 3. Results for  pm optimization 

(POP=100, M=90, maxnumiter =5000) 
 

pm N=31 N=85 

0.005 0.209995 0.362402 

0.010 0.210181 0.362422 

0.015 0.210147 0.362473 

0.020 0.210266 0.362321 

0.025 0.210259 0.361408 

 

Table 4. Results for M optimization 

(POP=100, pm=0.015, maxnumiter=5000) 

 

M N=31 N=85 

70 0.210213 0.358837 

80 0.210252 0.362243 

86 0.210240 0.362233 

90 0.210147 0.362473 

92 0.210172 0.362790 

 

3.2 Algorithm with hybrid crossover  
 
Once algorithm GAporto was able to achieve results 

comparable with the best known results for specific 

portfolio instance, in rather small maxnumiter, we 

realized some ideas for additional enhancement of the 

algorithm (especially having in mind the fact that 

after a longer runtime there are many redundant 

chromosomes in the population).    

Firstly, a comprehensive study of the influence 

of crossover type on the algorithm efficiency was 

done. Related tests included p-point crossover, 

)5,4,3,2,1(∈p  and uniform crossover. Through 

these tests, 2-point crossover presented itself as 

arguably the best performer among the crossover 

types – regardless of problem instance i.e. the number 

of assets in a portfolio. Furthermore, experiments with 

certain hybrid crossovers were done, eventually 

leading us to the improvement of the algorithm. In the 

case when parents are the same, one child is created 

based on its old genes - instead of regular 2-point 

crossover. More precisely, every gene of the child is 

replaced with new one – but with value from small 

range around value of old gene (Figure 3). It revealed 

that the range of 1% is the most appropriate for every 

analysed problem instance (i.e. constant a is equal to 

0.01). 

The algorithm with such a crossover performs 

better then GAporto for every problem instance from 

our sample and we shell call it GPporto_hc. Table 5 

presents comparison between these two algorithms, 

showing average result from 10 algorithm runs for a 

given portfolio (maxnumiter was 5000, except in case 

of N=476 where it was 20000). 

 

Procedure 2-pointCrHyb (int paA, paB, chA, chB) 

break1, break2=Random[1,N] 

if (break2<break1) repace its values 

if (paA≠paB)  

    for j=0 to break1 

       Chrom[chA][j]=Chrom[paA][j] 

       Chrom[chB][j]=Chrom[paB][j] 

    for j= break1+1 to break2 

       Chrom[chA][j]=Chrom[paB][j] 

       Chrom[chB][j]=Chrom[paA][j] 

    for j=break2+1 to N 

       Chrom[chA][j]=Chrom[paA][j] 

       Chrom[chB][j]=Chrom[paB][j] 

else 

    for j=1 to N 

         delta=Chrom[chA][j]·a·Random[0,1]·(-1)Random(1,2) 

         Chrom[chA][j]= Chrom[chA][j]+delta 

         if (Chrom[chA][j]<0) Chrom[chA][j]=0 

end 

 

Figure 3. Pseudocode of  GAporto_hc crossover 

 

Table 5. Comparison of GAporto and GAporto_hc 

(POP=100, M=90, pm=0.015) 

 
N GAporto GAporto_hc 

31 0.210211 0.210396 

85 0.362521 0.363112 

89 0.294794 0.295161 

98 0.319066 0.319386 

225 0.070463 0.071304 

48 0.388260 0.388601 

79 0.490568 0.491112 

226 0.545992 0.549582 

476 0.363063 0.363574 

 

Two examples of solution are as follows: 

obtained solutions for N=31 and N=48 in 5000 

iteration (ratio VP /  is equal to 0.210416 and 

0.388660, respectively). 

[ 3121 ,...,, xxx ] = [0, 0.000065, 0, 0.000790, 

0.572030, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0.000133, 0, 0, 0.369456, 0, 0, 1.007923, 0, 0] 

[ 4821 ,...,, xxx ] = [0, 0.000155, 0, 0, 0.000090, 0, 

0.000252, 0.122440, 0, 0.277020, 0, 0, 0, 0, 0, 0, 0, 

0.353543, 0.376947, 0, 0, 0.000436, 0.190120, 

0.000173, 0.000999, 0. 0.999054, 0, 0.483580, 0, 0, 0, 

0, 0, 0, 0.000444, 0.000022, 0.000257, 0.193476, 0, 0, 

0.023406, 0, 0, 0.000080, 0, 0.085790, 0.000067]  
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Input parameter optimization was done also for 

GAporto_hc and previously established conclusions 

on selection pressure and mutation probability were 

conformed. The only difference lies in optimal size of 

the population POP: in case of GAporto it holds the 

higher POP the better result, whereas in case of 

GAporto_hc this relation is more complex. Table 6 

presents average results in 10 runs of GAporto_hc and 

shows that in some cases there are two maximums 

(POP of 150 and 300). Taking into account that 

bigger population size spend more time (and better 

measure of algorithm efficiency would be number of 

fitness function calculation) we stay at POP of 100 in 

our experiments. When optimizing the number of 

individuals in the population POP we also deal with 

several different combinations of M and pm for certain 

figure of POP but without finding any generally 

better combination than POP=100, M=90, pm=0.015. 

 

Table 6. Results for POP optimization 

(M=90, pm=0.015, maxnumiter=5000) 

 

POP N=31 N=79 N=225 

50 0.210359 0.490872 0.066892 

100 0.210396 0.491112 0.071304 

150 0.210412 0.491151 0.071258 

200 0.210335 0.490997 0.070582 

300 0.210419 0.491328 0.069250 

 

3.3 Analysis of algorithm efficiency  
 
Neither with this optimization problem we could not 

avoid known general characteristic of the genetic 

algorithm: after quite fast founding the solution which 

is close to the optimal one, algorithm resumes its run 

with very slow increase of currently the best solution 

[8]. This fact is depicted on Figure 4: fitness function 

value of the best individuals in particular iteration can 

be seen for 31-assets portfolio. In the first run, 

GAporto_hc needs 483 iterations to reach solution 

better than 0.21 whereas in the second run 695 

iterations have to be counted. Moreover, when we 

were looking for result better than 0.2104 the 

algorithm needed 3237 iterations to the first such a 

solution – which means that for result enhancement of 

0.19%, 465% more time must be spent. 

But this GA characteristic is not an obstacle in 

the cases of portfolios with small N, since only a 

moment is needed to solve them, i.e. to find solution 

equal to or better than the best known. (All 

experiments in this work were performed by PC 

Pentium Dual CORE CPU 2.50 GHz, 2GB RAM.)  

First more significant time the algorithm needed in 

case of N=225 and N=226 (to reach results better then 

0.13 and 0.60, respectively). In the first case this time 

was 7955s (186642 iterations), whereas in the second 

case GAporto_hc needed 5740s (133454 iterations).   

Apart from standard portfolio optimization problem, 

all experiments with cardinality constrained portfolio 

optimization were done momentarily.  
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Figure 4. Progress of GAporto_hc towards the 

optimal solution for N=31  

(POP=100, M=90, pm=0.015) 

 

4 Results for cardinality constrained 

portfolio 
 

Applying portfolio selection model to a concrete 

investment, an essential limitation is the number of 

different assets K, which are selected into portfolio 

(cardinality constraint). Cardinality constrained 

portfolio optimization problem is defined by eq. (1) – 

(4) and eq. (7): 

 

∑
=

≤
N

i

i Kxsign
1

)(                    (7) 

 
When developing the algorithm for this problem, 

we took GAporto_hc as a base. This time 

chromosome was designed as a complex structure, 

composed of two K-length parts. The first part 

contains chosen assets - which are represented by 

number ),...,2,1( Ni∈ , whereas the second part 

contains related investment fractions (Figure 5).  

 

Parents fitness 
13 24 28 8 18 0.74 0.06 0.45 0.86 0.73 0.13 
11 25 18 10 9 0.82 0.65 0.60 0.50 0.07 0.12 

Children  
13 24 18 10 18 0.74 0.06 0.45 0.86 0.73 0.00 
11 25 28 8 9 0.82 0.65 0.60 0.50 0.07 0.17 

 

Figure 5. Two point crossover of GAccporto_hc, 

N=31 

 

Two point crossover do not make any 

differences between these two components, but 

operates like there is 2K-length chromosome 

consisted of the same genes category.  

After implementation of the algorithm, firstly we 

convinced ourselves that conclusions about input 

parameters optimization drawn in case of standard 

portfolio model were worth also in this issue (as Table 
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7, showing average results obtained in 10 algorithm 

runs, illustrates). 

 

Table 7. Results for input parameters optimization 

(maxnumiter=5000, K=10) 

 

M pm POP N=31 N=89 

90 0.008 50 0.210441 0.294799 

90 0.015 50 0.210442 0.294910 

90 0.04 50 0.210442 0.294836 

80 0.015 50 0.210442 0.294947 

90 0.008 100 0.210442 0.294799 

90 0.015 100 0.210442 0.294910 

90 0.04 100 0.210442 0.294910 

80 0.015 100 0.210432 0.294873 

 

Several test series were performed, including 

cases for K=2,3,4,5,6,7,8,9,10,15,20. Extraction of 

obtained results one can see in Table 8 (numruns=1). 

 

Table 8. Results for cardinality constrained portfolios 

(POP=100, M=90, pm=0.015, maxnumiter=5000) 

 

N K=10 K=15 K=20 

31 0.210442 0.210442 0.210442 

85 0.363606 0.363795 0.363795 

89 0.294947 0.295597 0.295597 

98 0.314017 0.318654 0.319669 

225 0.139373 0.139373 0.139370 

48 0.388723 0.388723 0.388723 

79 0.484447 0.491322 0.491490 

226 0.565385 0.588873 0.600975 

476 0.504032 0.511944 0.513214 

2196 0.733023 0.865732 0.898707 

 

In case of smaller problem instances, results for 

different K are often the same or very similar. For 

example, in cases N=31 and N=48, solutions which 

were obtained for K=10 are almost the same as those 

which can be achieved for K=15 or K=20. These two 

solutions are as follows. 

[ 2825221312119854 ,,,,,,,,, xxxxxxxxxx ]= 

[0.563552, 0, 0.316280, 0, 0, 0, 0, 0, 0.364388, 

0.993132] 

[ 464138282622181797 ,,,,,,,,, xxxxxxxxxx ]= 

[0.129081, 0.288430, 0.367397, 0.392596, 0.198218, 

1.045190, 0.501868, 0.202530, 0.024005, 0.090008] 

When K is very small, like 2 or 3, obtained result 

(ratio between return and risk) is smaller than for 

higher amount of K.  

 

4 Concluding remarks 
 
This paper addresses the way in which genetic 

algorithms can be used to solve optimization 

problems related to the portfolio selection. Since the 

number of selected assets is an inevitable limitation 

when a real portfolio is formed, this work considers 

the cardinality constrained portfolio optimization 

problem. In addition to this NP-hard optimization 

problem, the developed algorithms were also solving 

the standard portfolio optimization problem.  

Although solution space of both of problems 

increases enormously with the number of possible 

assets in a portfolio, developed genetic algorithms 

confirmed themselves as a very efficient heuristic 

method. More precisely, in case of the standard 

optimization problem, both of developed algorithms 

are very reliable for portfolios up to several hundreds 

assets. However, there is an impression that for the 

highest N’s – where the algorithms need more 

significant amount of runtime, additional researches 

are needed to clarify ability of GA. In case of the 

cardinality constrained portfolio optimization problem 

- which was our main objective because of its 

practical applications, our algorithm with hybrid 

crossover reached presented results in a few seconds.  

According to our expectation, optimization of 

input parameters has shown that developed GA’s are 

very sensitive to mutation probability and selection 

pressure. It is interesting that 2-point crossover 

present itself as the most effective among compared 

crossover operators, regardless on problem instance. 

Looking at demonstrated results from heuristic 

algorithm theory perspective, it can be said that 

achieved results contribute to the assumption that both 

mutation probability and selection pressure strongly 

depend on problem class whereas they slightly depend 

on problem instance. 
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