
Proceedings of the 20th Central European Conference on Information and Intelligent Systems 405

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

Ontology Based Adaptive Systems. A Case Study:

Car Environment

Marko Ribarić

Institute Mihailo Pupin,

Volgina 15, 11060 Belgrade, Serbia
marko.ribaric@institutepupin.com

Gerd Kock

Fraunhofer FIRST,

Kekuléstrasse 7, D 12489 Berlin, Germany
gerd.kock@first.fraunhofer.de

Abstract: Rapid development of sensor devices and

methods for man-machine interaction influenced the

increased research in the area of adaptive, context-

aware systems. In this paper we present such a

system, which aims at seamlessly collecting

information from humans and their domain specific

surrounding,, processing this information by

dynamically creating “self-organized awareness

context”, and reflecting the discovered context by

offering appropriate services or actions in a pervasive

manner. This system is based on the use of ontologies

and rules. Ontologies are used for describing the

characteristics of used devices (sensors and

actuators), the constraints and requirements they

need to comply with, while the rules are used for

defining goals (actions) that need to be fulfilled as a

reaction to the discovered context. The paper shows

the way this adaptive, context-aware system works in

the car environment. The car environment is chosen

not only for the reason that an electronically

equipped car can contribute to a safer driving, but

also the fact that it may influence the driver’s attitude

and mood by observing the driver and adapting the

car settings and ambient according to the driver’s

psycho-physiological state.

Keywords: adaptive, context-aware

environments, ontologies, rules

1 Introduction

Recent progress in electronics, mechanics and

ergonomics, as well as the progress in automatic

human affect analysis has made the development of

qualitatively new systems possible. The prefix smart

(smart-house, smart-cars, smart-toys etc.), usually

denotes pervasive and adaptive capabilities of new

products which, equipped with micro-processors and

sensor devices, can actively participate in everyday

situations. For example, in the vehicular application

domain a car is being smoothly transformed into a

friendly co-driver that observes the driver, road

conditions, engine settings, and actively participates

in the driving process. In other application scenarios,

from gaming, home ambient up to mobile and outdoor

advertisement, embedded adaptive control systems

silently interacts with users and support the

applications’ activities [8].

The system that supports affective, context-aware1

computing generally consists of sensor devices - used

to collect information from users and environment;

actuators - that can be used to influence the user and

the surroundings; and middleware parts. The

middleware parts gather context information, process

it and derive meaningful actions from it. Middleware

presents the core of these systems, as it allows

different agents to acquire contextual information

easily, reason about it using different logics and then

adapt themselves to changing contexts [3].

Developing middleware for affective, context-

aware computing applications is a non trivial task

because the target system must cope with dynamic

properties, complex algorithms, structural design and

concurrency. Plus, the development of such systems

involves multidisciplinary teams with computer

engineering, human science and praxis background.

Often, the parties involved in such a common

development do not understand each other well, as

they are coming from different fields, have different

educational background and sometimes even different

way of thinking. These factors pose an extra burden to

the already complex developing task.

One of the answers to these challenges is the

REFLECTive framework [9] aiming at developing

methods and tools for working with such user-centric,

pervasive, adaptive systems. The first step in the

research of the REFLECTive framework was to build

a simulator which is capable of stepwise development

and evolutionary transformation toward the final

system [10]. A modular approach is selected for

1 A system is context-aware if it can extract, interpret and use

context information and adapt its functionality to the current
context of use [1].

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 406

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

designing and implementing this simulator. By

developing different simulating modules, addressing

different problems that can independently be refined,

the simulator improves and optimizes the

collaborative work on one hand and provides means

for more efficient deployment of real systems, on the

other hand. The REFLECTive framework (and hence

the simulator) is a service and component oriented

infrastructure implemented in Java using the OSGi [7]

(i.e. its Eclipse implementation Equinox). By relying

on the Service Registry, along with other layers that

the OSGi framework offers, our system can reliably

manage context-aware services to support context

acquisition, discovery, and reasoning. The

REFLECTive framework also utilizes ontologies and

rules. Ontologies are used for describing the

characteristics of used devices (sensors and actuators),

the constraints and requirements they need to comply

with, as well as the current context of both the user

and the environment. Rules are used for defining

goals (actions) that need to be fulfilled as a reaction to

the discovered context and user’s state.

The paper presents one scenario of using this

solution in the car environment. The car environment

is chosen for the reason that an electronically

equipped car can contribute to a safer driving, and for

the fact that it may influence the driver’s attitude and

mood by observing the driver and adapting the car

settings and ambient according to the driver’s psycho-

physiological state. The paper is structured as follows:

Section 2 gives, very shortly, the research trends in

the area of adaptive, context-aware systems; it also

elaborates reasons for using ontologies, and gives a

short overview of rule based systems. Section 3

presents the global structure of the used software

architecture, while section 4 explains the role of

ontologies. In section 5 one scenario in the car

environment is described, while section 6 concludes

the paper.

2 Background

Recently the number of papers dealing with adaptive,

context-aware systems has increased. Research in this

area is oriented both toward the methods of automatic

human affect analysis, as well as toward addressing

the complexity of such systems.

Methods that are being used in the field of

automated analysis of human affective behavior are

not any more concentrated on the deliberately

displayed series of exaggerated affective expressions,

neither are they single modal [12] (meaning that

information processed by the computer system is

limited to either face images or the speech signals).

Researchers are now concentrating on multimodal

fusion for human affect analysis, which includes

audio-visual fusion, linguistic and paralinguistic

fusion, and multi-cue visual fusion based on facial

expressions, head movements, and body gestures [12].

On the other hand, the complexity of adaptive,

context-aware systems motivated and inspired

researchers to conceive many different approaches to

providing architecture that would effectively deal

with such systems. The paper [3] very well

summarizes those different approaches, and

additionally provides, based on those same

approaches, a general abstract layer architecture of

context-aware systems. This general abstract layer

architecture consists of four layers: network layer,

middleware layer, application layer, and user

infrastructure layer. The authors stress that the

network layer involves a network - supporting

context-aware systems, and sensors - collecting low-

level of context information. They categorize the

network infrastructure layer into: internet protocol,

handoff management, sensing, network requirements

and network implementation. The middleware layer

is responsible for managing processes and storing

context information, and is classified as agent-based

middleware, metadata based middleware, tuple space

based middleware, OSGI based middleware,

reflective middleware and sensor selection

middleware. The application layer provides users

with appropriate service (context-aware applications

include information systems, especially decision

support systems, communication systems as social

community, e-commerce, etc.) while the interface of

context-aware systems is managed in user

infrastructure layer.

As previously mentioned, the framework used in

this paper (and described in more detail in [9]) is

based on OSGi, and the use of ontologies and rules.

Ontologies play a crucial role in enabling the

processing and sharing of information and knowledge

on the middleware. Ontologies provide a shared and

common understanding of a domain that can be

communicated within a broad developing team. They

also allow devices and agents, which are not

originally designed to work together, to interoperate.

In this paper, a somewhat loose definition of ontology

is accepted - we consider ontology to be a structure of

concepts or entities within a domain, organized by

relationships. The primary relationships that we are

interested in are class hierarchies, i.e. we can say that

we are leveraging taxonomies rather then ontologies

(but in the rest of the paper the term ontology is used,

as we will in the future investigate other relationships

between used concepts). As proposed in [6] we use

UML as the language for describing the ontology.

One reason is that this approach allows basing the

discussion on easily understandable graphical

representations, which will help in the future usage

and elaboration of the ontology. Another important

reason is that by using UML the ontology can be

related to the software in a straight-forward manner.

Partially, it will be possible to (semi-)automatically

generate XML from the given UML structures, which

in turn can be used to parameterize the Java

implementation of the reflective framework.

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 407

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

Benefits of using rules in our framework are

stressed in Section 5, but here we shortly explain what

a rule based system is. Rule based system is a system

whose knowledge base is represented as a set of rules

and facts. A rule based system consists of IF-THEN

rules, a collection of facts and some inference engine

(interpreter). The inference engine matches facts

against rules to infer conclusions which result in

actions [2]. The process of matching the new or

existing facts against rules is called pattern matching,

which is performed by the inference engine. Each

inference engine goes through three phases: matching

phase, conflict resolution phase and execution phase.

In the match phase the inference engine is comparing

the fact base and the rule base. If it finds rules that are

to be triggered it passes them to the conflict resolution

phase. A system with a large number of rules and

facts may result in many rules being true for the same

fact assertion, these rules are said to be in conflict. To

resolve this conflict a strategy is needed (this strategy

is often times called heuristic strategy). When the rule

engine decides which rule to fire, this rule is

transferred to the next, execution phase. When the

rule is fired, it causes the change in the fact base (new

facts are added to the fact base). After execution

phase again follows the matching phase, and the new

cycle starts. (This cycle can continue until we exhaust

our knowledge or the defined goal is met). All the

rules are stored in the rule base (production memory),

while the facts are stored in the fact base (working

memory) where they may be modified or retracted.

These two components along with the inference

engine constitute a rule base system [2].

In the next section a global structure of our system

is presented, being further referred to as REFLECT

system.

3 REFLECT System Design

The REFLECT development system consists of three

tiers (Fig. 1) [5]. The tangible tier includes basic

services, which can be used to communicate with

sensors and actuators. The reflective tier is the

middleware of the REFLECT system, comprising a

Service Registry and other central components. And

the application tier adheres to software components

and tools for the development of applications and

related configuration items2.

The REFLECT system can be considered as a Java

based toolbox being used in the development of

REFLECT applications. Any REFLECT application

contains components of each of these tiers. Such an

application can be considered as a constantly adapting

system, analysing sensor inputs, reflecting about the

actual and former results of the analysis, and reacting

2 The goal of this section is not to give a comprehensive account of

the REFLECT software, only its basic structures are explained.

Details about the REFLECT system architecture can be found in
[9].

according to a given application scheme via

controlling actuating variables. Conceptually this

means, that any REFLECT application is running in a

closed loop, reflecting the permanent cycle sense-

analyse-react. However, this does not imply that at

any time the same loop is performed, it only means

that perpetually sensors deliver inputs, leading to

outputs for actuators, which in turn lead to modified

inputs, etc. Actually, there will be applications, where

a number of closed loops will run in parallel.

Figure 1. REFLECT system

Fig. 2 details this conceptual view. The basic idea

is to hierarchically organize the sense-analyse-react

cycle. At the bottom, there is the environment with

sensor and actuator devices. Above, the low-level

software components perform the first and the last

steps in any cycle; either features are extracted from

sensors or are used to control actuators. Next, the high

Figure 2. Conceptual view of REFLECT application

level components deal with abstract constructs

describing the user context, her psychological,

cognitive or physical state, or high-level system goals.

The software is organized such that these high-level

components build on the low-level ones. And at the

top application level, according to the concepts at

hand, the effectively available user constructs

(obtained from the connected sensors) are related to

possible system goals (depending on the involved

actuators). Again, the application level directly relies

only on the high-level components.

This system operates in the following way (see

Fig. 3) [5]:

Each type of sensor that exists in the system (that

is being used for gathering information about the

environment) is described in the sensor ontology. This

ontology offers, for each type of sensor, properties

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 408

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

that match the output from this sensor’s type (usually

defined in a sensor specification).

Data gathered by sensors then need to be

processed in order to get features that can be used for

identifying current emotional, physical and cognitive

state of the user. This processing involves the use of

complex computer algorithms for image processing,

speech processing, voice analysis, etc. (e.g.

algorithms for statistical signal processing). Today

there are lots of available functional implementations

in this area, and the REFLECT system encourages

their reuse and provides a mechanism for their easy

integration.

Each feature gained as an output of these

processors is defined in the features ontology. Based

on those features REFLECT system has to infer the

state (emotional, physical and cognitive) of the user.

There are lots of solutions that can be used for

emotion recognition from available features – the

majority of which fall into group of so called

classifiers (machine learning methods for

classification): e.g. support vector machines, neural

networks, or rule-based classifiers. The REFLECT

system does not offer its own classifiers, but again

provides a way for easy integration of existing

solutions.

Figure 3. High level view of the REFLECT system

The output of the classifier describes the user’s

current state – each state is again defined in the state

ontology. At this point the REFLECT system contains

information about the user’s state, the user’s

preferences and about the history of previous user

actions – as the system keeps records of previous

choices a user made. Based on this information the

system can decide on the future course of action,

trying to adapt itself to the user needs. For this the

REFLECT system relies on the use of rules for

scenario description. These scenarios define abstract

(i.e. regardless of present actuators) goals (or rules

actions) that aim at changing the state of environment.

The goals are then forwarded to the component

called Executor that decomposes these goals to the

specific actuator actions. The Executor knows what

actuators are available in the system, and how a

concrete actuator needs to be changed in order to

satisfy the given goal. The Executor is aware of all the

actions each actuator is able to perform, as all

actuators are described in the actuator ontology. This

ontology classifies actuators and defines each actuator

through actions that it can perform.

4 The role of ontology

The global structure of the ontology adheres to the

conceptual view as depicted in Fig. 2, i.e. the

ontology is hierarchically organized into four modules

being named devices, features, constructs and

concepts, and these modules incorporate those items

or concepts, which make the ontology suited for

discussing adaptive, context-aware applications. The

ontology is under permanent development, as in the

course of elaborating or specifying particular

applications, there will be the need for adding further

notions. In the next subsections, for each of the four

levels introduced in Fig. 2, we sketch the internal

structure of the associated modules.

4.1 Modelling Devices

The devices module contains entries for sensors,

actuators, or other devices. In Fig. 4 the top level

UML concepts of the devices package are presented.

Sensor examples are Camera, Thermometer or

BloodPressureSensor, Actuator examples are

RoomLight or Radio, and a hard disk is an example

for OtherDevice.

Figure 4. Modelling Devices

4.2 Modelling Features

Features may be measurements like Pulse or

Temperature stemming from sensors, actuating

variables like Tone or Volume belonging to actuators,

or facts like Age or Gender stemming from a hard

disk. In Fig. 5, the top level UML diagrams of the

features package are presented.

Each Feature is realized and/or implemented by

one or more Device items. A Feature can be a

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 409

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

UserFeature or a ContextFeature, plus one has to

distinguish between SimpleFeature and

ComplexFeature.

Figure 5. Modelling Features

The term UserFeature is used, if the respective

feature refers to the emotional, cognitive, or physical

state of the user (e.g. Pulse or Movement). The term

ContextFeature refers to the user context (e.g. Time).

Note however that some features will be user and

context features at the same time (e.g. Temperature).

Anyway, in many cases the final category depends on

the application under consideration.

Notions like Pulse, Movement, or Temperature are

simple features. Complex features are items being

derived from one or more other (simple or complex)

features, an example would be MeanTemperature.

As noted above, features are used for sensing and

reacting. Consequently, in modelling applications

they will be related to sensor or actuator items, or to

both. Examples for the first case would be

FacialExpression and HeartRate, and examples for

the last case would be RoomTemperature and

RoomLightning. (A camera might be used to observe

the facial expression, but there is no device to directly

manipulate it. On the other hand, the room

temperature can be measured by a thermometer and

can be adjusted by a heater control.)

4.3 Modelling Constructs

Any REFLECT application considers the user’s

current context and state and adapts itself to it. As far

as the user’s state is concerned, one has to distinguish

between the emotional state (e.g. annoyance) and

cognitive engagement (e.g. high mental workload) of

the user and physical conditions and actions (e.g.

temperature and movement). Dealing with the system

reaction to a given context and user state requires a

notion of “goal”, which is used with environment and

user data to infer actions to be taken.

In Fig. 6, the top level UML concepts of the

constructs package are presented. Each Construct

item is an aggregate of one or more Feature items,

and one has to distinguish between UserContext,

EmotionalState, CognitiveState, PhysicalState, and

SystemGoal. Examples for emotional or cognitive

states are Motivation, MentalOverload, Comfort,

Effort, Mood.

Again, in the process of modelling applications,

notions from the constructs module are being related

to notions from the features module, to reflect the

sensing or reacting stage respectively. As an example,

consider the Mood construct. Determining the actual

mood level belongs to the sensing stage and would be

reflected in relating the mood notion for example to

features like FacialExpression or HeartRate. On the

other hand, for the reacting stage, i.e. to influence the

mood, SystemGoal items would build on features like

RoomTemperature or RoomLight, or on musical

features.

Figure 6. Modelling Constructs

4.4 Modelling Concepts

The idea of the concepts module is to provide a means

for easy description of application scenarios. One

example of a simple scenario is: “If the driver has

been driving for a long time and he frequently

changes his sitting positions then give him some

visual/audio warning telling him to rest a bit”. This

module effectively connects available user constructs

(obtained from the connected sensors) with possible

system goals (depending on the involved actuators)

and the application description. Development of this

module is something to be undertaken in the future.

5 Defining goals

This section describes one scenario of defining

several goals in a car environment. These goals are

defined manually based on the user state, user and

environment context, and user preferences. The goals

are basically actions that need to be fulfilled, and are

ignorant of the actuators present in the system.

Chosen actions that are to be taken (depending on the

user state, context and preferences) later are sent to

the next component in the REFLECT system, called

Executor, that tries to fulfill these goals depending on

the present actuators (see Section 3).

The process of defining, choosing and firing

adequate goals in the REFLECT system relies on the

use of rule engines. Advantages of using rule engine

are numerous [2]: rules facilitate declarative

programming – rule engines allow you to say "What

to do" not "How to do it"; they allow for logic and

data separation - the logic can be much easier to

maintain when there are changes in the future, as the

logic is all laid out in rules; rules allow the

centralization of knowledge - by using rules, you

create a repository of knowledge (a knowledgebase)

which is executable. Rules are also more

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 410

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

understandable to domain experts (possible non-

technical people) as they can be expressed in the

language that is easily understandable by them. These

advantages are also the main reasons for using rule

engines in the REFLECT system, which benefits

greatly from the fact that rules can be defined by

domain experts (in this case users of the system which

are not necessary technical people), and also from the

fact that rules are located in one centralized place

(when a need for a rule change emerges, only one

place in a system needs to be updated). Currently we

are using the Jess3 rule engine, but we are considering

the use of Drools4 rule engine because of its

somewhat better tool support.

The process of defining goals begins with the

ontology. We mentioned that goals (which constitute

the right hand side of a rule, or consequence/action

part of a rule) are triggered based on the user state,

user and environment context, and user preferences

(these factors constitute the left hand side of a rule, or

when/conditional part of a rule). In the REFLECT

system the user state, context and preferences, among

other things, are defined in ontologies. As we define

our ontologies in UML (for the reasons mentioned in

Section 2), we need a way to serialize them in the

XML format, as well as to get corresponding Java

objects so we could use them as a left hand side

(LHS, or conditional part) of a Jess. For this purpose

we use the Eclipse Modeling Framework (EMF)5.

EMF is a framework and code generation facility

that allows defining a model in any of the following

forms: Java interfaces, UML diagram or XML

schema, from which the other forms and

corresponding implementations classes can be

generated [11]. The model used to represent models in

EMF is called Ecore. Ecore is itself an EMF model,

and thus is its own metamodel. Ecore is a small and

simplified subset of full UML [11]. The serialized

form of an Ecore model is XMI. (XMI stands for

XML Metadata Interchange and is a standard for

serializing metadata concisely using XML).

The process of getting XML files and Java objects

from UML diagrams is as follows (Fig. 7). First, we

define our ontologies (UML class diagrams) in the

MagicDraw6 tool. MagicDraw has an option of

exporting an UML diagram into the EMF UML2 XMI

format, which can then be converted into the Ecore

metamodel by using the UML2 plug-in for Eclipse7

(in the Eclipse environment, with the installed EMF

support, we choose an option “EMF UML import”).

After getting the Ecore metamodel, we leverage the

feature of EMF that offers exporting EMF models to

XML schema (simply by choosing an option “EMF

Export Model to XML schema”). At this point we

have XML schema that is generated from the starting

3 http://www.jessrules.com/
4 http://jboss.org/drools
5 http://www.eclipse.org/modeling/emf/
6 http://www.magicdraw.com/
7 http://www.eclipse.org/uml2/

UML diagram, so now all we need are corresponding

Java implementation classes. For getting these classes

we again rely on a nice, built-in feature that EMF

offers (option “Generate Model Code” in the Eclipse

environment). The code generated like this can be

used as a LHS for the Jess rule engine, more

specifically can be used in the Java application that

has embedded Jess engine.

Figure 7. Getting XML schema and Java code from

UML

Now that we have our classes generated, all that is

left is the rules definitions. In this scenario we

presume the availability of the following sensors:

camera, microphone, CAN-bus8, finger thermometer,

vest (that integrates ECG electrodes and a Respitrace

band - Respiration Plethysmography Band), seat force

sensors, and GPS device. Based on these sensors we

can infer the following states of a user (in this case a

user is a driver as we are talking about the car

environment): driver’s physical state, emotional state,

and cognitive state. Also these sensors tell us

something about the current environment context, e.g.

weather and car context: is the driver alone in the car,

what is the noise in the car, speed of a car, type of

road, the driving time. Person’s context (driver’s age,

gender) and preferences (favorite radio station, music

genre, CD, etc.) is something we acquired earlier. In

this scenario, we also presume the presence of

following actuators: manettino9, seat (adjustment),

music player, dashboard, and iPhone.

In a scenario like this we can define these three

rules (expressed in the Jess rule language):

(defrule sport-drive

“if the driver is in high emotional state,

and the weather is nice, and she is driving

on a highway, set the car in the sport mode”

(Person (lastName x) (firstName y)

(emotionalState high))

(Weather {temperature > 15} (rain false))

(Car (roadType highway) {speed > 90})

=>

(add (new Goal “set sport mode”))

)

(defrule tired-driver

“if the driver is driving constantly more

than 4 hours, and hers cognitive state is

high, and she is frequently changing her

sitting position (i.e. her physical state is

low) then give her visual alerts (i.e.

warning light on a dashboard, plus message on

an iPhone) and start playing load music”

(Person (lastName x) (firstName y)

(cognitiveState high) (physicalState low))

(Car {drivingTime > 4})

8 http://en.wikipedia.org/wiki/Controller_Area_Network
9 http://en.wikipedia.org/wiki/Manettino_dial

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 411

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

=>

(add (new Goal “set visual fatigue alert”))

(add (new Goal “play random music high

volume”))

)

(defrule sad-driver

“if the driver is sad and she is alone in the

car and the noise in the car is high then

play her favorite music and give her visual

feedback”

(Person (lastName x) (firstName y)

(emotionalState low))

(Car (noise high) (alone true))

=>

(add (new Goal “play favorite music medium

volume”))

(add (new Goal “set visual happy feedback”)

)

)

We see in these examples that the actions come

after the "=>" symbol in the rule. E.g. if the first rule

applies to LHS (the conditions of this rule are met), a

new Goal object is created (with a constructor

parameter "sport mode"), and that Goal object is

added to working memory, using the add Jess

function. Add function adds the given object to

working memory, and also creates a "shadow fact" [4]

(shadow facts are facts that serve as bridges to Java

objects) representing the given Java object, using the

template whose name is the same as the given object's

class. If this template doesn't exist, Jess creates it. We

also mentioned that Jess library can be used from

Java. To embed Jess in Java application one simply

has to create one or more jess.Rete objects and

manipulate them appropriately (the jess.Rete class is

the rule engine itself – each object of this class has its

own working memory, agenda, rules, etc. [4]).

This simple scenario has the objective to show

conceptually the process of generating/defining rules

in the REFLECT system. This process is liable to

changes, as our further efforts will be oriented toward

total automation of goal definition (user history will

be also considered in the decision process of choosing

adequate goals).

6 Conclusion

Developing software to control affective, context-

aware computing applications is a complex task. Our

efforts are concentrated toward the development of a

simulator where the low-level devices (sensors and

actuators) as well as user emotional, cognitive and

physical states, are simulated and represented as

services. Later as the system develops each simulated

service will be substituted with a real one, thus

allowing for a gradual final system implementation.

Our solution is based on the use of ontologies. The

adopted approach to first design the ontology and then

to design and develop reflective simulator brought

several benefits. Some of the advantages can be

summarized in the following:

• abstract and generic approach to system design

• separate development of low-level psycho-

physiological measurement services (hidden in the

tangible tier)

• separate development of the service and

component oriented platform to support context-

awareness

• separate development of high level adaptive and

reflective components that combine kernel

primitives, user profiles and application scenario

(hidden in the application tier)

• early prototyping – allowing for different scenario

probation and re-designing in an almost real

framework

• easy interfacing to other existing taxonomies and

ontologies of similar systems

• efficient final implementation of embedded control

systems which requires only assembly of already

tested modules from all three tiers.

Lot of research efforts in the field of adaptive,

context-aware systems are recently being conducted,

but because of complexity of these systems their

scope is still limited only to small regions, e.g. smart

rooms, hospitals, cars, toys, etc. Researchers are

trying to find answers to some questions that haven’t

been answered yet [3]:

How to effectively extract user context in context-

aware application? In the past researchers focused just

on a physical context of a user, but that was not

enough to build effective context-aware, adaptive

systems. Our solution takes in consideration

cognitive, emotional and physical context of a user.

But, the question remains: can we capture the real

state of a user with non intrusive devices that are

present today.

Which is the best algorithm to use in order to

extract high level user context from low level

sensors? Also, what algorithm to use for defining

goals, i.e. for increasing user satisfaction by

recommending service that user wants to receive?

Researchers use different algorithms to solve this

problem: Bayesian networks, probabilistic logic,

fuzzy logic, decision tree, neural network and support

vector machine are applied. The REFLECT system,

presented in this paper, does not offer a solution for

this question, rather it tries to provide a mechanism

for painless integration of existing solutions.

How to provide the users with the automatic

personalized services? There were some limitations in

previous research for providing the personalized

services on context-aware systems: the users had to

input their preferences directly, and automated

services were not provided for them.

There are many sensors involved in gathering data

about the user and environment. Each of these sensors

uses different scale, unit, data format, so the question

is how to deal with this variety of information. Our

solution tries to address this issue by using ontologies,

where every sensor used in a system is presented in

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 412

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

the ontology along with properties that define it

(information about expected input/output to/from this

sensor).

When the context of users is conflicted how to

choose the best solution? For example, if we have

many persons in a room, how to know whose state is

measured by some sensor, or how to know whether

different sensors measure the same person. Also if

preferences of these persons differ (which is very

likely) how to know what goals to define, i.e. whose

preferences have a greater priority. The problem of

conflicts has been approached by researchers by using

information fusion, time stamps and fuzzy algorithm,

but it is still not solved perfectly.

Security issue. Adaptive, context-aware systems

store and handle sensitive and personal data, so if they

want to be publicly accepted they need to consider

user privacy and security.

And finally, can some design patterns be extracted

in the area of context-aware systems.

Our further work will be devoted to solving these

problems.

7 References

[1] Byun H. E, Cheverst K: Utilizing context history

to provide dynamic adaptations. Applied Artificial

Intelligence, 18(6), 2004, pp. 533–548.

[2] Drools documentation, available at:

http://www.jboss.org/drools/documentation.html

[3] Hong J-y, Suh E-h, Kim S-j: Context-aware

systems: A literature review and classification. Expert

Systems with Applications, 2008.

[4] Jess documentation, avalable at :

http://www.jboss.org/drools/documentation.html

[5] Kock G, Ribaric M, Serbedzija N: Modeling User-

Centric Pervasive Adaptive Systems – The REFLECT

Ontology, Intelligent Systems for Knowledge

Management, Springer, 2009, submitted.

[6] Kogut P, Cranefield S, Hart L, Dutra M,

Baclawski K, Kokar M, Smith J: UML for Ontology

Development. The Knowledge Engineering Review

17(1), 2002, pp. 61-64.

[7] OSGI Alliance: About OSGI Service Platform,

OSGI White paper, available at:

http://www.osgi.org/wiki/uploads/Links/OSGiTechni

calWhitePaper.pdf , November 2005.

[8] Serbedzija N, Calvosa A, Ragnoni A: Vehicle as a

Co-Driver. Proc. of the First Annual Int. Symposium

on Vehicular Comp. Systems, ISVCS 2008, Dublin,

Ireland , 2008.

[9] Serbedzija N, Kock G,Ribaric M, Tomasevic N,

Stanojevic M, Schroeder A: REFLECT Deliverable

D1.1, First Year Report: Requirements and Design,

2009.

[10] Serbedzija N, Ribaric M, Tomasevic N, Beyer G:

Simulating Adaptive Control in Multimedia

Applications, 1st PerAda Workshop at SASO 2008,

Venice, Italy, 2008.

[11] Steinberg D, Budinsky F, Paternostro M, Merks,

E: EMF Eclipse Modeling Framework, Second

Edition, Addison Wesley, 2009.

[12] Zeng Z, Pantic M, Roisman G, Huang T: A

Survey of Affect Recognition Methods: Audio,

Visual, and Spontaneous Expressions, In ICMI '07:

Proceedings of the 9th international conference on

Multimodal interfaces, 2007, pp. 126-133.

