
Proceedings of the 20th Central European Conference on Information and Intelligent Systems 49

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

New Approaches and Tools in Teaching
Programming

Danijel Radošević, Tihomir Orehovački, Alen Lovrenčić

Faculty of Organization and Informatics
University of Zagreb

Pavlinska 2, 42000 Varaždin, Croatia
{danijel.radosevic, tihomir.orehovacki, alen.lovrencic}@foi.hr

Abstract. Teaching programming at university
beginner's level has some specific problems like wide
diversity of student's previous knowledge, fear of
programming, problems with programming language
syntax etc., as shown in many previous researches
and our on-line questionnaire. There are already
some approaches and tools developed to make
programming concepts easier to understand for
students, like different visual tools, tutorials, video
lectures and even new programming languages,
developed to learn programming concepts. Our
approach is based on development of specific
learning interface to standard programming
languages, like C++, instead of standard IDE-s. That
interface should prevent many mistakes students often
do in learning programming and make easier for
teachers to help their students before they collect to
many syntax and logical errors.

Keywords. programming, teaching software, teaching
approaches

1 Introduction

This paper analyzes specificities and issues of
teaching programming at university beginner's level
and suggests our solutions in organization of teaching
process and also the software tool that supports that
process and helps students in easier achievement of
needed programming knowledge and skills.

During last several years, we periodically conduct
web questionnaire on a pattern of students on Faculty
of Organization and Informatics (1. year of study, at
Programming 1 course). Questions are about student's
previous programming and general informatics
knowledge and what they find as a problem in their
understanding of programming. Their answers helped

us to find out their difficulties and problems in
learning and our biggest issues in teaching too.
Firstly, it's obvious that teaching programming is
faced to big variety of student's previous knowledge,
together with their different attitudes toward
programming. That is the big issue and one of the
main specificities in teaching programming, toward
teaching some other disciplines where the previous
knowledge level doesn't vary in such degree.
Furthermore, some students feel fear of programming
as something that is "very hard". Some students starts
with "it's easy" approach, but, when exercises become
harder, change it into "it's too hard for me". We
usually compare that situation with the fitness room
when new trainees arrive. They are often very
enthusiastic about their training, but sometimes don't
consider warnings about their practice seriously (e.g.
start with too heavy weights). Consequences, like
pain, injuries and even hernia are possible and have
their mental analogies when students try to achieve
programming skills. There different approaches to
deal with that problem, and we referenced some of
them in our Related work chapter.

Our approach is based on development of
specialized learning interface to standard
programming languages, like C++, instead of standard
IDE-s. That learning interface should prevent students
from some bad habits in programming, like writing
code without syntax and logical checking and learning
program code by rote. There also advantages for
teachers and teaching process like:

• It's much easier now to help students before

they swamp into errors, and
• It's easier to prevent students from

unallowable acts like copying programs
(programs have to be written during
exercises)

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 50

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

There are some other possibilities for students like
different code analyses (e.g. usage of curly brackets
and program structures) and debugging. After testing
period, we plan to continue with development of our
learning interface, by adding some new features like
time measuring, testing theoretical knowledge and
uploading code on the Internet.

2 Related work

Programming is one of the basic subjects of
information science curriculum but for most students
is also one of the most difficult. For several years, a
significant number of students had problems with the
successful passing the examinations of programming
and related subjects and they are often the reason for
cancellation of the study or transferring to another
course. It is an unpopular trend that is not represented
only at our faculty but also at other universities
worldwide where similar studies are taught. Thus the
results of research conducted at Monash University
showed that first-year students considered
programming as the most difficult and least
interesting subject in all Computing courses [13].
Reasons for this may be diverse. Firstly, programming
cannot be learned only from books as is the case in
some other subjects; in order to learn the basic
concepts of programming and develop the algorithmic
approach in problem solving process, students have
to invest a lot of time and practical work. However,
the basic problem with the learning of programming
lies not in overcoming programming concepts but in
their implementation [18]. Furthermore, in order to
solve the well-defined programming tasks and
problems, students must have the appropriate level of
mathematical knowledge [5][11] and the logical and
abstract thinking which is often not the case primarily
because the students who enroll Informatics course
mutually differ by which secondary schools they
come from. Finally, students lack of motivation to
learn programming, because they have the image of
the programming as something that is very difficult
even before classes begin. The main reason for these
arises from the fact that senior students who had
problems with programming are spreading negative
connotations toward novice students.

In the past few years, a large number of tools and
methodologies are developed in order to support
students when learning programming. Some scientists
believe that the problem solution lies in choosing the
most appropriate programming language,
methodology and tool for teaching and content that
will be taught [10] [21]. So at the top of list of the
most popular languages for teaching programming are
the main representatives of object-oriented paradigm:
Java and C + + [30] while some authors as an
alternative propose multimedia language Actionscript
[8]. Reason why C + + is so frequent in use arises
from the fact that it is a general purpose language that

contains exactly all the elements that are necessary for
beginners to understand basic programming concepts
like control structures, mechanisms of aggregation,
etc. In addition, after the syntax of programming
language C + + is learned by students, it would be
much easier for them to master other modern
languages with C-like syntax such as Java, PHP,
JavaScript, etc. [20].

After a suitable programming language for
teaching programming has been selected, it is
necessary to choose the appropriate teaching
methodology and tool that will facilitate students
understanding of basic programming concepts.
Choosing the most appropriate teaching method in the
field of information and computer science was the
subject of research of large number of scientists
[17][21][31] but for our research the most interesting
was tool oriented method. According to the
characteristics of that method (for details see [28]),
there are two main groups of tools: mini-languages
[4] and visualization tools [17].

The basic idea of mini-languages is that the
student controls some actor in microworld and thus
learns programming concepts like control structures,
functions, recursion, etc. The development of mini-
languages was significantly inspired by programming
language Logo [27]. But Logo itself is not considered
to be representative of generations of mini-languages
mainly because the actor (turtle) does not have
interaction with its microworld and does not support
basic control structures like if and while. However,
the basic set of commands by which the student
controls the actor in microworld and thus solves given
problem was taken from Logo. The most important
representative of a mini-language group is Karel the
Robot [29] in which student controls actor (robot)
with four main actions and through interaction of
actor and its’ microworld learns basic control
structures. However, Karel the Robot has a limitation
in the sense that it does not support variables, types
and expressions. Nevertheless, Karel Genie [22], an
integrated software environment for the original Karel
has been used, as teaching programming tool, for
many years in high schools and prestigious
universities across the U.S. Development of mini-
languages Karel the Robot, initiated the development
of tools for similar purposes, such as Josef the Robot
[32], Martino [26], Marta [6], Turingal [3], Darel
[16], Karel-3D [15] and Guido von Robot [33] (a
Python version of Karel the Robot; see Figure 1) but
none of them did not achieve success as the original.

The second group consists of visualization tools
that are a combination of multimedia elements which
main purposes are to help students in understanding
the basic concepts of programming, facilitate the
development of software applications, and motivate
them for the process of learning programming. This
group includes two types of tools: demonstration tools
and virtual worlds.

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 51

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

Figure 1. Guido von Robot

Demonstration system for teaching purpose

facilitates learning in the way that it divides the
course material into sequence of smaller logical
entities (learning objects) that are easier to
understand. Learning object is small, substantive and
reusable media resource which contains high quality
information and it’s used during technology supported
learning [1][25].

The main representatives of this group of tools are
AnnAnn and AnnAnn.NET that enable iterative and
incremental program development. Namely, for
learning new programming concepts, the teacher
starts with a known program segment (e.g. declaration
of variables) and with sequential changes in the code
(e.g. the introduction of control structure or
initialization of array) creates a completely new
program that addresses the pre-set a problematic task
[14]. OOP-Anim [9] works in a similar way but
unlike as AnnAnn and AnnAnn.NET that are intended
for teaching any type of programming languages, it is
specialized for learning object-oriented concepts.

The main representative of virtual worlds is Alice
[7], 3D programming environment that through the
creation of simple animation or video games teaches
students the basic programming constructs. Using the
interactive interface, students drag and drop 3D
objects into the virtual world and thus create a series
of instructions that is program. What is most
interesting is that each instruction in Alice is
equivalent to the statement of the most popular
object-oriented programming languages such as Java
and C + +. Therefore, students can very easily, during
the development and testing of their programs,
identify a correlation between the behavior of the
object in the animation and certain program statement
and thus learn the basic programming concepts.
Besides Alice (see Figure 2), this group includes also
LogoBlocks [2] which uses graphical objects labeled
with words and Obliq 3D [23] which is more for
experts than novice students beginners.

Figure 2. Alice

Mention teaching concepts and tools have a
positive impact on students learning [19][24], but still,
the main problems with which students are facing
when learning programming are still remaining
unsolved. Due to these reasons, we decided to
develop our own tool for teaching programming.

3 What and how we teach computer

programming

There are many questions regarding teaching of
computer programming pointing teaching methods as
well as technology used.

Although the good programming course should be
independent on programming language used in it, the
good praxis to teach concepts of computer
programming in relation to some programming
language. So, the choice of programming language is
very important, if not crucial for the programming
course organization. As it can be seen from [34], the
programming languages used today converging to C-
like programming languages. More than 50% of
programming code used in USA today is written in
the one of the languages very close to C programming
language – C, C++, C# and Java. The only two other
significantly used programming languages are PHP
with almost 10% and Visual basic with 8.5% of used
code. There are some parameters we used in
programming language choice:

• Programming language usage
• Popular OS platform support
• Availability of all important

programming concepts.

The first parameter in the list clearly points to one
of the C-like languages. Although Java is the most
popular programming language today, and it is
platform independent, the lack of some important

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 52

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

concepts in the language, such as pointers, makes it
questionable as a choice. It would not be so big
problem for the programming course for the students
which main field of interest in study is not computer
software design and development. However,
programming course for computer and information
science students have to introduce all of main
programming concepts, which includes pointers and
dynamic memory allocation mechanisms.

C programming language can be, and in the many
cases is used for the fundamental programming
course, after which some other similar languages like
C++ or Java is used for advanced courses. Our
opinion is that it is not necessary to start with C
programming language and that other C-like
languages that provide higher programming level are
more convenient for beginners in computer
programming. That is the reason that we decided to
use only one programming language for all levels of
programming courses.

C# is the newest of four most popular C-like
programming languages. It provides support for all
main programming concepts, including some
concepts very interesting for teaching, such as safe
pointers, possibility of manual or automatic memory
reallocation, and so on. The drawbacks of C# are
relatively small percentage of use (about 4.3%) and
weak Linux platform support.

So, the language we chose is C++, which is
widely supported in all platforms, provides support
for all programming concepts (although its concept of
unsafe pointers is not particularly good for beginners).

The second important matter that has to be
considered is methods of teaching that should be used
in programming course. Although most of common
teaching methods work, the matter teacher deals with
in programming course are in many points very
specific. In programming, like in mathematics, it is
very important that student follows the schedule of
the course very closely, because teaching units In the
most of cases hardly depend on previous ones.
Because of that continuous learning is one of the
greatest goals in programming teaching. On the other
hand, skills students achieve shall be improved only
by extensive work in programming. The way to
achieve that we chose is the greater number of blitz-
exams and laboratory exercises that are graded. This
two sorts of exams insure that a student learns both
practical skills and theoretical knowledge
continuously.

The goal of blitz-exams is to drive students into
continuous learning of theoretical knowledge and
concepts of programming, while laboratory exercises
sharpen their programming skills. To support this two
ways of learning and examining, we introduced the 3-
level teaching process:

• Lectures
• Auditory exercises and
• Sillabuses

In lectures the concepts are introduced, mostly
using generalization and abstraction methods. We
found that these two methods that provides bottom-up
approach to teaching greatly overheads the classical,
formal, top-down approach. The reason for that is that
this approach provides more usable examples and
connects every introduced concept to some of them,
which ensures that student immediately see the
purpose of the concept.

The auditory exercise provides technical
knowledge and skills needed for syllabus; introduce
top-down approach to computer program
development from idea to the algorithm and computer
program.

At the last, syllabus is reserved for student work.
The problem in this part of teaching process is that as
course advance the time needed for development of
algorithm and program rises as well. That is the
reason why it is necessary to publish problems that
students have to solve in syllabus in advance. But,
that is also the reason why the plagiarism has to be
considered as a possibility. The system we developed
and that is introduced in the rest of the paper is one of
the results of our plagiarism concern.

4 Students' questionnaire

Our students' web-form questionnaire has been
conducted in 2009. on a population of 182 examinees
(students at the University of Zagreb, Faculty of
Organization and Informatics, 2nd semester, at
Programming I course). Similar questionnaire have
been conducted in 2004 (206 examinees), so the
results are compared.

Answers about students' previous programming
experiences show that the number of students with
previous programmers experience is slightly lowered
in 2009. toward 2004. as shown in Table 1.

Table 1. Students' previous experience in
programming

 2004. 2009.
programs up to 1000 lines 40% 37%

programs larger than 1000 lines 8% 4%

There is also a shift among the most popular

programming languages, as shown in Table 2.

Table 2. The most popular programming languages
among students

Interest lowered 2004. 2009.
Basic 32% 20%

Visual Basic 16% 8%
Pascal 27% 13%

Interest increased 2004. 2009.
C++ 16% 32%

Java and C# 2% 9%
PHP and Perl 2% 9%

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 53

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

Furthermore, the questionnaire shows that
students declared good basic informatics knowledge
in both surveys, and there is now some previous
knowledge of multimedia networking and computer
security (Table 3).

Table 3. Elements of general informatics knowledge

 2004. 2009.
writing text 98% 96%

using Internet 96% 98%
using spreadsheet 71% 74%
multimedia tools 50% 62%

networking unknown 48%
computer security unknown 23%

It seems that students are well equipped by

computers and link to the Internet (Table 4).

Table 4. Computer equipment and average usage of
the Internet

Computer 2004. 2009.
have their own computer 90% 99%

share computer with somebody 7% 1%
borrow computer occasionally 3% 0%
own more than one computer unknown 35%

Internet 2004. 2009.
more than once daily 23% 92%

once a day 18% 6%
several times weekly 34% 2%

once weekly 13% 0%
less than once weekly 9% 0%

4.1 Students' standpoints about
programming

According to their wishes about future job, some
students want to have programming as one of the
major working tasks, and somebody would rather do
something that not include programming (Table 5;
results are for 2009.).

Table 5. Students' wishes about their future job

 % students
(2009.)

want their job include programming 33%
if can't avoid 29%

don't want programming 25%
undecided 13%

About problems in learning programming,

students extracted several (Table 6).

Table 6. Students' problems in learning programming

 % students
(2009.)

lack of previous knowledge 65%
preoccupation by other duties on

their study
58%

algorithm for solving problem 26%
using curly brackets 17%

fear of programming 13%
C++ syntax 12%

C++ seems too hard 9%
C++ operators 9%

iterations 9%
C++ instructions 7%
using semicolon 2%

Some other researches, e.g. Gomes and Mendes

[12] also show that algorithm for solving problem is
the harder problem than programming language
syntax. But, that could lead to wrong conclusion that
teaching process should be oriented to algorithms
only, because programming syntax is "easy". The real
question is "Why students have difficulties in passing
from syntax level of thinking to algorithm level of
thinking in programming?". Possible answer is that
the problem lies in the connection between these two
levels, as shown on Figure 3.

ALGHORITHMS

PROGRAMMING LANGUAGE SYNTAX

DIFFICULTIES:
NO PREVIOUS KNOWLEDGE

LACK OF TIME
FEAR OF PROGRAMMING

IT'S TOO HARD!

LE
VE

L
O

F
D

IF
FI

C
U

LT
IE

S

LEVEL O
F D

IFFIC
U

LTIES

Figure 3. Difficulties in learning programming

So, the lack of programming language syntax
knowledge, together with lack of problem solving
abilities that many students show leave the gap for
difficulties in programming. While the lack of
previous knowledge could be the biggest problem
when starting with programming, it's much harder
problem when it outgrow to conclusion that
programming is "too hard". In that situation the
students may even give up from learning
programming skills and from engaging in the
activities defined in the syllabus for the course.

Our approach to reduce the level of difficulties
includes using learning programming interface that
prevent students to swamp into syntax problems
together with constant work on the improvement of
the teaching process.

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 54

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

5 Learning interface to standard
programming languages

During years of teaching experience, we found some
bad programming habits of our students. These start
from trying to write program code by rote, without
syntax and logical checking. After some time, when
exercises become harder, such students are faced to
fact that they don't really understand the programming
code they wrote which can easily finish in a
conclusion that programming is "too hard" for them.
There were also attempts to copy program code from
colleagues.

Our learning programming interface should
prevent these bad programming habits and turn back
our students on a "right way" in programming.

5.1 Control points in writing programs

The first idea of our learning interface is to push
students to make "control points" in their programs.
That means that each program starts from the easy
one which has to be checked, so the development can
continue toward next control point, until program has
all the needed functionalities (Figure 4).

Final program
(correct syntax and
all functionalities)

Starting program
(only correct syntax)

Figure 4. Program development from the easy one to
fully functional final

The number of programming lines between

control points has not to be too high, because of
possible collecting errors. On the other hand, there is
not always possible to compile program after adding
one single programming line, because all program
structures have to be closed (e.g. there have to be
right curly bracket '}' for each left curly bracket '{').

5.1.1 Using semaphore in programming

Our learning interface introduces semaphore (in a
form of "traffic light") which contains number of new
programming lines after last compilation (Figure 5).

Semaphore works in a way that each new
programming line and each semicolon are counted.
Values 0-4 are inside green light, 5-10 inside yellow
and values bigger than 10 inside red light. If the light
is red, program can't be compiled and programmer has
to reduce number of lines (or put something into
comment - comment are not counted). When the

program is compiled, the semaphore value returns to
zero. Of course, it is not possible to load program into
learning interface, or to copy it into editor.

Figure 5. Learning programming interface with
semaphore

5.2 Personalization of programs

The next idea of learning programming interface is to
personalize the programs in a way that each program
has it's owner. So, before starting with programming,
students have to fill appropriate data form (Figure 6).

Figure 6. Program development from the easy one to
fully functional final

The data entered in a form, together with some

other program attributes, finish in program code in a
form of comments, e.g.:

// MD5:xvdsRpxpRWC3jPjvyIfKyA==
// Learning programming interface
// Program:Program 1
// Description:This is the first example.
// Author:Danijel Radošević
// Start time:12.5.2009 9:05:44
// Final time:12.5.2009 9:06:13
// IP: (340)
// #:#include<iostream>,
// Succesfull/unsuccesful compilings:1/0
 #include<iostream>
 using namespace std;
 int main(){
 int a;
}

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 55

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

The code are automatically saved on computer
desktop, after compiling (if passed the compilation!)
and contains the MD5 checksum as a guarantee that
program is really written in educational programming
interface (that can be checked).

5.3 Additional possibilities and helping
tools

The learning programming interface has some
additional possibilities to help students in
programming:

• Marking error containing code in red light
after compilation

• Code analyses:
o Using of curly and round brackets
o Open program structures on cursor

position
o Review of all program structures
o Marking of unreferenced program

structures (functions, methods,
classes and structs)

• Using breakpoints in program

There also some restrictions in writing programs:
• It is not allowed to put more than five empty

rows
• Each program line may contain only one

semicolon (except the for iteration and
break)

• It's not allowed to go too deep into "red" -
there is a warning when the semaphore value
is 18 or bigger

6 Preliminary results

The learning programming interface has been used by
our students at Programming I course for their
laboratory exercises during one semester. Previously,
they used standard programming interfaces like
Visual C++ and DevC++. Our first experiences are
as follows:

• The passing rate at the end of semester has
increased from 50,0% (151 out of 302) in
2008. to 70,2% (179 out of 255) in 2009.

• It was easier for teachers to control their
students during exercises and exams (e.g.
from copying programs)

• The most positive students' comments are
from the repeaters (did not pass the exam in
previous year): "If there were learning
programming interface last year, I would
never be a repeater!" - said one of them

• Negative students' comments:
o 10 new lines before compiling is too

few and slow down the

programming (the most often
negative comment)

o Some usual possibilities are still not
implemented (e.g. undo)

o Some bugs reported (e.g. problems
with editor and semaphore)

We noticed that students often make some typical
syntax and logical mistakes (e.g. despaired curly
brackets or usage of '=' operator instead of '==' in
logical tests) and waste lot of time in trying to solve
the problem. Moreover, compiler messages
sometimes confuse them. Some of these situations
could be detected automatically and reported to
students, helping them to find the solution. That could
compensate some of the time waste caused by
frequent compiling.

7 Conclusion

Teaching programming at university beginner's level
faces to some specific problems as shown in our
student's questionnaire. The lack of previous
knowledge, together with problems in understanding
of program code and even fear of programming
sometimes leads students to the "wrong way". Bad
programmer's habits like writing code without syntax
and logical checking and learning program code by
rote cause considerable problems when exercises
become harder and often lead students to conclusion
that programming is "too hard" from them.

Our approach to deal with that problem include
learning programming interface to standard
compilers, which prevent students to copy programs
mutually and force them to make control points
during development of their programs. There also
some possibilities which help students in analyzing
program code and debugging. Each program written
in learning programming interface is personalized by
containing the data entered in a form on the beginning
of programming session, together with some other
data and MD5 checksum which guarantee that
program is really written in learning programming
interface.

There are advantages for students and advantages
for teaching process from using learning
programming interface. Students are pushed to check
their programs during development process so they
can't swamp into errors. Also, the tools for program
analyses and debugging help them to find the cause of
their errors. For teaching process, it's important that
students can't copy their programs from outside. Also,
teachers can help their students about their syntax and
other errors before they collect too much of them.

In the future development of learning
programming interface, we plan to introduce some
new possibilities like better explanation of syntax and
logical errors, time constraints (for exams) and
questions about the program to check the student's
understanding.

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 56

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

References

[1] Abernethy, K., Piegari, G., Reichgelt, H., Treu,

K.: An Implementation Model for a Learning
Object Repository, Proceedings of World
Conference on E-Learning in Corporate,
Government, Healthcare, and Higher Education,
Ostober 24-28, Vancouver, Canada, 2005, pp. 2-
7.

[2] Begel, A.: LogoBlocks: A Graphical
Programming Language for Interacting with
the World, Boston, MA, MIT, 1996.

[3] Brusilovsky, P. L.: Turingal - the language for
teaching the principles of programming,
Proceedings of Third European Logo Conference,
27-30 August, Parma, Italy, 1991, pp. 423-432.

[4] Brusilovsky, P., Calabrese, E., Hvorecky, J.,
Kouchnirenko, A., Miller, P.: Mini-languages: A
Way to Learn Programming Principles,
Education and Information Technologies, Vol. 2,
No. 1, pp. 65-83.

[5] Byrne, P., Lyons, G.: The Effect of Student
Attributes on Success in Programming,
Proceedings of 6th Conference. on Innovation and
Technology in Computer Science Education,
June 25-27, United Kingdom, 2001, pp. 49-52.

[6] Calabrese, E.: Marta - the "Intelligent Turtle",
Proceedings of Second European Logo
Conference, 30 August - 1 September, Gent,
Belgium, 1989, pp. 111-127.

[7] Conway, M., Audia, S., Burnette, T., Cosgrove,
D., Christiansen, K.: Alice: lessons learned from
building a 3D system for novices, Proceedings
of the SIGCHI conference on Human factors in
computing systems, April 01 – 06, The Hague,
The Netherlands, 2000, pp. 486 – 493.

[8] Crawford, S., Boese, E.: ActionScript: a gentle
introduction to programming, Journal of
Computing Sciences in Colleges, Vol. 21, No. 3,
pp. 156-168.

[9] Esteves, M., Mendes A.: OOP-Anim, a System
to Support Learning of Basic Object Oriented
Programming Concepts, Proceedings of the 4th
International Conference Conference on
Computer Systems and Technologies, June 19-
20, Rousse, Bulgaria, 2003, pp 573 - 579.

[10] Giangrande, E.: CS1 Programming Language
Options, Journal of Computing Sciences in
Colleges, Vol. 22, No. 3, pp. 153-160.

[11] Gomes, A., Carmo, L., Bigotte, E., Mendes, A.J.:
Mathematics and programming problem
solving, Proceedings of the 3rd E-Learning
Conference – Computer Science Education (CD-
ROM), September 7-8, Coimbra, Portugal, 2006.

[12] Gomes, A., Mendes, A. J.: Learning to program
- difficulties and solutions, Proceedings of the
International Conference on Engineering
Education, September 3-7, Coimbra, Portugal,
2007.

[13] Hagan, D., Sheard, J., Macdonald, I.: Monitoring
and evaluating a redesigned first year
programming course, ACM SIGCSE Bulletin,
Vol. 29, No. 3, pp. 37-39.

[14] Hooper, C., Carr, L., Davis, H., Millard, D.,
White, S., Wills, G.: AnnAnn and AnnAnn.Net
: Tools for Teaching Programming, Journal of
Computers, Vol. 2, No. 5, pp. 9-16.

[15] Hvorecky, J.: Karel the Robot for PC,
Proceedings of East-West Conference on
Emerging Computer Technologies in Education,
6-9 April, Moscow, Russia, 1992, pp. 157-160.

[16] Kay, J., Tyler, P.: A microworld for developing
learning design strategies, Computer Science
Education, Vol. 3, No. 1, pp. 111-122.

[17] Kelleher, C., Pausch, R.: Lowering the barriers
to programming: A taxonomy of
programming environments and languages for
novice programmers, ACM Computing
Surveys, Vol. 37, No. 2, pp. 83 – 137.

[18] Lahtinen E., Ala-Mutka K., Jävinen, H.: A study
of the difficulties of novice programmers,
Proceeding of the 10th annual SIGCSE
conference on Innovation and technology in
computer science education, June 27 – 29,
Caparica, Portugal, pp. 14-18.

[19] Lawrence, A., Badre, A., Stasko, J.: Empirically
Evaluating the Use of Animations to Teach
Algorithms, Proceedings of the IEEE
Symposium on Visual Languages,October 4-7,
St. Louis, U.S.A., 1994, pp. 48-54.

[20] Lovrenčić, A., Konecki, M., Orehovački, T.:
1957 – 2007: 50 Years of Higher Order
Programming Languages, Journal of
Information and Organizational Sciences, Vol.
33, No. 1.

[21] Matthíasdóttir, Á.: How to teach programming
languages to novice students? Lecturing or
not?, Proceedings of the International
Conference on Computer Systems and
Technologies, June 15-16, University of Veliko
Tarnovo, 2006, Bulgaria.

[22] Miller, P., Pane, J., Meter, G., Vorthmann, S. R.:
Evolution of novice programming
environments: the structure editors of
Carnegie Mellon University, Interactive
Learning Environments, Vol. 4, No. 2, pp. 140-
158.

[23] Najork, M.: Obiq-3D Tutorial and Reference
Manual, DEC SRC Research Report #129, 1994.

[24] Nevalainen, S., Sajaniemi, J.: An Experiment on
Short-term Effects of Animated versus Static
Visualization of Operation on Program
Perception, Proceedings of the International
Workshop on Computing Education Research,
September 9-10, Canterbury, United Kingdom,
2006, pp7-16.

[25] Nugent G., Soh L., Samal A., Person S., Lang J.:
Design, Development, and Validation of a
Learning Object for CS1, Proceedings of the

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 57

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

10th annual SIGCSE conference on Innovation
and technology in computer science education,
June 27 – 29, Caparica, Portugal, p. 370.

[26] Olimpo, G., Persico, D., Sarti, L., Tavella, M.:
An experiment in introducing the basic
concepts of informatics, Proceedings of Fourth
World Conference on Computers in Education,
29 July - 2 August, Norfolk, U.S.A., 1985, pp.
31-38.

[27] Papert, S.: Mindstorms: children, computers,
and powerful ideas, Basic Books, 1980.

[28] Papp-Varga, Zs., Szlávi, P., Zsakó, L.: ICT
teaching methods – Programming languages,
Annales Mathematicae et Informaticae, Vol. 35,
pp. 163 – 172.

[29] Pattis, R.E.: Karel the Robot: A Gentle
Introduction to the Art of Programming, John
Wiley & Sons, 1981.

[30] Schulte, C., Bennedsen, J.: What do teachers
teach in introductory programming?,
Proceedings of the 2006 international workshop
on Computing education research, September 9-
10, Canterbury, United Kingdom, 2006, pp. 17-
28.

[31] Szlávi P., Zsakó, L.: Methods of teaching
programming, Teaching Mathematics and
Computer Science, Vol. 1, No. 2, pp. 247–258.

[32] Tomek, I.: Josef, the robot, Computers and
Education, Vol. 6, No. 3, pp. 287-293.

[33] ***, Guido von Robot, URL:
http://gvr.sourceforge.net/, Retrieved: April 30,
2009.

[34] *** TIOBE Programming Community Index for
May 2009, TIOBE Software

