
Proceedings of the 20th Central European Conference on Information and Intelligent Systems 103

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

Performance Impact of Security Mechanisms on

Java Mobile Agents for Data Retrieval

Blaž Rodič
Faculty of information studies

Sevno 13, 8000 Novo mesto, Slovenia
{blaz.rodic@fis.unm.si}

Abstract. Our goal was to develop and verify the

performance of a lightweight, mobile agent based

solution that would allow strong security, portability

and access to heterogeneous data resources.

The main focus of this article is on the

performance of Java based mobile agents using

cryptography and data format translation via an

intermediary XML (eXtensible Markup Language)

format.

We have tested the performance of the agents in a

distributed simulation scenario and established that

while some data access methods may limit the

performance of the system, the agents can be used to

connect heterogeneous simulation models and other

applications, improving their connectivity and

usability.

Keywords. mobile agents, XML, data filtering,

data retrieval, distributed simulation

1 Introduction: the problems of

accessing remote data

In the last ten years we have witnessed an increase of

research interest in distributed information systems.

New technologies in networking have improved the

accessibility of information, while strong

cryptography allows us to transfer information more

safely. Better access to data can improve the accuracy

and performance of business and manufacturing

simulation models used in decision support systems

[7]. In turn, faster and more accurate decision support

can give a company an advantage over its

competition.

The use of computer simulation in various areas of

business processes has resulted in the need to

smoothly exchange data between simulation models

and data resources used in different parts of an

organization or in several organizations. However,

network connections can become a serious bottleneck

of a distributed simulation [13], therefore it makes

sense to plan the intensity of communications

between simulation components and the placement of

components according to the available network

bandwidth and latency.

Setting up the connections between distributed

simulation models and other data sources can be a

demanding task, especially if the models run within

dissimilar simulation tools or on different platforms

and there are both continuous and discrete event

simulation (DES) models applied. There is a clear

need for solutions that would simplify the exchange

of data between simulations and other applications

over the communication network. We have identified

the following problems that we would like to address:

• Lack of a common data exchange method and

format supported by all simulation tools, decision

support tools and databases.

• High amount of data exchanged between some

components of a simulation system.

• Security threats in public networks.

• Difficult control of remote components in

distributed systems.

In order to solve or remedy these issues, we have

decided to develop a solution using Java mobile

agents for data retrieval and filtering and to

implement data format translation via an intermediary

XML format. In this paper we have focused on the

performance of the developed agents in a prototype

scenario involving simulation models from real-life

projects, therefore we aim to answer the following

questions:

• What would be the impact of security mechanisms

on system performance?

• What is the impact of data package size on system

performance?

• How much processing time is required by different

parts of code in the agents?

• What is the latency (minimum response time) of

the system?

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 104

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

2 Technology review

We have examined several available technologies for

development of distributed simulation systems and

the related research. One of the better known and well

publicized technologies for distributed simulation is

the HLA (High Level Architecture) [14]. HLA is the

result of advancements in high-performance

computing that has allowed the military to focus on

producing larger and more accurate simulations. But

the weaknesses of HLA are the lack of

interoperability with conventional simulation tools,

difficult handling and a lack of real advantages over

more conventional methods of building distributed

simulation systems [7]. The complexity of HLA leads

to difficult development of models and nearly

impossible integration of non-HLA simulations [13].

The evolution of HLA is however ongoing and many

promising mechanisms such as fault tolerance [2] are

being developed.

One of the recent developments in the area of

distributed simulation is the use of web technologies

such as Web Services, Javascript and CGI (Common

Gateway Interface) to facilitate access to remote

simulation models. Web-based simulation sacrifices

performance and sometimes data security in exchange

for accessibility and ease of use; however it is very

well suited for educational use [5].

A technology that has gained a lot of attention

recently, especially in the field of distributed systems

are mobile agents (MA), a subset of software agents.

In the software community the term “agent” is used

for programmes that have a certain degree of

intelligence and adaptability, being able to operate

without constant supervision and less user input (e.g.

software setup wizards). Mobile agents add another

degree of autonomy – the ability to move between

computer systems. Agents can reduce network traffic,

encapsulate protocols, execute asynchronously and

autonomously, adapt to their environment and can be

used to build robust, failure resistant systems [8].

Maamar et. al. [9] describe a system intended to

facilitate the use of e-commerce on mobile wireless

devices. Issues involved include low bandwidth, high

latency and security of transactions. In order to tackle

these issues, software agents were used in the design

and development of the system. Szymanski and Chen

[13] have used the IBM Aglets toolkit to connect two

simulations running on different platforms. The

authors compared the execution time of models

running within the same shared memory space with a

distributed system, where the models were linked

over LAN and TCP/IP. Their conclusion was that the

communication link between distributed simulation

models is a serious potential bottleneck and effective

distribution of components and implementation of

data filtering is crucial to distributed simulation

system performance. The focus of another research

[12] is the use of mobile agents for integration and

filtering of data in a distributed sensor network. While

the traditional approach would gather all available

data at a central location, here the agents move from

sensor to sensor and locally filter relevant data,

reducing the data flow by up to 90%. A

comprehensive introduction to data acquisition

systems applying data filtering is available in [1]

along with a presentation of an agent based system –

the eDW (Enhanced Data Warehouse).

3 Methodology

Despite the developments in distributed systems we

believe that there is a niche for a lightweight, portable

tool that would facilitate the connection of simulation

models and data resources over the Internet and

provide data filtering as well as security. We decided

to develop the software in Java to provide portability

and cross-platform mobility of agents and decided to

use standard internet security mechanisms. As there

are a number of agent development platforms already

available, we tried to find a platform that would

provide built-in support for important functionalities

such as transport, control and secure communications

between distributed components. We have decided to

utilize the Grasshopper V2.2.4 platform by IKV++

[3]. We have also decided to implement data format

translation using basic XML tables as an intermediary

format. We chose to connect the simulations at the

data resource level, not at the runtime level. Runtime

connections would limit the flexibility and would

require a fast execution of code, something that Java

still does not deliver. Advantages of data resource

connections are shorter and simpler connection setup

procedures and an open-ended structure.

3.1 Mobile agent platform

Our choice of methodology and technology was

guided by the following goals: reuse of a tested, well

documented and freely available technology, high

portability of solutions, and support for mobile

devices. The Grasshopper platform has the following

technical advantages over other MAS: it’s entirely

built in Java, it’s compatible with most computer

platforms, its source code is open, it has a good

implementation of agent transport, it provides well

developed control and security mechanisms, and

finally, it includes excellent documentation and a free

academic license. The central part of the Grasshopper

platform is a distributed processing system, which

integrates the conventional client/server architecture

and the software agents technology.

The Grasshopper platform builds on the concepts

of region, place, agency and several types of agents

(Fig. 1).

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 105

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

Fig. 1. Structure of a Grasshopper based agent system

An agency is an instance of the Grasshopper

application that hosts software agents and provides

services such as communications, registration, data

transfer, security, transport and archiving. Every

agency contains the so-called core agency and several

places where the agents can run. Agencies handle

virtually all services related to the lifetime of agents.

The concept of place aids the grouping of agents

inside agencies according to their purpose or

functionalities. A region registry keeps track of all

agencies and agents within the region and enables

communication with mobile agents regardless of their

location. More details about the platform can be found

at the developer’s website [3] and in the following

sections.

4 Agent system prototype

To test the software agents in the context of

distributed simulation we needed to develop a

distributed system prototype. We have decided to use

agents to connect two different simulation models via

their data resources. The prototype scenario involved

a laptop running a manufacturing simulation that

requires access to the current results of a financial

simulation running on a company server, accessible

via a public network.

The prototype application used simulation models

derived from the models used in a project of

manufacturing process reengineering [6]. In that

project we have constructed several simulation

models: a continuous simulation model for the

financial analysis of investments and several DES

(Discrete Event Simulation) models to represent the

reengineering scenarios. The continuous simulation

model running in Powersim Studio 2003 [10] acted as

the data server, while the DES model running in

ProModel [11] had the role of a data client. Powersim

and ProModel are both general purpose simulation

tools and are designed for the Microsoft Windows

operating system.

Powersim and ProModel cannot be directly

connected, as they don't share a common data

interface or data format. The only runtime data

transfer option in Powersim is the Windows DDE

(dynamic data exchange) link to MS Excel files, while

the only easily accessible runtime data transfer option

in ProModel is via delimited text files, e.g. CSV

(comma separated values) files. Therefore the only

viable method of connecting Powersim and ProModel

is to transfer the data from MS Excel workbooks to

text-based CSV (comma separated values) files.

While it is possible to save data from MS Excel as

CSV files, it is very difficult to perform this from a

remote mobile terminal. Also, directly translating an

MS Excel workbook into a CSV file or files would

result in a large amount of poorly structured data that

would be very difficult to use in ProModel, therefore

data filtering is required. We have also decided to

implement data format translation using an

intermediary format based on XML to facilitate the

addition of new data formats.

Our goal was to mask the complexity of the tasks

necessary to fetch the desired range of data from a

remote location and convert it into a desired format.

After the agents are in place, a user should only have

to enter an SQL query and specify the output file for

CSV format data. SQL queries are a flexible and

widespread method of querying databases and

filtering large amounts of data, and were a natural

choice for the data filtering method. Most data access

drives that operate via the ODBC (Open Database

Connectivity) or JDBC (Java Database Connectivity)

allow the use of standard SQL for database queries.

We have implemented the translation of data

formats used in the prototype using the Java XML

API (application programmer interface) provided in

Java 2 SDK version 1.4.2.03, downloaded from

http://java.sun.com. The xlSQL JDBC driver [4] was

used to access data in MS Excel (Microsoft Excel)

workbooks accessed. The xlSQL JDBC driver is an

open source project with a GPL license (GNU Public

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 106

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

License). An alternative was to use JDBC via the

Microsoft ODBC, however that would require a

Microsoft platform to run, limiting the portability, and

would be a slow and cumbersome solution.

While it is possible to use xlSQL to write CSV

files via MS Excel, xlSQL requires 4 Mb of memory

to run and an installation of MS Excel to access the

files, and thus cannot be used on many mobile

devices. We wanted to implement a translation

method that would be compatible with mobile devices

that do not run Windows or Microsoft Office,

therefore we decided to use only Java to translate

from XML to CSV files.

1.1 Prototype system structure

We have divided the distributed system into several

components, shown on Fig. 2:

• Simulations,

• Data resources and

• Middleware.

The function of middleware is implemented by the

multi-agent system containing the following

components:

• Mobile agents,

• Stationary agents,

• Agent execution platforms (agencies),

• Central registry and control application (region
registry).

Fig. 2. Prototype deployment diagram

The prototype of a distributed system contains

three computers that host individual components of

the system (Fig. 2). The use case scenario has the user

of “Computer 1” trying to obtain simulation data from

“Computer 2” that is acting as a data source. The

“Computer 1” which runs the DES model contains the

file used for data transfer (from continuous model to

DES model) and an agency hosting a stationary and a

mobile agent. The stationary agent is used to forward

user queries to the mobile agent and then receive and

convert the resulting data from the intermediate XML

format to a CSV file. The mobile agent is used to

fetch the data according to the user query (applying

filtering), convert the data to intermediary XML

format and send it to the querying stationary agent.

The computer running the continuous simulation

model (Computer 2) also contains an MS Excel file

used to save and access simulation results and an

agency that hosts the mobile agent. Finally,

“Computer 3” holds the region registry, which is used

to control and administrate the agents and agencies.

A mobile agent is started by a user that would like

to access data on a remote computer that hosts a data

source and can accept mobile agents. The user doesn’t

need to know the exact location of the agency such as

the computer name or its IP address, as it is

transparently provided by the region registry. After

the mobile agent has moved to target agency, it

connect with the data source, assumes the role of a

server and waits for incoming SQL queries.

5 Performance of the MA system

We have tested the operation of the prototype using

different sizes of the query results and both with and

without security mechanisms. Tests were executed

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 107

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

using the plain sockets protocol and compared the

results with the performance of the system using the

Secure Socket Layer protocol. We also measured

system performance using different data package sizes

in order to establish the suitability of the system for

different types of distributed simulation systems and

hardware configurations.

The test environment contained three IBM PC

compatible network workstations. The region registry

was operating on a Windows 2000 SP3 system, a

DELL Inspiron 8100 laptop with a Pentium 3 Mobile

CPU running at 1GHz and a 20Gb, 4200RPM hard

drive and 512Mb of 133Mhz SDRAM (Computer 3

on Fig. 2). The mobile and stationary agents were

installed on a Windows XP SP2 system, a IBM

Thinkpad r50p laptop with a Pentium M CPU running

at 1.7GHz and a 60Gb, 7200RPM hard drive and

512Mb of 333Mhz DDR SDRAM (Computer 1 on

Fig. 2). The role of remote data source (Computer 2

on Fig. 2) was handled by another Windows XP SP2

system, a desktop machine with an Athlon 64 CPU

running at 2GHz and a 160Gb, 7200RPM hard drive

and 1Gb of 433Mhz DDR SDRAM. All computers

were connected to the local area network via Fast

Ethernet (100Mbps) network adapters and 3Com

100Mbps Ethernet switches.

The software used in the experiment was MS

Excel 2000, xlSQL version Y7, Grasshopper V2.2.4,

Powersim Studio 2003 and ProModel version 5.0.

We have measured the following parameters:

• Time needed for the transfer of a mobile agent

between two agencies, depending on the

communication protocol and sequence of transfer,

• Time needed for xlSQL to return a data range

depending on the query result (data range) size,

• Time needed for the conversion of a returned data

range to XML data depending on the query result

(cell range) size,

• Time needed for the conversion of received XML

data to a CSV file depending on the query result

(cell range) size,

• Time needed for the completion of a SQL query

(from the entry of the query to the completed

transfer of results to the CSV file) depending on

the size of the results.

The MS Excel workbook contained a table with

three columns, containing the record index, decimal

value and the time of record creation. We have used

tables that ranged in size from 100 to 65.500 rows

(maximum supported size in the MS Excel in MS

Office 2000). The SQL query returned a range of cells

at a randomly selected position in the table.

An individual record returned contained two

pieces of data: the record index (64 bits of data) and

record value (64 bits of data). The times were

measured using the system clock in the Java Virtual

Machine. The accuracy of time measurements was

limited due to the 10 ms resolution of the system

clock.

Fig. 3 shows the dependence of system

performance on the size of a cell range that a query

returns. The processing time includes the transfer of

the SQL query to the mobile agent acting as a server,

querying using the JDBC driver, conversion of the

resulting data range to XML, sending XML back to

the client agent and transfer of results to the CSV file.

We have established that processing time is

proportional to the query result size, it seems to grow

exponentially, and that the use of secure mechanisms

for communications reduced the system performance

by approximately 20 percent. Processing time does

not drop much below 100 ms, even for very small

query sizes. We have found out that the processing

time is limited by the latency of the xlSQL driver, as

is explained in the following paragraphs.

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 108

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

System performance (SQL query to CSV file)

0

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

0 1000 2000 3000 4000 5000

Query result size [row s]

P
e
rf
o
rm

a
n
c
e
 [
ro
w
s
/s
e
c
o
n
d
]

Plain Sockets Secure Sockets (SSL)

Fig. 3: System throughput depending on the query result size

We have divided the tasks of agents in two parts:

first, the execution of an SQL query and the

conversion of query results into XML and second,

transforming XML data into a CSV file. The former is

performed at the remote location by the mobile server

agent, while the latter is performed by the client

agent. We wanted to know what share of the total

processing time is taken by each of the agent’s tasks.

We have measured the average duration of processing

from the submission of a SQL query to receipt of

results in XML format and the average duration of

processing from the receipt of XML data to the

completed conversion of results into a CSV file. The

results of our measurements are shown on Fig. 4. It

seems that the processing share of client agent tasks

(conversion from XML to CSV) grows with the size

of query results. Conversion from XML to CSV

format becomes relatively slower with bigger data

sets, but it’s still much faster than the execution of the

SQL query and subsequent conversion of data to

XML. We should note that the system clock

resolution (10 ms) limited the accuracy of results, as

the conversion from XML to CSV took less than 10

ms for one-row queries and about 100 ms for 5000-

row queries.

Time share of tasks of the server

and of the client agent

0

20

40

60

80

100

1 10 100 500 1000 2500 5000

Query results size [row s]

T
im
e
 s
h
a
re
 o
f
ta
s
k
 [
%
]

Client agent tasks (XML to CSV)

Server agent tasks (SQL to XML)

Fig. 4: Time shares of the tasks of a server agent and a client agent

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 109

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

As the mobile server agent relies on the xlSQL

driver to do its job, we decided to gauge the

performance of the xlSQL driver, by separately

measuring the duration of the agent’s two distinct

tasks: the execution of the received SQL query and

the conversion of the resulting data range into an

XML table. Fig. 5 shows the average duration of these

tasks. These tasks involve the methods implemented

in the mobile agent, methods implemented by the

local JDBC driver xlSQL accessing MS Excel files,

but do not include the transfer of data over the

network. Network performance in different mobile

agent scenarios may vary a lot, therefore we decided

to exclude this variable from our performance

measurements. The accuracy of results was limited

due to the limited resolution of the system clock (10

ms). Judging by Fig. 5, the duration of SQL queries is

affected by the query result size only for query result

sizes of under 1000 rows, while the duration of

conversion of the data set to XML increases

proportionally with the size of query results. As we

have found, the duration of an SQL query is the

limiting factor for the latency of mobile agents. The

shortest achieved duration of a query and thus agent

latency in our tests was 60 ms. Such latency

significantly limits the usability of the system for real-

time access to data, however it should be noted that

this latency is due to the xlSQL JDBC driver and not

the agents. With a different data source and access

method, the latency would change.

Average duration of tasks of the mobile (server) agent

0

20

40

60

80

100

120

140

160

0 1000 2000 3000 4000 5000

Query results size [row s]

T
a
s
k
 d
u
ra
tio
n
 [
m
s
]

Average duration of SQL query Average duration of conversion of results to XML

Fig. 5: Average duration of tasks of the mobile agent

Our results show that the system performance is

affected by both query result size and the use of

security mechanisms, as we have expected. The

system throughput was highest when the size of query

results was several thousand rows. The latency of the

mobile server agent is affected by the duration of SQL

query. The minimal latency we have achieved with

the mobile agent during our test was in the order of 60

ms and the smallest total time of service (SQL query

to CSV file) achieved was approximately 100 ms,

which translates to about 10 transactions per second.

That speed is unsatisfactory for a real-time application

of the system but may be adequate for decision

support systems.

The highest achieved throughput is approximately

eight thousand records per second, where each record

contained two numbers in the “double accuracy

floating point” format with the size of 64 bits each.

This speed is in our opinion adequate to link business

simulation models and other applications, but not

appropriate to conduct real-time data transfer between

complex simulation models or applications with

intensive communication between components. That

can be expected as Java applications still tend to be

relatively slow compared to compiled native

applications. Also, MS Excel workbooks are not

intended for the storage of large amounts of data and

cannot compete with relational databases for speed of

access. Given these limitations, we conclude that the

achieved throughput is satisfactory.

The use of security mechanisms in data transfer

has a notable negative effect on the system

performance due to increased communication setup

and data transfer overhead of secure protocols.

Establishing a connection using SSL has several

additional steps compared to plain Sockets, and some

of these steps are computationally intensive

(encryption and key generation). SSL also requires

some additional resources on the computer (key

storage). As all transferred data is encrypted using

strong encryption, the overhead is significant during

the entire communication. Our tests show that the use

of security mechanisms slows the system performance

down by approximately 20 percent.

Proceedings of the 20th Central European Conference on Information and Intelligent Systems 110

Varaždin, Croatia Faculty of Organization and Informatics September 23-25 2009

6 Conclusions and future research

We have developed two types of agents: a mobile

agent that functions as a server for remote queries in

SQL (Structured Query Language) and converts the

query results into XML documents and a stationary

agent acting as a client for query forwarding and

conversion of received documents into text files

readable by a client application. The results of our

research show that software agents can be used to

connect distributed simulation models, developed

with different general purpose simulation tools and

databases, thus improving the connectivity and

usability of simulation models in distributed

information systems. The use of standard security

mechanisms provide authentication, confidentiality

and integrity of information and contribute to the

safety of the entire distributed system without a major

negative impact on system performance. As the

developed agents automate data filtering and format

conversion, as well as a part of data retrieval, the

agents also reduce the time necessary to link the

simulation models and significantly simplify this

process. By using an intermediary format we only

need to develop two converters for every new data

format, i.e. 2*n converters for conversion between n

different data formats. Without an intermediary

format, n*(n+1) converters are necessary.

While the server side of the system (the computer

hosting the data resource and mobile server agents)

has to provide an agent platform and an appropriate

JDBC driver to access data, the client side needs only

the agent platform for full functionality. Therefore

any computer that can run the Grasshopper agent

platform (therefore most systems that support Java)

can be used to easily access remote MS Excel data

with simple yet powerful SQL queries. This

significantly facilitates the integration of different

simulation models and applications from various

platforms into a distributed information system.

However, several limitations exist within this

system. The selected data access driver (xlSQL)

introduces latency that limits the real-time application

of the agents. Also, data retrieval could be automated

with the introduction of data-broker agents. In the

future we intend to implement conversion to and from

several other data formats and verify the system

performance with different data formats, automate

data retrieval, and verify the performance of the

system using handheld devices running Java.

8 Acknowledgments

The research was financially supported by the

Slovene Ministry of education, science and sports

within the “Decision Systems in a Global e-

Economy” programme, code: PP-0586-501 and the

Young Researcher programme.

Literature

[1.] Abramowicz W., Kalczynski P., Wecel K.:

Filtering the Web to Feed Data Warehouses,

Springer-Verlag, Berlin Heidelberg New York

(2002)

[2.] Chen D., Turner J.T., Cai W.: A Framework for

Robust HLA-based Distributed Simulations, In:

Turner J.T., Luethi J. (eds.): Proceedings of the

20th Workshop on Principles of Advanced and

Distributed Simulation - PADS 2006, IEEE

Computer Society, Washington D.C. (2006) 183-

192

[3.] IKV++: http://www.grasshopper.de, 20.10.2004

[4.] JAVA.NET: https://xlsql.dev.java.net/, 3.5.2006

[5.] Karagiannis P., Markelis I., Paparrizos K.,

Samaras N., Sifaleras A.: E-learning technologies:

employing Matlab web server to facilitate the

education of mathematical programming,

International Journal of Mathematical Education in

Science and Technology, Vol. 37, No. 7/15 (2006)

765-782

[6.] Kljajic, M., Bernik, I., Skraba, A.: Simulation

Approach to Decision assessment in Enterprises,

Simulation, Vol. 75, No. 4 (2000) 199-210

[7.] Kuljis, J., Paul, R.J.: An appraisal of web-based

simulation: whither we wander?, Simulation

Practice and Theory, Vol. 9, Nr. 1-2 (2001) 37-54

[8.] Lange, D.B., Oshima, M.: Seven good reasons

for mobile agents, Communications of ACM, 42(3)

(1999) 88-89

[9.] Maamar Z., Yahyaoui H., Mansoor W.: Design

and Development of an M-Commerce

Environment: The E-CWE Project, Journal of

Organizational Computing and Electronic

Commerce, Vol. 14, No. 4 (2004) 285-303

[10.] Powersim Software AS:

http://www.powersim.com, 10.03.2004

[11.] ProModel Corporation:

http://www.promodel.com/, 16.02.2002

[12.] Qi, H., Iyengar, S., Chakrabarty, K.: Distributed
multiresolution data integration using mobile

agents, In: Robert P.W. (ed.): IEEE Aerospace

Conference Proceedings, Vol. 3, IEEE Service

Center, Piscataway, NJ. (2001) 1133-1143

[13.] Szymanski, B.K., Chen, G.: Linking spatially

explicit parallel continuous and discrete models, In:

Joines J.A., Barton R.R., Kang K., Fishwick P.A.

(eds.): Proceedings of the 2000 Winter simulation

conference, The Society for Computer Simulation

International, IEEE, Piscataway NJ (2000) 1705-

1712

[14.] U.S. Department of Defense, Defense Modeling

and Simulation Office,

https://www.dmso.mil/public/transition/hla/,

1.12.2006

