
Detecting code re-use potential

Mario Konecki, Tihomir Orehova ki, Alen Lovren i

Faculty of Organization and Informatics

University of Zagreb

Pavlinska 2, 42000 Varaždin, Croatia

{mario.konecki, tihomir.orehovacki, alen.lovrencic}@foi.hr

Abstract. Living in a dynamic world requires rapid
development of both web and desktop applications to

support such trend in IT industry. Processes are

becoming more complicated, and in turn more
demanding. There are two problems regarding

applications: development and maintenance. In this

paper we are discussing optimization of applications
code and re-usability. The main idea is to compare

certain application parts or modules and determine

the amount of overlapping content. If there is a
certain percentage of overlapping, it means that

targeted part of code can be optimized in such way

that it is programmed in one place and then re-used
as such in other places. This speeds up development

and makes maintenance easier. In this paper we will

present the process of code comparison and pre-
processing that is needed to recognize invariants of

the same code.

Keywords: development process, program code,

comparison, reusability, optimization

1 Introduction

When looking at the software development process

today we can say that there are certain efforts that

have been made in order to make this process quicker

and easier. Some of the concepts that we encounter

here are design patterns, components,

metacomponents, etc. Design patterns [4] are tested

and reliable solutions for reoccurring problems in

software engineering. They are concepts and cannot

be translated directly into code. Component [2] is a

part of larger software system and it has the ability of

providing some service to its surroundings which

means that it communicates with other components in

order to solve some problem. Components are

reusable and flexible which means that they are not

specifically designed to run in just one system.

Metacomponents [17] are descriptions that make it

possible to generate concrete components so they are

another step forward.

All of these concepts and more of them brought

developers a little bit closer to their goal which is

developing applications faster and with a larger

reliability. Along with all these concepts there are

more aspects that must be considered. One of them is

duplication of computer code, especially in

components but also in other concepts of software

development. It is of our interest to find out how

much of software code is duplicated when developing

and application in various components and other

software parts.

In order to do this we have created a concept upon

which an algorithm for computer code comparison

will be created. It is our intention to analyze results of

this comparison and determine which steps are to be

taken in order to optimize the development process.

This concept and discussion about possible solutions

is presented in the following sections of this paper.

2 Background research

When talking about code comparison the first thing

we have to look is comparison in general. Comparison

is frequently mentioned when talking about

plagiarism. In the field of education this problem is

mostly related to Higher Education [13].

First ideas about comparison came related to

student essays and papers. It was of great interest to

find out how many similarities there are. When

talking about essays and papers we can say that there

are two categories [13]:

plagiarism – taking content from Web and

other sources and declaring it as one’s own.

collusion – collaboration between students

when working on some assignment that was

meant to be done individually.

There are two frequently used methods for

plagiarism detection [13]:

Turnitin – a browser-based tool that

compares uploaded files against a base of

Web content and with related student papers.

Ferret copy detector – a standalone system

that is based on a fact that most ordinary

words appear quite rarely in texts.

In the Brown corpus of 1 million words, 40% of

the word forms occur only once [10]. This distinctive

distribution is even more distinctive on bigrams (two

consecutive words) and even more on trigrams (three

consecutive words). It was realized that trigrams are

the smallest elements by which usage it is possible to

fingerprint particular text [13]. Any article has in

average 77% of its trigrams unique [13]. So articles

can be processed by dividing text into trigrams and

comparing occurrence of this trigrams in particular

texts.

When comparing computer code the process can

be simplified or can be analyzed from more complex

point of view. The Ferret detector/comparator can be

used. Code is divided into trigrams with some

preprocessing. For example sing “==” must be treated

as one word. But also more complex algorithms can

be used.
Another aspect of interest already mentioned is

optimization of computer code and making

maintenance easier. There are several possible

algorithms that can be used here [1]:

Text-based techniques perform little or no

transformation to the “raw” source code

before attempting to detect identical or

similar (sequences

of) lines of code. Typically, white space and

comments are ignored.

Token-based techniques apply a lexical

analysis (tokenization) to the source code

and, subsequently, use the tokens as a basis

for clone detection.

AST-based techniques use parsers to first

obtain a syntactical representation of the

source code, typically an abstract syntax tree

(AST). The clone detection algorithms then

search for similar subtrees in this AST.

PDG-based approaches go one step further in

obtaining a source code representation of

high abstraction. Program dependence

graphs (PDGs) contain information of a

semantical nature, such as control and data

flow of the program.

Metrics-based techniques are related to

hashing algorithms. For each fragment of a

program, the values of a number of metrics

are calculated, which are subsequently used

to find similar fragments.

Information Retrieval-based methods aim at

discovering similar high level concepts by

exploiting semantic similarities present in the

source code itself (including the comments).
There are many tools available that have different

algorithms and different usage, such as JPlag [15].

Some of the most known tools that can be found

for comparison of code or papers are [5]:

Turnitin – comparison of uploaded papers

against the base of articles from Web.

JPlag – finds similarities between uploaded

documents.

EVE2 – standalone software for papers

plagiarism detection with possibility of

different strengths of comparison/detection.

CopyCatchGold – detects similarities

between papers even when author changes

order of words, sentences or uses only a part

of the paper.

WordCheck – checks similarity of paper with

other papers written by same or different

author based on frequency of occurring

words.

MOSS – determines computer code

similarities.

3 Computer code comparison

In order to compare two pieces of computer code a

proper concept for this action has been developed.

This concept considers C-like languages code

comparison but the concept is applicable to all

programming languages.

The steps that are to be taken in order to perform

the comparison are:

1. divide program code into parts where one

part is one function

2. remove all declarations of variables or

functions

3. replace all variable names with a constant

name X

4. replace all function names with a constant

name Y

5. remove all input commands (lines)

6. remove all output commands (lines)

7. remove all blank lines

8. remove all blank spaces

9. if there are lines with only “(” and “)” then

read all those lines, lines between them and

form one line of format (content)

10. if there are “{” or “}” at the beginning or end

of lines then move these brackets to a new

line before or after the content between them

11. compare all lines of all computer code by

parts that are result of the first step

12. also compare the size of these parts in order

to try predicting the content of a party by its

size

Pseudo code of this process is given below:

read input files(s)

if there is more than one function per file

split all parts into smaller parts that

consists of only one function

for every small part (function) do the

following

remove all declarations of variables

or functions

replace all variable names with a

constant name X

replace all function name with a

constant name Y

remove all input commands (lines)

remove all output commands (lines)

remove all blank lines

remove all blank spaces

if there are lines with only “(” and

“)” then

read all those lines and form one

line of format (content)

if there are “{” or “}” at the

beginning or end of lines then

move these brackets to a new line

before or after the content

between them

compare all lines of all computer code by

parts (all with all comparison)

compare the size of these parts in order to

try predicting the content of a party by its

size

A flowchart diagram is also given below:

Figure 1. Flowchart part one

Figure 2. Flowchart part two

This algorithm takes n programs as an input and

then does the comparison but it also tries to learn in

step 12 where it tries to recognize over time the sizes

of programs and connecting them to some specific

code pattern.

The input for this algorithm can be various

programs or modules of the same program. In this

way one can se how much code is duplicated in an

application and then can isolate this parts and put

them in just one place. In this case one would for

example create instances of the same class rather than

several classes that are too similar and can be joined

into one.

By doing this application code is reduced and

optimized, maintenance of the code is made easier

and future development quicker.

4 String similarity/difference metric

The 11th step of out code comparison process

compares lines of code. These lines can be observed

as pure strings. There are several algorithms in

information theory and computer science that deal

with calculating so called edit distance (number of

operations required to transform one string into

another). Some of more known algorithm are:

Hamming distance [6] which is applicable

for comparing strings of the same length and

presents the number of position for which the

strings are different.

Levenshtein distance [11][14][9] measures

the amount of difference between two string.

It represents a minimum of operations that

are needed to transform one string into

another. Allowed operations are insertion,

deletion or substitution of a single character.

Damerau-Levenshtein distance [3][12] is a

generalization of Levenshtein distance and it

is virtually the same algorithm but it also

allows the transposition of two characters as

an operation.

Jaro-Winkler distance [8] is a measure of

similarity between two strings.

Some of the other algorithms that can be found

are:

Wagner-Fischer edit distance [18]

Ukkonen [16]

Hirshberg [7]

etc.

5 Conclusion and future work

Computer code comparison and optimization is a

definite need in the overall development process. In

this article we give an idea of coming just one step

closer to faster and more reliable software

development and easier maintenance.

It is our intention in our future work to develop a

prototype of this comparison algorithm and conduct a

detail case study where we would find out about

robustness and reliability of this algorithm. A more

detailed research will be conducted upon detailed

testing of the prototype. When we establish well

tested and proven model for this aspect of software

development we will research in more detail the

possibilities and areas of interest where this concept

could find its value. A more aggressive benchmark

has to be taken in order to develop a suitable and

usable algorithm that will process the analysis in a

reasonable amount of time.

We will also give an index of usability according

to the programming areas. For example we think that

web and distributed applications would greatly benefit

of this model.

References

[1] Bruntink, M., Deursen, A., Engelen, R., Tourwe,

T.: On the Use of Clone Detection for

Identifying Crosscutting Concern Code, IEEE

Transactions on Software Engineering, Vol. 31,

No. 10, 2005, pp. 804-818.

[2] Crnkovic, I., Larsson, M.: Building Reliable

Component-Based Software Systems, Artech

House, Boston, 2002.

[3] Damerau, F.J.: A technique for computer

detection and correction of spelling errors,

Communications of the ACM, 1964.

[4] Gamma, E., Helm, R., Johnson, R., Vlissides,

J.M.; Design Patterns: Elements of Reusable

Object-Oriented Software, Addison-Wesley,

1995.

[5] Gaither, R.: Plagiarism Detection Services,

Shapiro Undergraduate Library, University of

Michigan, 2002.

[6] Hamming, R. W.: Error Detecting and Error

Correcting Codes, Bell System Technical

Journal, Vol. 26, No. 2, 1950, pp. 147-160.

[7] Hirschberg, D. S.: A linear space algorithm for

computing maximal common subsequences,

Communications of the ACM, Vol. 18, No. 6,

1975, pp. 341-343.

[8] Jaro, M. A.: Advances in record linking

methodology as applied to the 1985 census of

Tampa Florida, Journal of the American

Statistical Society, Vol. 84, 1989, pp. 414–420.

[9] Konstantinidis, S.: Computing the Levenshtein

distance of a regular language, Information

Theory Workshop, 29 August – 1 September

2005, IEEE.

[10] Kupiec, J.: Robust part-of-speech tagging using

a hidden Markov model, Computer Speech and

Language, Vol. 6, 1992, pp. 225-242.

[11] Levenshtein, V. I.: Binary codes capable of

correcting deletions, insertions, and reversals,

Soviet Physics Doklady, Vol. 10, No. 8, 1966,

pp. 707–710.

[12] Lowrance, R., Wagner, R: An Extension of the

String-to-String Correction Problem, Journal

of the ACM, Vol. 22, No. 2, 1975, pp. 177-183.

[13] Lyon, C., Barrett, R., Malcolm, J.: Plagiarism Is

Easy, But Also Easy To Detect, Plagiary: Cross-

Disciplinary Studies in Plagiarism, Fabrication,

and Falsification, Vol. 1, No. 5, 2006, pp. 1-10

[14] Navarro, G.: A guided tour to approximate

string matching, ACM Computing Surveys, Vol.

33, No. 1, 2001, pp. 31–88.

[15] Prechelt, L., Malpohl, G., Philippsen, M.:

Finding Plagiarisms among a Set of Programs

with JPlag, Journal of Universal Computer

Science, Vol. 8, No. 11, 2002, pp. 1-44.

[16] Ukkonen, E.: Algorithms for approximate string

matching, Information and Control, Vol. 64,

1985, pp. 100-118.

[17] Villacıs, J. E.: The Component Architecture

Toolkit, Indiana University, Department of

Computer Science, 1999.

[18] Wagner, R. A., Fischer, M. J.; The String-to-

String Correction Problem, Journal of the

ACM, Vol. 21, No. 1, 1974, pp. 168-173.

