
Efficient Trigger Management in Multiagent

Systems

Kornelije Rabuzin, Mirko Maleković

Faculty of Organization and Informatics

University of Zagreb

Pavlinska 2, 42000 Varaždin, Croatia

{kornelije.rabuzin, mirko.malekovic}@foi.hr

Abstract. The active database theory is well

developed; many different types of events are

supported, static analysis mechanisms are developed,

etc. One of the problems regarding active rules

management is a number of rules defined; it is not so

easy (for a user and for a system) to manage a large

number of rules. Although some systems allow similar

rules grouping, the problem is still significant. During

a project we had the same problem occurred i.e. a

number of time triggers that were used was too big.

This paper describes how we reduced a number of

time triggers that were used in a multiagent system by

introducing a meta-trigger.

Keywords. Trigger management, active databases,

reactive agents

1 Introduction

Agents and multiagent systems were (are) used in

many different areas for solving many different

problems. Many papers were published and

interesting research conducted and reported in

published publications. Conflict resolution strategies

are just one of the problems still present in multiagent

theory that gain much attention. The problem which

we had and tried to solve referred to efficient resource

allocation in a multiagent system; how to efficiently

allocate some set of scarce resources and avoid

conflicts was the main issue. The problem was

described in [7]. A database we had contained all

relevant information about resources that were

allocated and many deliberative agents had to allocate

these resources efficiently. Although deliberative

agents were able to allocate resources and solve

conflicts that occurred during the allocation, the

solution was far from optimal. Agents often run into

deadlocks while allocating resources (Figure 1), and

negotiation took too much time [8]. A new, fast and

reliable solution had to be found.

In order to resolve conflict situations one has to

understand what a conflict is, what could cause a

conflict, and how conflicts could be resolved [8]. In

[8] several different conflict definitions were

presented, conflict causes were identified, different

types of conflicts were described, and conflict

resolution strategies presented as well. We can say

that two basic strategies for handling conflict

situations could be applied; avoid or resolve ([12]).

Conflicts could be resolved in two ways: cooperative

and non-cooperative [13], [14]. Non-cooperative

conflict resolution methods are in general dealing

with worst-case scenarios [14], while cooperative

algorithms involve information exchange between the

agents. Cooperative approaches can be further broken

down into centralized and decentralized methods [6].

The first approach subsumes that there is a central

component that resolves conflicts, while the second

approach is based on coordination protocols [8].

Although the solution can be optimal, gathering all

information at a central location might be a

challenging task in practice if the system is large [6].

According to [4] there is no universal way to resolve

conflict situations; that's why they tried to define a

framework to resolve conflicts in a way that different

techniques for resolving conflicts were integrated, and

the best one was selected according to the conflict that

occurred. Although the proposed solution was good,

time was spent to determine which strategy to use.

Figure 1. A physical conflict

All mentioned approaches are trying to solve

conflict situations, but it seems much better to avoid

them (if possible). In order to avoid conflicts, based

on conducted research regarding conflicts, we didn’t

want to define some new architecture, but we decided

to use existing technologies and rules of thumb.

During the years researchers have come to the

conclusion that reactivity is also a very important

characteristic that an intelligent agent should possess

[7]. Reactivity is suitable for dynamically changing

A1

A2

R1

R2

environments performing an immediate response to

some changes which have been recognized and

perceived [8].

Since a database with needed data (information)

existed, in order to resolve conflicts it was decided to

build a fast centralized solution. For that purpose a

reactive database agent was introduced and

implemented within the database by means of stored

procedures and event-condition-action rules (in order

to fulfill the speed requirement). Since triggers were

placed on a server, and their execution time can be

neglected, the solution possessed very good

computational performances. In order to build such an

agent the connection between active databases and

reactive agents was explored in a detail, and results

presented in [10].

Active databases and reactive agents were

developed independently and only a few articles were

written on the subject. What is common to both fields

is that both types of systems can perceive the

environment and react to recognized events. Further

on, events are very important component for both

systems, although authors in [1] consider that active

systems mainly use simple events. Actions that are

executed in agent systems may be evaluated; in active

databases this possibility is not directly supported [3].

The conditions are rarely mentioned in the context of

reactive agents, but are intrinsic to active databases. In

agent systems events are simpler, but actions may

include complex plans and reasoning that is beyond

predefined scripts that are used in active databases

[10]. Finally, triggers are more complex today

because one can use many programming languages to

specify actions that are going to be executed. Active

databases support transactions, while agents do not. It

is very hard to ensure atomicity in agent systems; the

order of actions is crucial if an agent tries to execute

some set of actions successfully. The problem that is

still present in agent systems is the question of

rollback; how to ensure that, after some actions were

already executed, the system restores to a previous

state and that effects of performed actions are

cancelled (ignored). We investigated and established a

connection between active databases, reactive agents

and business rules and published the results in our

previous paper.

A database agent that was developed and added

into the multiagent system allocated resources within

transactions; atomicity ensured that either all needed

resources were efficiently allocated, or none. In that

way deadlocks were avoided and some set of

resources was allocated efficiently (that is not so easy

to ensure in decentralized environment).

The problem with the system was how to ensure

that already taken resources were de-allocated. For

example, an agent could have taken several resources

and then decided not to return them. In that case other

agents couldn’t have allocated resources because they

hadn’t been returned yet. So due to network problems,

forgetfulness, etc. there was a possibility that

resources weren’t returned in (on) time. So a control

mechanism had to be created in order to ensure that

resources were returned and available for other

agents; in that way physical conflicts were in fact

avoided (it is much better to avoid conflicts situations

than to solve them).

A control mechanism was built that was sending

messages to agents and for that purpose time triggers

were used. Each time a resource was taken a new time

trigger was created in order to remind an agent (if a

resource hadn’t been de-allocated) that the resource

was still in use. The number of triggers was equal to

the number of taken resources; the more resources

were taken, the more triggers were defined. In order

to avoid the vast number of defined time triggers,

their number had to be reduced.

The rest of the paper will explain how this was

done. In the first section we will briefly explain some

basic terms regarding active databases. Then the

problem and the solution models are described, and

finally the conclusion is presented.

2 Active Databases

An Active DataBase Management System (ADBMS)

is a conventional database system capable of reacting

to some events of interest that can occur within the

database, or outside it. Usually Event-Condition-

Action (ECA) rules are used to describe automatic

behavior; when certain events occur (ON EVENT),

and some conditions are fulfilled (IF CONDITION),

then some actions are going to be executed

automatically (THEN ACTION) as reactions to these

recognized events. ECA rules are mostly implemented

using triggers, but some systems offer some other

mechanisms in order to implement active rules.

Each active database management system is based

upon a passive, conventional database management

system. In order to support active functionality each

passive database management system has to be

extended in a way that different kinds of events can be

detected, transactions can be managed because of

different rule execution models, etc. That can be done

in three different ways: integrated, layered or

application oriented approach ([2], [5]). Several

approaches for active databases performance

measurement were introduced as well ([5], [9]).

Events are very important components of active

rules because they define when some conditions are

going to be evaluated and, of course, actions

executed. The SQL standard defines only three basic

types of events that can be used in trigger

specification: INSERT, UPDATE, and DELETE. But

for solving real problems many different types of

events were introduced during the years as well [5],

[9].

Events can be divided into simple and complex

events [5]. Complex events are mostly based on

simple ones, and simple events can be divided as

follows:

1. Basic database operations: INSERT,

UPDATE, and/or DELETE,

2. Time events:

a) absolute - certain point of time,

b) periodic - every day, month, etc., and

c) relative - for example, 30 minutes after

something else happened,

3. Method events: method invocation (in

object-oriented DBMS),

4. Transaction events: for example BEGIN or

COMMIT, and

5. Abstract events: some user defined events.

Complex events could be built by combining

several simple events, or by using several existing

constructs i.e. negation, sequence, repeat, etc. For

example, if we had simple events E1 and E2, then

E1∧E2 or E1∨E2 would represent a complex event.

Negation represents an absence of some event

within some time interval, sequence represents that

several events occurred in a specified sequence and

repeat means that some event (simple or complex)

repeated several times within some time interval.

More on composite events can be found in [5] and

[11].

There are also some other important issues

regarding active databases that will be briefly

mentioned. Each ADBMS has a language that is used

for trigger specification (definition), and has an

execution model that determines how the rules are

going to be executed [5].

When an event occurs the condition is evaluated

and then some actions are executed, provided that

condition evaluation was successful. Occasionally it

makes sense to postpone condition evaluation or

action execution for some time, and perform them

later on. That is why several different execution

models exist (immediate, deferred and decoupled).

Sometimes active databases do not exhibit desired

behavior; rules could trigger one another, inconsistent

rules may exist, and rule execution process may not

terminate. Static analysis is used to answer all

mentioned questions and to ensure more reliability

during the rule execution process. Several different

approaches were introduced to perform static analysis

as can be found in [5] and [9].

There are also some other important issues

regarding active databases, but since they are not

important for this paper, will not be covered either.

We refer to [5], [9] and [10].

3 The problem and the solution

model

As we already described, conflict situations needed to

be avoided in an efficient manner. Since optimal

behavior is not so easy to achieve in decentralized

environment, a centralized solution was built; a

reactive agent that was built by means of active rules

and stored procedures was used. The connection

between reactive agents and active databases was

described in [10].

The thing that was crucial for our model was how

to build and ensure a control mechanism that would

enable and ensure in time resource de-allocation in a

multiagent system. If resources were returned in time,

other agents were able to allocate them. If resources

were not returned, other agents waited and that was

not acceptable in a real time system we had. In order

to ensure resource de-allocation, the set of active rules

was defined and absolute time triggers were added

into PostgreSQL DBMS, in order to remind agents

that resources were still not de-allocated.

A table with resources existed. Each time a

resource was allocated, a new row was added into the

resource_use table; it was written which agent took

which resource and when. Each time a new row was

added into the resource_use table, a resource use time

was estimated (based on previous information) i.e. a

resource would be used for some time interval t. So,

each allocated resource was used for some time t.

Each time a resource was allocated (at time T),

estimated time t was added and a time trigger was

created to remind agent at T1 (T1=T + t) that certain

resource was not de-allocated yet. If a resource was

de-allocated, appropriate time trigger was deleted and

a message wasn’t sent.

On T1

Send message to agent A1 to check resource R1

Since we had many resources allocated in each

point of time, many similar triggers existed in a point

of time.

On T2

Send message to agent A2 to check resource R2

…

On Tn

Send message to agent An to check resource Rn

In that way the resource status was checked, and

agent was reminded to de-allocate resource(s) if they

hadn’t been returned. Each time some resource was

returned, appropriate time trigger was deleted.

Similarly, each time a resource was taken, a trigger

was added.

As one can see the condition part of defined ECA

rules (triggers) is missing. Conditions were not

needed; the fact that trigger existed was enough

because it meant that some resource was not de-

allocated (otherwise the trigger wouldn’t have

existed). So basically if some trigger was defined than

the resource hadn’t been returned.

The problem with active databases is efficient

management of triggers; the more triggers we have,

the more difficult the management is. Although time

triggers were used for notification purposes and were

not dangerous in a sense that rule execution process

wouldn’t terminate, we decided to reduce the number

of triggers and to define one meta-trigger that would

perceive relevant parameters dynamically and replace

many similar triggers. As one can see, all triggers

look the same; this similarity enabled us to build a

meta-trigger that was active all the time, and relevant

parameters were passed to this meta-trigger whenever

there was a need to do so.

We used a possibility of passing the relevant

parameters from the event part to the action part of the

trigger defined.

ON [(T1, A1, R1), ..., (Tn, An, Rn)]
THEN send_message [(X, Y)]

The meaning of (T1, A1, R1) is: on T1 send a

message to an agent A1 regarding a resource R1.

Relevant parameters (A1 and R1) were passed to the

send_message(X, Y).; basically, a message was sent to

the agent A1 to check the status of the resource R1.

In that way we had just one defined trigger that

was active all the time, with many dynamically added

parameters. As one can see the trigger management

was easier; instead to look at the definitions of many

different triggers defined, we had one file that

contained all relevant parameters. The solution was

implemented on a UNIX system using the CRON

process; the already mentioned file that contained

parameters was sent to the CRON system. For those

that are not familiar with the CRON system, it

operates pretty much the same as Windows

Scheduler; at some point of time it performs some

specified actions. On the other hand, that was a

natural solution because it enabled us to directly

implement our solution model.

Each time some new resource was allocated, a

new row was added into the file that was used as an

input for the CRON system (the following script).

CREATE OR REPLACE FUNCTION ioperl()
RETURNS trigger AS $$

if ($_TD->{new}{service}) {
$query = "select (now() + avg(returned - taken))

as vrijeme from res_usage where resource ='" .
$_TD->{new}{resource} . "' and service = '" . $_TD-
>{new}{service} . "' group by resource, service limit
1;";

} else {
$query = "select (now() + avg(returned - taken))

as vrijeme from res_usage where resource ='". $_TD-
>{new}{resource} . "' group by resource limit 1;";

 }
 $res = spi_exec_query($query);
 $time = $res->{rows}[0]->{vrijeme};
 # determine date parameters
$godina = substr($time,0,4);
$mjesec = substr($time,5,2);
$dan = substr($time,8,2);
$sat = substr($time,11,2);
$minuta = substr($time,14,2);
$sekunda = substr($time,17,2);

determine which agent took which resource
$agent = $_TD->{new}{agent};
$resurs = $_TD->{new}{resource};
$servis = $_TD->{new}{service};

$obavijest= "Agent $agent nije vratio resurs
$resurs! ";

open and write to file...
open(FH, ">>/home/stuff/krabuzin/perl/trigger");
print FH "$minuta $sat $dan $mjesec

* echo \" $obavijest \" \n";
close FH;
system ('crontab

/home/stuff/krabuzin/perl/trigger');
return;
 $$ LANGUAGE plperlu;
CREATE TRIGGER perl_AI AFTER INSERT ON

res_usage
FOR EACH ROW EXECUTE PROCEDURE

ioperl();

Each time a resource was de-allocated, an

appropriate line was deleted from the file. So the file

contained the same number of lines as the number of

resources that were allocated. An example row in the

file was:

40 16 20 10 * echo " Agent A1
didn't return resource N2! "

The meaning of the line is: on 20
th

 of October (last

year) at 16.40 a message was sent that a resource N2

was not de-allocated and was still in use by agent A1.

After the message was sent several scenarios were

possible; the agent could have de-allocated the

resource, or for example, send a message that it was

still in use.

4 Conclusion

Since many resources were allocated in the same

point of time, the number of defined triggers was

equal to the number of resources that were in use. In

order to ensure easier trigger management, we

decided to reduce the number of triggers and to

introduce a time meta-trigger.

Relevant parameters were added (and removed)

dynamically into just one file, and the number of

triggers defined was reduced. Instead to look at many

different trigger definitions, all relevant parameters

were visible in just one file.

The proposed control mechanism operated

successfully for a small number of resources. What

has to be done is to test the proposed model in a rela-

time environment including many agents and

resources.

References

[1] Bailey J, Georgeff M, Kemp D, Kinny D,

Ramamohanarao K: Active databases and

agent systems – a comparison, Proceedings of

the second international workshop on rules in

database systems, Lecture notes in computer

science 985, Athens, Greece, 1995, pp 342-356.

[2] Chakravarthy S: Architectures and monitoring

techniques for active databases: An evaluation,

Data & Knowledge Engineering, vol. 16, no. 1,

1995, pp. 1-26.

[3] Ferber J: Multiagenten-Systeme, Eine

Einführung in die Verteilte Künstliche

Intelligenz”, Addison-Wesley, 2001.

[4] Liu T H, Goel A, Martin C E, Barber K S:

Classification and representation of conflict in
multi-agent systems, Technical Report TR98-

UT-LIPS-AGENTS-01, The University of Texas

at Austin, 1998.

[5] Paton N W: Active rules in database systems,

Springer, New York, 1998.

[6] Purwina O, D’Andreab R, Leec J W: Theory

and implementation of path planning by
negotiation for decentralized agents, Robotics

and Autonomous Systems, vol. 56, no. 5, 2008,

pp. 422-436.

[7] Rabuzin K, Maleković M, Bača M: A

Combination of Reactive and Deliberative
agents in Hospital Logistics, The Proceedings

of 17th International Conference on Information

and Intelligent Systems, Varaždin, Croatia,

2006, pp. 63-70.

[8] Rabuzin K, Maleković M, Čubrilo M: Resolving

physical conflicts in multiagent systems, The

Proceedings of 3
rd

 International Multi-

Conference on Computing in the Global

Information Technology ICCGI, IEEE Computer

Society Press, Greece, IN PRESS.

[9] Rabuzin K, Maleković M, Lovrenčić A:

Extending Trigger-By-Example Approach to
Support Time Events, The proceedings of 11th

International Conference on Intelligent

Engineering Systems INES 2007, Budapest,

Hungary, 2007, pp. 313-316.

[10] Rabuzin K, Maleković M, Ribarić S:

Implementing reactive agents in active

databases, ICITA 2008, Proceedings of 5
th

International ICITA conference, Cairns,

Australia, 2008, IN PRESS.

[11] Tan C W, Goh A: Composite event support in

an active database, Computers & Industrial

Engineering, vol. 37, no. 4, 1999, pp. 731-744.

[12] Tessier C, Chaudron L, Müller H: Conflicting

Agents, Kluwer Academic Publishers, Boston,

2001.

[13] Tomlin C, Pappas G, Košecka J, Lygeros J,

Sastry S: A next generation architecture for

air traffic management, available at
http://citeseer.ist.psu.edu/cache/pa

pers/cs/3825/http:zSzzSzrobotics.eec

s.berkeley.eduzSz~clairetzSzatms_cdc

97.pdf/tomlin97next.pdf, 1997, Accessed:

3
rd

 November 2006.

[14] Tomlin C, Pappas G, Sastry S: Conflict

resolution for air traffic management: A study

in multi-agent hybrid systems, IEEE

Transactions on Automatic Control, vol. 43, no.

4, 1998, pp. 509-521.

