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Abstract. Genetic algorithms are well-known, simple 

and powerful optimizing method, inspired by 

Darwin’s evolutionary theory. They are used in many 

areas. Their advantage is that they do not need a 

mathematical description of the optimized problem. 

Therefore they are good alternative to mathematical-

based methods, if these have failed. 

More applications of genetic algorithms have been 

designed and implemented in the author’s 

organization. Some of them are described in this 

contribution: a system for production optimization in 

production systems, a system for planning of robot’s 

optimal trajectory and a system for faces (identikits) 

design by genetic algorithms. 
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1 Introduction 
 

Analytical optimizing methods are not usable in 

many cases. Just then some alternative optimizing 

ways should be used. Genetic algorithms offer a 

modern and unconventional solution mode. 

The genetic algorithms imitate the natural evolution 

processes and they take advantage of them for the 

optimizing tasks solution. The principle of genetic 

algorithms bases on the fact, that individuals of 

a population (individual = solution of the task), which 

are more successful (better) then others, go 

successfully to next generation (generation = 

computing iteration). In the next generation they can 

be changed (improved) within genetic operations. The 

main genetic operations are mutation and crossover 

operation. 

The genetic optimizing algorithms are simple, but 

robust. They employ stochastic processes and they are 

able to find a global extreme without deadlock in a 

local one. They are not restricted by parameters 

number or by limiting conditions. They can solve 

tasks with combinatory rising solutions space. 

Therefore they are applicable for solution of various 

difficult problems, where analytical approaches fail. 

 

1.1 Base terms  
 

Before we discuss the applications of genetic 

algorithms, some base terms of their terminology 

should be specified. 

 

Table1. Base terms. 

Term Explanation  

Population A group of individuals of any defined 

number. Iterative computations take 

place in the group. Iteration = 

generation.  

Chromosome One individual in the population, i.e. 

one solution. Ordered set of binary, 

numerical or symbolic values, which 

represent properties of the individual. 

Gene Elementary chromosome item. 

Objective 

function 

Function for the chromosome 

evaluation. 

Crossover 

operation 

Genetic operation, where two parent 

chromosomes split on the same 

random position and change one of 

two parts. 

Mutation Genetic operation, where some gene 

varies in a new random allowed value. 

 

1.2 Principle of the genetic algorithm 
 

A genetic algorithm consists generally of the next 

steps: [3], [4], [8] 

1. An initial population of n individuals is 

generated. The process can be random, or 



regulated - if some information about solution 

exists. 

2. The objective function of each chromosome is 

evaluated. 

3. Terminal condition’s fulfillment (required 

objective function value, computation time or 

iterations number) is tested. If the condition is 

satisfied, the most successful chromosome is 

the asked solution. 

4. Otherwise two groups of chromosomes should 

be chosen for the next generation. There are 

“a” best chromosomes in the first group. They 

go directly into the next generation. This 

“elitism” ensures that the new solution cannot 

be worse than the last one. The second group 

(called work group) consists of n-a chro-

mosomes for the genetic operations (mutation, 

crossover). There are many methods, how to 

select chromosomes into work group. 

5. The genetic operations are performed on the 

chromosomes of the work group. 

6. The new generation from the chromosomes of 

the first as well as of the work group is created. 

The algorithm continues by the step 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Base genetic algorithm 

 

The main problem in using of GA is the task 

representation in GA concepts. Possible solutions 

should be represented as chromosomes; an objective 

function must be defined etc. 

 

1.3 Visualization of GA 
 

GA can be simply visualized to enable a clear 

understanding of GA operations. The graphical 

demonstration is inspired by the fact that GA works 

by Darwinian evolutional theory. [2],[4] 

Let us suppose that solution of some technical 

problem is a vector with 8 numbers. This vector is one 

individual (e.g. a butterfly) in GA terminology. Each 

element of the vector represents one property of the 

butterfly (e.g. wings color, wings form, wings size, 

tentacles type, tentacles size, body size, body type, 

body color). 

If genetic algorithm solves the technical problem 

(searches for 8 numbers iteratively), the vectors 

represent different butterflies in iterative cycles. The 

butterflies in various generations can be displayed and 

the evolution is visible. 

 

2 Applications 
 

2. 1 Production optimization 
 

Let suppose that production costs that depend on 

the lot sizes and their input intervals should be 

minimized. The restrictions are flow time, capacity 

utilization and the number of finished parts. So : 

 

N(d1, t1, d2, t2, ...,dn, tn) → min            (1) 

Ti(d1, t1, d2, t2, ...,dn, tn) ≤ Timax, i = 1..n           (2) 

Cj(d1, t1, d2, t2, ...,dn, tn) ≥ Cjmin, j = 1..m           (3) 

Pi(d1, t1, d2, t2, ...,dn, tn) ≥ Pimin, i = 1..n           (4) 

dimin ≤ di ≤ dimax, i = 1 .. n            (5) 

timin ≤ ti ≤ timax, i = 1 .. n             (6) 

 

where N – production costs, n – number of parts, 

di – lot size of the i
th

 part, ti – input interval of batch 

of the i
th

 part, Ti – flow time of i
th

 part, Cj – capacity 

utilization of jth part, M – number of equipment, Pi – 

number of finished i
th

 part, Timax – maximally 

acceptable flow time of i
th

 part, Cjmin – minimally 

acceptable capacity utilization of j
th

 equipment, Pimin – 

minimally acceptable number of finished ith parts, 

dimin, dimax, timin, timax, - limits of scanned space. 

Objective function (1) and constraints (2) – (4) 

cannot be analytically expressed, but the simulation 

model built in Witness simulator determines values N, 

Ti, Cj, Pi. [7] 

 

Chromosome (the solution of the problem) is a 

vector of numbers which represents input parameters 

of the system (d1, t1, d2, t2, ...,dn, tn). Its elements are 

genes. 

Population: Let there are 40 individuals (solutions) in 

one generation.  

Objective function is given by relation (1) and 

evaluates each solution. The value N is obtained by 

simulation.  

Selection: Genetic algorithm requires surviving 

“good” solutions. They are those with small value 

of N. The fitness of individual solutions is inversely 

related to their costs. If we use roulette selection, the 

probability of survival is 
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where pk is selection probability of k
th

 solution, Fk is 

fitness of kth solution, Nk are costs of kth solution 

obtained by simulation, g is the number of solutions 

in population (40). 
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Elitisms: The best 4 solutions turn to the next 

generation unchanged to keep the best solutions. The 

other 36 solutions are crossovered and mutated. 

Crossover operation: one-point crossover of two 

individuals in randomly chosen position. Let pc = 1.  

Mutation: Mutation deals with probability pm = 0.05. 

Computation termination: Number of generations or 

calculation time is the ending condition. 

 

The form of genetic algorithm is following: 

1. Random solutions - vectors (d1, t1, d2, t2, ...,dn, tn) 

are generated, the generated values should fulfill 

conditions (2) - (6). 

2. The solutions are evaluated by simulation in 

Witness. 

3. If the ending condition is fulfilled, the best 

individual is the desired solution. 

4. Otherwise the best 4 solutions are chosen into 

new generation. The serial numbers 1 – 4 will be 

assigned. 

5. Remaining 36 individuals in new generation will 

be obtained in the following way: 

a. Roulette selection (according to relation (1)). 

36 individuals are given to the positions 5 – 

40. 

b. Neighboring pairs crossover. Conditions (2) – 

(4) are checked by the simulation. If the 

solution is inadmissible, another random 

crossover point is used.  

c. Some genes are chosen for mutation in 

solutions 5 – 40. New genes have to fulfill 

conditions (5) - (6) and new solutions have to 

fulfill conditions (2) – (4).  

6. New generation is formed by solutions gained in 

steps 4 and 5. Algorithm continues by the step 2. 

The results of this optimization are comparable or 

better than the values obtained by embedded 

optimizers of Witness.  

 

2. 2 Robot’s trajectory planning 
 

The motion of robotic arm, autonomous robot (or 

robotic systems generally) can be optimized 

considering various criteria: travel time, energy 

consumption, length of trajectory and/or other. Let us 

use the trajectory length as criterion. 

In the next text we do not consider the 

construction and the architecture of robots. We only 

suppose, that every point of robot’s working space is 

reachable (that is there are minimal 3 degrees of 

freedom). Each desired position can be reached thru 

joints rotation and/or translation movement. 

The trajectory between two points Xstart = X0 

and Xgoal = Xn of robot’s working space is a sequence 

of abscises X0X1, X1X2, ... , Xn-1Xn.  

Only starting and goal points of movement must 

be given. The control system estimates then the 

shortest (optimal) trajectory. 

The points number can be chosen according to 

accuracy of computation. The given open polygon 

represents the trajectory from starting point X0 to goal 

Xn. The trajectory length is a sum of Euclidean 

distances between neighboring points. This length 

should be minimal. 
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There are constraints Pi in the robot’s working 

space M. Pi are geometrical objects (sets of points) 

given by analytical description: 

 

Pi = {X; gji(X) ≤ 0}, where i = 1…k, ji = 1...mi        (9) 

 

The number of objects is k and the object i is 

described by ji inequalities. 
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is then the union of all constraints. Points from P 

represent collision points, or, by another words, the 

trajectory can consist only of points X, where 

 

X∈ M\P.            (11) 

 

There are more optimum trajectories planning 

ways described in literature. Dynamical models using 

minimum-time criterion, graph-search scheme, 

exhaustive search methods, full dynamic models etc.  

All reported solution ways need complicated 

mathematical apparatus. For all that a genetic 

algorithm can be used for the estimation of optimal 

trajectory. [3], [4] 

In our case the chromosome (individual) is a 

trajectory, i.e. a sequence of points. 100 random 

sequences (e.g. with 16 points) are generated and 

evaluated by objective function (8). Best trajectories 

are selected into new generation (we use 10 or 20 

trajectories). The roulette-mechanism is used for the 

selection of the next 80 or 90 trajectories. They are 

two cross-overed with probability 0.8 or 0.9 and then 

their points (genes) mutate with probability 0.01 - 0.1. 

The cross-over operation means, that two trajectories 

exchange their parts, the mutation means, that one 

point of a trajectory is replaced by another one, which 

is random selected in an allowed space. 

An example of two parent chromosomes, the 

better one of two children after the cross-over 

operation and the same chromosome after proper 

mutation are displayed in the next 2D-figures 2, 3 and 

4 (for the transparency we used trajectories with only 

6 segments (7 points)): 

 



 
Figure 2. Two trajectories (X0X1X2X3X4X5X6 and 

Y0Y1Y2Y3Y4Y5Y6) 

 

 
Figure 3. Descendant chromosome (trajectory) 

X0X1X2X3X4Y5Y6 after crossover operation 

 

 
Figure 4. The chromosome after the mutation X3 ⇒ 

X3’ 

 

The sought trajectory can consist only of points, 

which do not belong to P. The points from P represent 

collisions.  

 

 
 

Figure 5. Working space with constraints 

The genetic algorithm used in this case has some 

needed supplements: 

 

1. Only points from working space, which do not 

belong to P, can be generated in initial 

population. In addition, no point from the 

connection of two neighboring points can be 

from P:  

 

Xi ∈ M\P for i = 1…k                      (12) 

 

Xi-1Xi ∩ P = ∅ for i = 1…k                      (13) 

 

Each trajectory is generated point to point and 

each new point is tested according to conditions 

(12) and (13). If the generated point Xi does not 

fulfill the conditions, it must be refused and 

replaced by another one. 

The fulfilling of condition (13) is tested by 

computation of intersection (common points) of 

abscises Xi-1Xi and space P. The new point Xi has 

to fulfill the condition; otherwise it must be found 

another one. 

2. A possible collision by cross-over operation must 

be eliminated: There are two allowed trajectories 

crossovered in each operation. Segment XaXa+1 

from one trajectory and the segment YaYa+1 from 

the second one are allowed, but they will be 

spited by crossover operation and the descendants 

will contain segments XaYa+1 and YaXa+1. The 

new segments must be controlled according to 

the condition (13). If one of segments intersects 

one of constraints, the splitting position in 

chromosomes must be moved in another one. If 

all cross-over positions are tested without 

success, the trajectories can not be cross-overed. 

An example of a possible collision by cross-over 

operation is given in the figure 6. The lines 

(parents) X0X1X2X3 and X0Y1Y2X3 split in the 

same random position, e.g. between the second 

and the third points. The segments X0X1, X2X3, 

X0Y1 and Y2X3 connect into new trajectories 

X0X1Y2X3 and X0Y1X2X3. Even though the 

ancestors are allowed, the descendents can 

intersect possible constraints. In the figure 6 the 

descendent X0X1Y2X3 is allowed, but the 

descendent X0Y1X2X3 intersect the constraint C 

and the condition (13) fails. 

 
Figure 6. Collision by cross-over operation 

 



3. The similar situation rises by mutation: By the 

mutation of gene Xa to allowed value Xa’ the old 

allowed segments Xa-1Xa and XaXa+1 are replaced 

by new segments Xa-1Xa’ and Xa’Xa+1, which 

maybe are not allowed. The condition (13) must 

be checked for new segments. If the condition 

fails, new value of mutated gene (new point of 

the trajectory) must be generated and relevant 

segments must be tested again. It repeats till new 

segments fulfill the condition, i.e. they do not 

intersect a constraint. 

An example of this situation is displayed in the 

figure 7. New segments Xa-1Xa’ and Xa’Xa+1 

come into existence after the mutation of point Xa 

into Xa’.The segment Xa-1Xa’ fulfill the condition 

(13), but the segment Xa’Xa+1 fails because the 

intersection with the constraint C. 

 
 

Figure 7. Possible collision by the mutation 

 

Genetic algorithm with 3 given supplements finds 

the shortest trajectory in a few hundreds generations 

in robot’s working space with constraints. The 

number of generations and computation time depend 

on the constraints number and their positions 

(problems with points generations and with 

intersections) and their analytical description (number 

and complexity of equations. [1], [6] 

 

2. 3 Identikit design 
 

Manual or computer methods based on a face 

picture composition from individual elements (for 

example on individual slides) are used for creation of 

a face image (composite drawing, identikit) in 

personnel identification according to instructions of 

witness. Disadvantage of all present-day methods is 

that the witness must directly adjust every single face 

element (eyes size, inclination, distance etc.). 

However he often cannot say, what is necessary to 

modify in order to increase the similarity between the 

picture and the original. The face design in this 

manner is neither simple nor precise.  

This part of the lecture describes a solution of the 

face generation problem by genetic algorithms. The 

witness will just indicate the best solution (the most 

suitable face picture) from a set of displayed faces. 

The system will generate new faces similar to the 

marked one according the genetic algorithms theory. 

The repetition of these steps will achieve the identical 

or very similar face to the sought one.  

The successful solution of this problem requires to 

find a suitable numerical or symbolic representation 

of faces and to formulate an objective functions which 

reflects the similarity. 

Each face picture represents one problem solution, 

i.e. one individual in a population. Formally it is an 

ordered set of numbers, where the values represent 

face elements. The software system displays several 

(6, 9, 16) individuals (faces) and the user clicks the 

most similar one. He gives to the system the best 

solution in present generation in this manner. The 

system evaluates the similarity of all faces in the 

generation with the marked one and it finds and 

displays the new faces generation with the using of 

genetic algorithm. Because the properties (face 

elements) of successful individuals survive with 

greater probability in genetic algorithms, the new 

faces will be similar to the last marked one. The 

process continues till the user is satisfied with the 

reached similarity. 

Each face is represented as an ordered set of 

numbers for our purposes. Every number means a 

property of one face element. Properties are e.g. ears 

form, size, color, position… The similar 

characteristics concern the eyes, eyebrow, cheeks, 

nose, etc., too. 

We use together 33 face features. Each feature (face 

element) can take the value 0 - 1 with the accuracy of 

4 decimal positions, i.e. every element can obtain 

10 000 different values. Therefore, the total number 

of possible faces is 10 000
33

, i.e. 10
132

. 

The objective function evaluates the similarity of 

each face with the sought one. Let the numerical 

representation of the face “m” with n elements is (am1, 

am2, ... , amn) and let the face marked as the best one is 

represented by the chromosome (b1, b2, ... , bn). User 

selects by click the best face in each generation from 

the set of displayed faces. Therefore the difference 

toward the base form of genetic algorithm is that the 

optimal solution varies in each generation.  

This form of the objective function is used: 

 

           (14) 

 

This function expresses the sum of differences of 

faces elements. 

The genetic algorithm has the next form for our 

purposes: 

 

An initial population of 40 faces is generated.  

The objective function (14) is evaluated for each 

face. Six faces are displayed. 

User tests the terminal condition achievement 

(required similarity). If the similarity is sufficient, the 

most successful face represents the asked solution. 

If the similarity is not sufficient, the user clicks on 

the best of the six displayed faces. Two groups of 

individuals are chosen for the next generation. 10 

faces go directly into the next generation. The second 
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group (work group) consists of 10 best and 20 random 

chosen individuals. 

The genetic operations are performed with the 

individuals of the work group. 

The new generation of 40 faces from the 

chromosomes of the first as well as of the work group 

is created. The algorithm continues with the faces 

evaluation. 

 

Parameters (genes), which represent the face 

elements, are used in a graphical tool, in order to 

display the faces. In our pilot solution we have 

proceeded as follows: 

The tool 3D Studio Max with the module Facial 

studio has been used for the human heads modeling. 

The models are colored and three-dimensional with 

the possibility of rotation.  

The models have been used in the system Virtools 

Dev. The look of faces changes in this system 

according to genetic parameters.  

An example of displayed faces after the start of 

identification process is in the figure 8: 

 

 

Figure 8 Displayed faces (of the 5th generation). 

 

The described approach has confirmed some 

expectations, but it has brought some problems, too. 

The main result is that the genetic algorithms can be 

used for the human faces design and the genetic 

operations are a property approach for similar faces 

generation. But the main goal – automatic face design 

of optional person – has not been reached yet. There 

are more reasons:  

• graphical tool is not powerful enough 

• the number of face parameters is too small, a 

precise description of the face needs more than 

33 parameters 

• it is not possible to model hair, moustache, beard 

and birth-marks, as well as glasses, ear-rings, 

piercing etc. in the system 

• we are not able to display an age of the person,  

• the scanned area is too large (the used precision 

with 10 000 values for each face element is spare) 

 

 

3 Conclusion 
 

Genetic algorithms are simple but powerful search 

(optimizing) method. The obtained solutions are 

comparable with results reached by conventional 

analytical methods, but their advantage is that they do 

not need the mathematical model of the optimized 

process. Therefore GAs are usable successfully in 

many areas. Some applications were presented in this 

contribution. 
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