
Survey to Software Reliability

Martin Jedlicka, Oliver Moravcik, Peter Schreiber

Faculty of Materials Science and Technology

Institute of Applied Informatics and Automation

Slovak University of Technology in Bratislava

Pavlinska 16, 91724 Trnava, Slovakia

martin.jedlicka@qintec.sk, oliver.moravcik@stuba.sk, peter.schreiber@stuba.sk

Abstract. This paper introduces key facts from

reliability and software reliability theory. Next we

discuss the field of software reliability evaluation.

Finally we describe some most popular reliability

models.

Keywords. reliability, software reliability,

software reliability evaluation, metrics, software

reliability models.

1 Introduction

Today's industry systems more and more depend on

software which is sometimes very complex. Software

complexity increases also with the risk factor of the

environment where the whole system is deployed.

From these reasons the requirements for software

reliability cannot be missed out when designing such

system.

Software reliability differs from hardware reliability

because it reflects the design perfection, rather than

manufacturing perfection. Similar to hardware the

reliability of software should be evaluated and

measured, even it is not so simple task as it is in

hardware because software is hard to touch.

Many organizations and individuals developed

methods for software reliability evaluation and this

paper should introduce some of them.

2 Reliability theory

For engineering purposes, the reliability is defined as

“The probability that a device will perform its

intended function during a specified period of time

under stated conditions”. [1]

This may be expressed in mathematical way as

∫
∞

=

t
dxxftR)()((1)

where)(xf is the function representing the

failure probability density and t represents the length

of time (which is assumed to start from time zero).

If we want better understand the reliability field,

we have to focus on four aspects coming out of

definition above: [1]

1. Reliability is a probability. This means that

failure occurs randomly, it can be a individual or

recurring event. The incidence for failures varies

in time according to the chosen probability

function. Reliability engineering is then

concerned with meeting the specified probability

of success, at a specified statistical confidence

level.

2. Reliability is predicated on "intended function".

This means that this is generally understood as

the mean operation without any failure.

3. Reliability applies to a specified period of time or

other unit. This means that reliability of the

system is guaranteed e.g. for a specified time,

kilometres, cycles, etc.

4. Reliability is restricted to operation under stated

conditions. This constraint is clear because it is

not possible to design a system for unlimited

conditions. The operating environment must be

taken in focus when designing and testing the

system.

3 Software Reliability

Software reliability is a key part in software quality.

There are many different views for software quality

but almost in every one the reliability plays important

role as the stand-alone quality characteristic or

attribute. The standard ISO/IEC 9126:1991 defines

reliability as “The capability of the software product

to maintain a specified level of performance when

used under specified conditions”. [2] In this model the

reliability is the one of the six main quality

characteristics and contains 4 subcharacteristics: [2]

- Maturity - The capability of the software

product to avoid failure as a result of faults in the

software.

- Fault tolerance - The capability of the software

product to maintain a specified level of

performance in cases of software faults or of

infringement of its specified interface.

- Recoverability - The capability of the software

product to re-establish a specified level of

performance and recover the data directly

affected in the case of a failure.

- Reliability compliance - The capability of the

software product to adhere to standards,

conventions or regulations relating to reliability.

IEEE Std 982.2-1988 [3] defines reliability as

“The probability that software will not cause the

failure of a system for a specified time under specified

conditions”. IEEE 982.1-1988 also defines Software

Reliability Management as "The process of

optimizing the reliability of software through a

program that emphasizes software error prevention,

fault detection and removal, and the use of

measurements to maximize reliability in light of

project constraints such as resources, schedule and

performance." Under these definitions, software

reliability focuses on three aspects:

- Error prevention

- Fault detection and removal

- Measurements to maximize reliability

(specifically measurements supporting the first

two aspects)

3 Software Reliability Evaluation

It is known that software evaluation and measuring is

problem which is not specific just for reliability field.

There is no definition of software nature even the

definition which aspects of software impacts on

software reliability.

The current practices of software reliability

measurement can be divided into four categories: [4]

1. Product metrics

2. Project management metrics

3. Process metrics

4. Fault and failure metrics

3.1 Product Metrics

Software size is taken as the basic indicator of

complexity, development effort and reliability. For

measuring software size these metrics are typically

used: Lines Of Code (LOC), or LOC in thousands

(KLOC), more often Source Lines Of Code (SLOC)

where the comments and other non-executable

statements are not counted. But the problem is that

there is not a standard and general way how to

compare e.g. two software products not written in the

same programming language.

Another product metric is Function point method

for measuring the functionality of a proposed software

development. This method can be used for estimation

of software size as soon as the function points

(outputs, inquiries, inputs, files, and interfaces) are

identified. The main advantage is that it is

independent on programming language. The small

disadvantage is that it is hardly used for real-time

applications.

Reliability is closely related to software

reliability. The most representative metric for

measuring software complexity is McCabe's

Complexity Metric. It directly measures the number

of linearly independent paths through a program's

source code by representing the code as control flow

graph consisting of nodes (corresponds to programme

commands) and edges (connection between two nodes

if the second command might be executed

immediately after the first command) [5]

Last product metrics are test coverage metrics

which evaluate the software reliability by performing

tests on software product. The function representing

the expecting reliability be expressed in mathematical

way as [6]

n

f
R −= 1 (2)

where f represents the number of failed tests

and n represents the overall number of executed

tests. The desired value of R is close to 1.

This paper [7] presents following software

reliability metrics:

- number of test cases/source lines of code (R1) –

indicates the density of coverage the source code

by test cases

- number of test cases/number of requirements

(R2) - indicates if the all requirements were

tested appropriately

- test lines of code/source lines of code (R3) -

indicates if the ratio R1 was inaccurate as there

might have been a few test cases that might have

been comprehensive

- number of asserts/source lines of code (R4) -

serves as a control for both R1 and R2 so that in

case there are few test cases but each have a large

number of successful calls to the source program

then the metric suite does not penalize the

developer

- code coverage (C) - measures the ratio of the

number of lines of the source code that are

executed by the test code so that most of the

source program is covered by testing and

indicates the accuracy of R3.

3.2 Project management metrics

Long time experience shows that good project

management during software development can result

in good and quality products. This reliability depends

mainly on use of appropriate processes e.g.

development process, risk management process,

configuration management process, documentation

process etc.

3.3 Process Metrics

This approach assumes that the quality of the software

product is a direct function of the used process or

processes. Then the process metrics can be used to

estimate the reliability of software. Examples of

process metrics affecting software: [8]

- Number of times the program failed to rebuild

overnight

- Number of defects introduced per developer hour

- Number of changes to requirements

- Hours of programmer time available and spent

per week

- Number of patch releases required after first

product ship

3.4 Fault and Failure Metrics

These metrics try to determine the moment when the

software enters the failure-free period of its operation.

They concentrate on collecting and analyzing faults

and failures found after testing during development

process but mainly on collecting faults and failures

during the operation phase when the software is used

by real users.

Typical metric is Mean Time Between Failures

(MTBF) which estimates the time between two

successive failures of a system. It is a key reliability

metric for systems that can be repaired or restored.

Test strategy is highly sensitive on the software

functionality coverage by tests. If the tests don’t cover

the whole software functionality and all are passed,

there is still likelihood that failure will appear during

the time

4 Software Reliability Models

Reliability Models were first developed and applied in

hardware systems but they are often adopted also for

software. It has been developed many models during

the time but these can be divide into two main groups:

[4]

1. Prediction models – they predict reliability at

some future time by using historical data from

past projects

2. Estimation models – they estimate reliability at

either present or some future time by using data

from the current software development effort

(mainly used in test phase)

Estimation models, which are more appropriate

for software, can be divided into four categories: [9]

1. Error Seeding - estimates the number of errors

in software from the errors which are seeded into

software. All errors are divided into indigenous

(real) and induced (seeded) errors. The unknown

number of indigenous errors is estimated from

the number of induced errors and the ratio of

errors obtained from debugging data.

2. Failure Rate - is used to study the software

failure rate per fault at the failure intervals. As

the number of remaining faults changes, the

failure rate of the software changes accordingly.

3. Curve Fitting - uses statistical regression

analysis to study the relationship between

software complexity and the number of faults in a

program, as well as the number of changes, or

failure rate.

4. Reliability Growth - measures and predicts the

improvement of reliability programs through the

testing process. Reliability growth also represents

the reliability or failure rate of a system as a

function of time or the number of test cases.

Most of the models use the Poisson process

())(

!

)(
)(t

n

e
n

t
tP

λλ −⋅= (3)

where)(tP is failure probability,)(tλ is the

intensity function or failure rate and n is number of

failures.

Then the probability of no failure (the reliability),

when 0=n , is

)()(t
etR

λ−= (4)

4.1 Musa’s Basic Model

The Musa’s basic model assumes that the execution

time between failures is piecewise exponentially

distributed. Also all failures occur with equal

likelihood, are independent of each other and are

actually observed. This model is effective, simple and

widely applicable.

Musa’s basic model is expressed in mathematical

way as [10]









−=

o

o
ν

µ
λµλ 1)((5)

It means that failure intensity λ is a function of

failure intensity at the start of execution o
λ

, the

expected number of failures at a given point of time

µ , and the total number of failures occurring in an

infinite time o
ν

. The necessary requirement of this

model is existence of data gathered from running

software (e.g from beta-testing).

4.2 Musa-Okumoto Model

The Musa-Okumoto model is also called logarithmic

Poisson execution time model. It assumes that all

failures occur with equal likelihood and are

independent of each other.

Musa-Okumoto is expressed in mathematical way

as [11]

θµλµλ e
o

=)((6)

where failure intensity λ is a logarithmic

function of time in this model and failure intensity

decay parameter θ .

4.3 Littlewood-Verall Bayesian Model

The Littlewood-Verall Bayesian model assumes that

successive times between failures are independent

random variables each having an exponential

distribution.

The Bayesian approach to reliability assumes that

contribution of each fault to the overall failure

intensity is not known and can be modeled as

originating from a given random distribution (with

unknown parameters) of values.

The distribution for the i-th failure has a mean of

1/λ(i). The λ(i)s form a sequence of independent

variables, each having a gamma distribution with the

parameters α and ˇ (i). [12]

4.4 Non-homogenous Poisson Process

Model

This model, also known as NHPP model, is based on

non-homogeneous Poisson process. It also assumes

that all failures occur with equal likelihood and are

independent of each other. But is simplifies the real

world by assuming that faults are corrected perfectly

with no regression. [10]

The failure intensity (λ) of this model is a

function of the number of faults collected (N) and the

completion time for each interval: [12]

λ t()= Nbe
−bt

This model requires existing fault data be

gathered for extrapolation by the model. In particular,

it requires fault counts on each testing interval and the

completion time for each period.

Conclusion

As can be easily seen, the field of software reliability

is very complex and plays the important role in

quality of software products. In this paper, we have

provided basic overview of facts about software

reliability based on software reliability and software

reliability models.

References

[1] Reliability Engineering, available at
http://en.wikipedia.org/wiki/Reliability_

engineering, Accessed: 15
th

 June 2008.

[2] ISO/IEC 9126:1991 Information technology –

Software product evaluation – Quality

characteristics and guidelines for their use.

[3] IEEE Standard 982.2-1987 Guide for the Use of

Standard Dictionary of Measures to Produce

Reliable Software.

[4] Pan J.: Software Reliability, available at
http://www.ece.cmu.edu/~koopman/des_s99/s

w_reliability/, Accessed: 16th June 2008.

[5] Cyclomatic Complexity, available at
http://en.wikipedia.org/wiki/Cyclomatic_c

omplexity, Accessed: 16
th

 June 2008.

[6] Tanuška P., Schreiber P.: The Software

Products Testing Process, Materials Science

and Technology 5/2005, available at
http://www.mtf.stuba.sk/docs//internetovy

_casopis/2005/5/tanuska.pdf, Accessed: 17th

June 2008, ISSN 1335-9053.

[7] Nagappan N. Toward a Software Testing and

Reliability Early Warning Metric Suite,

Proceedings of the 26th International Conference

on Software Engineering, 2004, pp. 60-62.

[8] Software metric, available at
http://en.wikipedia.org/wiki/Software_met

ric, Accessed: 15
th

 June 2008.

[9] Overview of Software Reliability, available at
http://sw-

assurance.gsfc.nasa.gov/disciplines/relia

bility/index.php, Accessed: 15
th

 June 2008.

[10] Davis G.: SENG 635: Software Reliability and

Testing Tutorial, Part #2, available at
http://www.guydavis.ca/seng/seng635/tutor

ial2.doc, Accessed: 15
th

 June 2008.

[11] Musa, J.D., Iannino, A. and Okumoto, K.:

Software Reliability: Measurement,
Prediction, Application, McGraw-Hill Book

Company, NY, 1987.

[12] Wagner S., Fischer H.: A Software Reliability

Model Based on a Geometric Sequence of
Failure Rates, available at
www4.informatik.tu-muenchen.de/

~wagnerst/publ/ada-europe06.pdf, Accessed:

16th June 2008.

