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Abstract. Penalized regression in large-scale data
analysis is a promising area of continued growth.
Compared to nonlinear ML methods such as deep
learning, which produces prediction models
notoriously difficult to interpret, penalized regression
as a linear method yields interpretable prediction
models; this brings great merit in social science
research which particularly has valued explanation.
Applying penalized regression to large-scale data, we
can also find new important predictors which have
been neglected in the literature. This can help
researchers break free from the confines of traditional
approaches and discover novel insights. In the similar
context, it is notable that penalized regression rests on
the sparsity assumption, and may be less suitable for
small-scale studies. Starting with LASSO (Least
Absolute Shrinkage and Selection Operator) for
variable selection, variations of penalized regression
have been developed including elastic net for
multicollinearity issues and Mnet for consistent
coefficient estimates. Recently, the scope of penalized
regression has been expanded to significance testing
and multilevel models, making it a versatile and
powerful tool for a wide range of data analysis tasks.
These developments have enriched the landscape of
penalized regression and its capability in different
research domains.
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