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Abstract. Penalized regression in large-scale data 

analysis is a promising area of continued growth. 

Compared to nonlinear ML methods such as deep 

learning, which produces prediction models 

notoriously difficult to interpret, penalized regression 

as a linear method yields interpretable prediction 

models; this brings great merit in social science 

research which particularly has valued explanation. 

Applying penalized regression to large-scale data, we 

can also find new important predictors which have 

been neglected in the literature. This can help 

researchers break free from the confines of traditional 

approaches and discover novel insights. In the similar 

context, it is notable that penalized regression rests on 

the sparsity assumption, and may be less suitable for 

small-scale studies. Starting with LASSO (Least 

Absolute Shrinkage and Selection Operator) for 

variable selection, variations of penalized regression 

have been developed including elastic net for 

multicollinearity issues and Mnet for consistent 

coefficient estimates. Recently, the scope of penalized 

regression has been expanded to significance testing 

and multilevel models, making it a versatile and 

powerful tool for a wide range of data analysis tasks. 

These developments have enriched the landscape of 

penalized regression and its capability in different 

research domains.  
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