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Abstract This work explores the possibility of 
optimizing the process of generative diffusion models 
using a path probability which is the real expression of 
the complex quantum propagator of Dirac-Feynman in 
an imaginary spacetime. The first part of this work is a 
study of the quantum propagator in its real version as 
a path probability. We show how to obtain it using a 
mechanics action calculated in an imaginary space-
time. Then we perform numerical experiments of 
random motion of Hamiltonian systems in order to 
verify the exponential dependence of the path 
probability on action. In the second part, we define an 
action function for diffusion process and propose an 
action-based generative model in order to apply the 
least action principle (or maximum path probability) to 
the denoising diffusion models. The quality of the 
obtained samples is compared to the samples 
generated by the different usual models. 
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