
Reactive Scheduling under Due-Date and Intermediate
Storage Constraints: A Conceptual Multi-Objective

Approach

Krisztián Attila Bakon, Tibor Holczinger
Faculty of Information Technology, University Center for Circular Economy Nagykanizsa, University of Pannonia

Department of Applied Informatics
Zrinyi u. 18., Nagykanizsa, 8800, Hungary

{bakon.krisztian, holczinger.tibor}@pen.uni-pannon.hu

Abstract. This paper presents a conceptual reac-
tive scheduling framework for Flexible Job Shops
with dynamic order arrivals, due-date targets, and
intermediate storage constraints (NIS/UIS). Unlike
existing models that treat these aspects separately, our
approach integrates them into a unified multi-objective
optimization method. We introduce a storage-aware
branch-and-bound algorithm with four policy-based
flexibility levels and prove a theorem enabling in-
termediate storage minimization through local slack
redistribution. This framework offers a novel way to
balance due-date penalties and storage costs, setting
the foundation for future real-time applications in
adaptive manufacturing environments.

Keywords. Reactive Scheduling, Flexible Job Shop
Problem, Due-Date Optimization, Intermediate
Storage Policies, Branch-and-Bound Algorithm,
Earliness/Tardiness Minimization, Storage-Gap Ad-
justment, Policy-Driven Rescheduling

1 Introduction
Modern production systems face challenges from dy-
namic order arrivals, stringent due dates, and complex
resource constraints. This paper presents a compar-
ative framework for reactive (Bakon and Holczinger,
2024) and deterministic scheduling (Bakon and Hol-
czinger, 2025) in an extended Flexible Job Shop Prob-
lem (FJSP), integrating real-time order processing,
due-date optimization, and intermediate storage poli-
cies (NIS/UIS).

Although reactive scheduling and due-date opti-
mization with intermediate storage constraints have
each been addressed individually in prior research, they
are rarely combined within a single, unified frame-
work—particularly under dynamic order arrivals and
rescheduling scenarios. Existing methods typically ei-
ther overlook the impact of storage behavior on reac-
tive scheduling or focus solely on makespan or tardi-

ness, without incorporating storage-related penalties.
The proposed framework targets a dual objective:

minimizing total earliness/tardiness (E/T) penalties and
reducing intermediate storage time (IST). Success is
defined as achieving a schedule that balances these
competing goals under different levels of rescheduling
flexibility and realistic storage constraints.

This paper addresses this gap by proposing a con-
ceptual scheduling framework that integrates reactive
rescheduling with due-date and storage-aware objec-
tives in an extended FJSP environment. The core con-
tributions are: (1) a policy-aware branch-and-bound
(B&B) algorithm supporting four levels of reschedul-
ing flexibility, and (2) the Storage-Gap Adjustment
Theorem, which formally enables IST minimization
through local slack redistribution. Together, these con-
tributions bridge previously disjoint research threads
and lay the foundation for scalable, multi-objective
scheduling in adaptive manufacturing systems.

2 Literature Review
Scheduling research spans reactive rescheduling, due-
date control, and intermediate storage modeling, yet
these dimensions are rarely treated together in a unified
framework. However, most contributions treat these
dimensions in isolation. This section reviews five the-
matic strands and clarifies how they inform our unified,
policy-driven framework.

Reactive Scheduling Models

Reactive scheduling literature emphasizes balancing
responsiveness and stability. Early frameworks distin-
guish dispatching, predictive–reactive, and proactive-
reactive strategies (Bahroun et al., 2024; Vieira et
al., 2003). Event-driven policies outperform periodic
rescheduling in turbulent environments (Ouelhadj and
Petrovic, 2009). More recent contributions incorpo-
rate robustness, decision trees (Portoleau et al., 2020),
rolling-horizon control laws (Kopanos and Pistikopou-

Proceedings of the Central European Conference on Information and Intelligent Systems___685

36th CECIIS, September 17-19, 2025___ Varaždin, Croatia

los, 2014), and adaptive intervals (Wang et al., 2017).
Despite this evolution, cognitive constraints and in-
tegration with domain-specific policies (e.g., storage
constraints) remain under-addressed (Herroelen and
Leus, 2005)—a gap this work targets explicitly.

Due-Date Assignment and Flexibility

Due-date strategies range from static job-level rules
(e.g., TWK, DPPW) to dynamic updates based on
real-time shop load (Cheng and Gupta, 1989; Cheng
and Jiang, 1998; T et al., 2017). Extensions incor-
porate weighted tardiness (Koulamas, 2011), job-shop
adaptation (Ojstersek et al., 2020), and project-based
economic criteria (Vanhoucke, 2002). While several
models address tightness vs. service trade-offs, inter-
actions between due-date pressure and storage-aware
rescheduling are rarely modeled. Our framework ex-
plicitly incorporates this interaction.

Storage Constraints in Scheduling

Storage modeling has matured in batch and job-shop
contexts, formalizing UIS, NIS, and ZW policies (Ha
et al., 2000; Kim et al., 1996; Kopanos and Puig-
janer, 2009; Romero et al., 2004). S-graph methods
and MILP formulations support comparative makespan
studies. However, most models are static and ig-
nore rescheduling flexibility. Our policy-aware ap-
proach embeds UIS/NIS behavior directly into dy-
namic rescheduling.

Multi-Objective Scheduling Trends

Recent literature emphasizes Pareto-optimal trade-offs
among cost, stability, and service (Holguin Jimenez et
al., 2024; Wang et al., 2017). Metaheuristics (e.g.,
MOSM (Mihály and Kulcsár, 2023), PRIMP (Mansini
et al., 2023)) enhance solution diversity, though few
frameworks jointly optimize E/T and storage. We ad-
dress this by integrating both into a reactive branch-
and-bound strategy.

Computational Considerations

Scheduling complexity is well established: even
simplified job-shop problems are NP-hard with no
constant-factor approximations (Mastrolilli and Svens-
son, 2011). Instance features like dispersion influence
heuristic selection (Ruiz-Vanoye et al., 2011). Robust
project scheduling models address both solution qual-
ity and deviation limits (Herroelen and Leus, 2004,
2005), motivating scalable yet adaptable algorithms.
Our model responds with policy-aware pruning and
tractable bounding.

In summary, while each domain shows strong de-
velopment, their integration remains limited. Our con-
tribution lies in combining reactive rescheduling, due-
date compliance, and intermediate storage optimiza-

tion into a single multi-objective scheduling framework
for dynamic job-shop environments.

3 Problem Definition
The production environment consists of a finite set of
equipment units J , a finite set of products P , and a
finite set of tasks I . Each product p ∈ P is defined
by a set of tasks Ip ⊆ I , with precedence constraints
captured by I−i ⊆ I , the set of immediate prerequisites
for task i ∈ I . Each task i ∈ I may be performed by a
subset of equipment Ji ⊆ J , with processing time pti,j
depending on the assigned unit j ∈ Ji.

The production system operates under a dynamic
arrival process, where orders O = {o1, o2, . . . , on}
aare revealed sequentially over time. Each order ok =
(Ik, tk) consists of a product-specific task set Ik ⊆ I
and an associated arrival time tk. All arrival times are
assumed distinct, with t1 = 0 without loss of general-
ity. This model does not assume any probabilistic dis-
tribution over arrivals; instead, it responds determinis-
tically to each new order as it occurs. Thus, while fu-
ture arrivals are unknown, the system handles them on-
line in a non-anticipative fashion. Let I∗k =

⋃
k′≤k Ik′

denote the cumulative set of tasks from the first k or-
ders.

Each product p ∈ P is associated with a due date
dp, either explicitly specified or computed based on the
task processing time lower bound:

dp =

f ∑
i∈Ip

min
j∈Ji

pti,j

 .

At time tk+1, when a new order ok+1 arrives, the
current schedule Sk is partitioned into:

• Sk: the set of assignments that have started before
tk+1, and are preserved as fixed assignments in the
revised schedule;

• Sk: the set of assignments that have not yet started
and may need to be rescheduled.

Let I∗k and I
∗
k be the corresponding task sets, such that

I∗k = I∗k ∪ I
∗
k.

The objective is to construct a new feasible schedule
Sk+1 satisfying the following:

• All tasks from Ik+1∪I
∗
k are rescheduled, maintaining

precedence and resource constraints;

• Assignments in Sk remain unchanged, i.e., Sk ⊆
Sk+1;

• No task begins before its order’s arrival time: ts ≥
tk+1 for all new assignments;

• The total weighted penalty for E/T across all products
up to ok+1 is minimized:

min
∑
p∈P

(wE
p Ep + wT

p Tp),

686___Proceedings of the Central European Conference on Information and Intelligent Systems

36th CECIIS, September 17-19, 2025___ Varaždin, Croatia

where Ep = max(0, dp − Cp), Tp = max(0, Cp −
dp), and Cp is the completion time of the last task îp

of product p.

The scheduling environment adheres to one of
two intermediate storage policies, each imposing dis-
tinct temporal constraints on task execution and inter-
operation coordination:

• NIS: ∀i ∈ I, tsi+ = tfi (if equipment available)

• UIS: ∀i ∈ I, tsi+ ≥ tfi

This problem formulation integrates dynamic order
arrivals, task-equipment flexibility, precedence con-
straints, E/T penalties, and realistic storage behavior
into a unified scheduling model. The aim is to develop
a robust, scalable, and efficient solution method capa-
ble of addressing both the reactivity and optimization
challenges in modern production systems.

4 Methodology: Reactive Schedul-
ing with Due-Date and Storage-
Aware Optimization

4.1 Reactive Scheduling Framework

Upon receipt of the first order o1 = (I1, t1 = 0), an
initial schedule S1 is constructed. This schedule mini-
mizes due-date deviation (E/T) and respects either the
NIS or UIS storage policy. It is derived using the tra-
ditional S-graph approach—either equipment-based or
task-based branching—extended to compute start and
finish times that align as closely as possible with each
job’s due date dp.

When a new order ok+1 = (Ik+1, tk+1) arrives, the
current schedule Sk is partitioned into:

Sk = {(i, j, ts, tf) ∈ Sk | ts < tk+1}, Sk = Sk\Sk,

with corresponding task sets I∗k (started) and I
∗
k (not

yet started).
Any revised schedule Sk+1 must ensure that the up-

dated schedule Sk+1 adheres to the following criteria:

1. Retain all assignments in Sk.

2. Ensure that no task of Ik+1 begins before time
tk+1.

3. Preserve precedence, storage, and machine-task
feasibility.

4. Continue minimizing total
∑

(wE
p Ep + wT

p Tp),
evaluating completion times Cp under either NIS
or UIS storage constraints.

4.2 Reactive Policies under Due-Date Min-
imization

Depending on the desired trade-off between computa-
tional efficiency and schedule quality, the rescheduling
policy for I

∗
k can be selected from the following levels

of flexibility:

• Policy 1: I
∗
k remains unaltered. New tasks Ik+1 are

appended. While simple and fast, delays incurred by
new orders may increase tardiness penalties.

• Policy 2.1: Sequencing of I
∗
k is fixed, and start times

are unchanged. New tasks can only be inserted into
idle time windows. This strategy safeguards due-
date alignment but may limit flexibility if idle time
is scarce.

• Policy 2.2: Sequence is fixed, but start times of I
∗
k

may shift, facilitating insertions without reassign-
ments. This improves due-date optimization at the
cost of modest computation.

• Policy 3: Full rescheduling of I
∗
k ∪ Ik+1 is permit-

ted. This offers the greatest flexibility for due-date
equality and storage time reduction but is the most
computationally intensive.

4.3 S-Graph Augmentation for Reactive
Due-Date Scheduling

The S-graph for rescheduling must encode both the
due-date objective and the constraints imposed by re-
active policies:

• An artificial root node Z is introduced to connect to
each task via arcs weighted by their respective or-
der arrival times, thereby enforcing earliest start time
constraints.

• Zero-wait arcs fix the start times of tasks in I∗k.

• According to the chosen policy:

• Policy 1 & 2.1: Add zero-wait arcs to all tasks in
I
∗
k, freezing their start times.

• Policy 2.2: Only add sequence-preserving
schedule-arcs among I

∗
k, allowing temporal

flexibility.

• Policy 3: Do not add any arcs among I
∗
k; full

rescheduling is allowed.

The graph structure supports integration of task
precedence, equipment assignment, and temporal re-
strictions. B&B search traverses assignments and se-
quencing steps to build schedule Sk+1:

• Each node corresponds to a partial S-graph including
current assignments and arcs.

• The algorithm evaluates completion times Cp for all
affected products and computes new Ep, Tp, along
with storage delays if applicable.

Proceedings of the Central European Conference on Information and Intelligent Systems___687

36th CECIIS, September 17-19, 2025___ Varaždin, Croatia

• Lower bounds on the total weighted due-date penalty
are computed to prune dominated branches.

• Feasible extensions—such as task insertions or re-
assignment—are performed in accordance with the
constraints imposed by the selected reactive policy.

4.4 Multi-Objective Optimization: Earli-
ness/Tardiness and Intermediate Stor-
age

The reactive scheduling problem involves determining
an updated schedule Sk+1 upon the arrival of a new
order ok+1 at time tk+1, such that E/T and IST across
all jobs are minimized. The multi-objective function is:

min (α · IStotal + β · (Etotal + Ttotal)) ,

where α, β ≥ 0 and α+ β = 1. The E/T penalties and
IST are computed as:

Etotal =
∑
p∈P

max(0, dp − tf
îp
),

Ttotal =
∑
p∈P

max(0, tf
îp
− dp),

IStotal =
∑
i∈I

isi.

4.4.1 Storage-Aware Schedule Adjustments

At each branching step within the S-graph framework,
tasks are assigned with respect to both machine avail-
ability and storage restrictions. The system checks:

• Recipe sequence constraints for immediate down-
stream operations

• Machine sequence feasibility without conflicts

• Potential for intermediate storage reduction while
maintaining feasibility

If a task i incurs positive IST isi > 0, the scheduler
investigates if isi = 0 can yield a valid schedule. If
not, a search procedure identifies the minimal feasible
isi, applied recursively to neighboring tasks to balance
cumulative IST.

4.5 Algorithmic Framework: Reactive
B&B with Storage Optimization

This subsection introduces a storage-aware branch-
and-bound (B&B) algorithm tailored to reactive
scheduling with due-date and intermediate storage con-
straints. The algorithm dynamically adjusts its branch-
ing strategy based on the chosen rescheduling policy
π ∈ {1, 2.1, 2.2, 3}, balancing computational com-
plexity and scheduling flexibility.

Algorithm 1: Reactive B&B with Due-Date
and Storage-Aware Objectives
Input: Current schedule Sk; new order ok+1;

policy π ∈ {1, 2.1, 2.2, 3}
Output: Revised schedule Sk+1

1 Initialize queue Q with root node based on Sk

and policy π
2 Best objective Z⋆ ←∞, Sk+1 ← ∅
3 while Q ̸= ∅ do
4 node u← pop_best(Q)
5 if LB(u) ≥ Z⋆ then
6 continue

7 if u is complete then
8 Z⋆ ← Z(u), Sk+1 ← schedule(u)

9 else
10 Choose unscheduled task i according to

branching policy π
11 foreach j ∈ Ji do
12 (tsi , t

f
i)←

ComputeTentativeInterval(i, j, π, u)

13 if (tsi , t
f
i) feasible then

14 isi ←
EstimateStorageTime(i, π)

15 if equipment conflict occurs then
16 StorageGapAdjust(i, j)

17 Create child node v with
updated schedule and costs

18 Compute partial objective:
Z(v)← α · IST(v) + β ·
DueDatePenalty(v)

19 Compute lower bound: LB(v)
20 if LB(v) < Z⋆ then
21 push node v into Q

22 return Sk+1

688___Proceedings of the Central European Conference on Information and Intelligent Systems

36th CECIIS, September 17-19, 2025___ Varaždin, Croatia

The following pseudocode (Algorithm 1) provides a
structured overview of the algorithm’s logic, illustrat-
ing the interactions between branching decisions, stor-
age policies, and multi-objective optimization.

The algorithm integrates three core concerns: (i) re-
activity to incoming orders by updating the schedule
in real time, (ii) due-date adherence via E/T penal-
ties in the objective, and (iii) intermediate storage con-
trol through IST estimation and slack redistribution.
The function StorageGapAdjust ensures local feasi-
bility and cost reduction under UIS policies, while the
policy-driven branching logic ensures alignment with
practical flexibility constraints.

Complexity and Convergence. The theoretical
worst-case complexity of the B&B algorithm grows
factorially with the number of reschedulable tasks
(|I∗k|). Under Policy 1, complexity simplifies to equip-
ment assignments only, yielding O((m)|I

∗
k|). Policy 3,

permitting complete resequencing and reassignment,
expands complexity significantly to O(|I∗k|!m|I∗

k|).
However, in practice, empirical convergence is com-
monly observed within acceptable computational
timeframes for realistic scenarios (10–50 tasks,
5–10 machines), aided by tight bounding, heuristic
guidance, and effective pruning.

4.5.1 Node Expansion and Temporal Assignment

Each node in the search tree extends the current partial
schedule by tentatively assigning a start time tsi to an
unscheduled task i ∈ I

∗
k ∪ Ik+1, respecting precedence

(tsi ≥ max(tfi′) for all i′ ∈ I−i), equipment availabil-
ity (unit j ∈ Ji must be idle), order arrival constraints
(tsi ≥ tk+1 for new orders), and the immutability of
previously fixed assignments in Sk. The finish time
is then set as tfi = tsi + pti,j . IST is estimated as
isi = tsi+−t

f
i , with the algorithm attempting to enforce

isi = 0 under NIS where possible, and minimizing isi
under UIS via trade-offs between early starts and stor-
age overhead. If conflicts arise on equipment j, the
algorithm invokes a storage-gap adjustment: it identi-
fies temporal neighbors i− and i+, redistributes slack
(δ > 0) from their respective storage times, and verifies
that precedence remains valid (tsi+ ≥ max(tfi′)). If ad-
justment fails, tsi is incremented and reassessed. After
placement, the algorithm evaluates the partial objective
function,

Z = α
∑

i∈Isched

isi + β
∑

p∈Psched

(Ep + Tp),

where Isched and Psched are the sets of scheduled
tasks and completed products, respectively, and Ep =

max(0, dp − tf
îp
), Tp = max(0, tf

îp
− dp) are

early/tardy penalties. Finally, nodes are pruned if their
lower bound Zlower bound, estimated using heuristics and
policy-specific constraints, exceeds the current best ob-
jective value.

4.5.2 Storage-Gap Adjustment Proposition

Proposition 1. For any feasible UIS schedule, local
slack redistribution can strictly reduce the total inter-
mediate storage time IStotal without violating prece-
dence or resource constraints.

Proof. Let Γ = {i1, . . . , iq} be the tasks on a unit j
ordered by start time. Define ∆k = tsik+1

− tfik ≥ 0. If∑
k ∆k = 0 the schedule is no-wait and thus minimal.

Otherwise select k∗ = argmaxk ∆k and shift tasks
ik∗+1, . . . , iq left by ε = min{∆k∗ ,minr>k∗(∆r +
ptir)}. All predecessor finish times remain ≤ tsik∗+1

−
ε, so precedence holds. Each iteration reduces IStotal
by ε; after at most q − 1 iterations

∑
k ∆k = 0.

This proposition guarantees a local improvement in in-
termediate storage under the UIS assumption. How-
ever, it does not constitute a proof of global optimality
or convergence, which remains an open challenge for
future work.

4.5.3 Lower Bounding Techniques

Accelerate search via:

• Zero-Lag Bound: Optimistic assumption:

Cp = dp and isi = 0 ∀ unscheduled i, p

Provides aggressive pruning for early-stage nodes

• Critical-Path Bound: Computes longest delay path
through precedence arcs:

CPdelay = max
paths

∑
(i′,i)

(tsi − tfi′)


Incorporates temporal and storage latency.

• IST Heuristic: For unscheduled task i, estimate min-
imal feasible isi considering:

• Temporal proximity to immediate predecessors
• Projected equipment availability
• Policy constraints (NIS/UIS)

4.5.4 Multi-Objective Trade-Off and Dominance
Consideration.

Although Pareto frontiers are not empirically con-
structed here, the scalarized cost function

Z = α
∑

i∈Isched

isi + β
∑

p∈Psched

(Ep + Tp)

implies an underlying trade-off surface between IST
and due-date penalties. Varying α and β across runs
could approximate a frontier. Since both objectives
may conflict, future implementations could apply dom-
inance checks to improve pruning. The non-convexity
of this space—due to discrete task sequencing—also
suggests that metaheuristic or adaptive scalarization
techniques may better approximate trade-offs in prac-
tice.

Proceedings of the Central European Conference on Information and Intelligent Systems___689

36th CECIIS, September 17-19, 2025___ Varaždin, Croatia

4.6 Policy-Aware Search Adaptation and
Computational Complexity Analysis

The proposed B&B algorithm dynamically adjusts
its search strategy based on the selected reactive
rescheduling policy, directly influencing branching
complexity and computational requirements. Let n =
|I∗k ∪ Ik+1| be the number of unscheduled tasks and
m = |J | the number of machines. Each policy imposes
distinct constraints:

• Policy 1 (Append-only): Tasks in I
∗
k remain fixed

in sequence and timing. New tasks Ik+1 are sim-
ply appended. This results in low branching com-
plexity O(nm), due to the linear number of new
task-machine assignment decisions. However, lim-
ited flexibility often results in suboptimal solutions
concerning due-date and intermediate storage objec-
tives.

• Policy 2.1 (Idle-Gap Insertion): The sequence and
start times of tasks in I

∗
k remain fixed, but new tasks

can be inserted into available idle time windows.
This moderately increases flexibility and computa-
tional complexity to O(n2m) due to the polynomial
number of task-slot-machine checks required. The
policy balances due-date adherence but may restrict
task placement significantly when idle time is scarce.

• Policy 2.2 (Fixed Sequence, Shifted Starts): Tasks
in I

∗
k retain their sequence but can shift their start

times within constraints. This additional temporal
flexibility significantly improves the potential for op-
timal due-date alignment, increasing branching com-
plexity to approximately O(n3m), influenced by
temporal discretization and resource availability.

• Policy 3 (Full Rescheduling): Offers maximum
flexibility, allowing full resequencing and reassign-
ment of all unscheduled tasks I

∗
k ∪ Ik+1. This

combinatorial freedom leads to factorial complexity
O(n! ·mn), making it computationally intensive but
optimal in solution quality.

The selected policy fundamentally shapes algorithm
performance and suitability for real-time implementa-
tion:

• Branching Complexity: Ranges from linear (Policy
1) to factorial (Policy 3).

• Constraint Handling: Policies 1 and 2 enforce hard
constraints, significantly reducing flexibility.

• Solution Quality: Flexibility directly correlates with
the potential to optimize E/T penalties and IST.

• Real-Time Viability: Lower-complexity policies
(1, 2.1) offer rapid solutions suitable for real-time
scenarios but sacrifice optimality, whereas higher-
complexity policies (2.2, 3) achieve better optimiza-
tion at increased computational cost.

Although the underlying combinatorial complexity
remains fundamentally invariant to the chosen ob-
jective functions, incorporating multi-objective crite-
ria—such as E/T and IST—affects the algorithm’s
practical efficiency. Specifically, multi-objective
considerations influence the effectiveness of lower-
bounding techniques and branch pruning, resulting in
increased computational overhead under highly flexi-
ble policies (e.g., Policy 3) despite identical theoretical
complexity.

5 Discussion on Trade-offs
The proposed reactive scheduling framework inher-
ently balances multiple competing factors, such as flex-
ibility, computational complexity, due-date adherence
(E/T penalties), and storage costs. Table 1 succinctly
illustrates these trade-offs across the defined reschedul-
ing policies.

Table 1. Qualitative Trade-off Comparison Across
Rescheduling Policies

Policy Flexibility Comp.
Time

E/T
Penalty

Storage
Penalty

1 Low Low High High
2.1 Medium Medium Moderate Moderate
2.2 High Med–High Low Moderate
3 Very High High Lowest Lowest

Policy 1 is suitable for environments prioritizing
computational efficiency and scheduling stability, yet
its limited flexibility typically results in higher penal-
ties for both due-date adherence and intermediate stor-
age. Policies 2.1 and 2.2 incrementally enhance flex-
ibility, progressively improving the schedule’s align-
ment with due-date targets while moderately control-
ling storage costs at the expense of increased computa-
tional complexity. Policy 3 offers maximal flexibility,
achieving the lowest penalties for both due-date viola-
tions and intermediate storage. However, this optimal-
ity comes at the highest computational cost, making
it best suited for scenarios where solution quality out-
weighs computational constraints.

Future modelling extensions should explore more
nuanced scenarios, including hybrid or adaptive stor-
age policies, dynamic task prioritization, and robust-
ness analysis under stochastic disruptions, to deepen
insights into these complex trade-offs.

6 Conclusion and Future Work
This paper establishes a conceptual foundation for in-
tegrating reactive scheduling with due-date manage-
ment and intermediate storage constraints in flexible
job shop environments. The proposed framework intro-
duces a multi-objective branch-and-bound algorithm
that balances E/T penalties and IST, structured around

690___Proceedings of the Central European Conference on Information and Intelligent Systems

36th CECIIS, September 17-19, 2025___ Varaždin, Croatia

four reactive rescheduling policies that progressively
increase scheduling flexibility.

A key theoretical contribution is the Storage-Gap
Adjustment Proposition, which provides a constructive
approach for local IST minimization under UIS con-
straints via targeted slack redistribution. While this
result offers promising structure-preserving improve-
ment, it remains conceptual and lacks empirical imple-
mentation at this stage.

Importantly, the framework evaluates candidate
schedules using a weighted cost function combining
storage and due-date objectives. While scalarized
in this study, the underlying trade-offs are inherently
multi-objective. Varying the weighting coefficients
would yield a Pareto frontier of non-dominated sched-
ules, with each representing a distinct balance of E/T
performance and storage cost. Future work will ex-
plore these frontiers explicitly, assessing convexity and
dominance relationships to guide solution selection.
As the objective space may be non-convex due to com-
binatorial constraints, such analysis can inform adap-
tive weight adjustment or hybrid optimization strate-
gies.

Future research should also focus on computa-
tional benchmarking using simulated or industrial in-
stances to evaluate policy-specific scalability and so-
lution quality. Additionally, extending the model to
incorporate uncertainty—such as stochastic order ar-
rivals, equipment failures, and variable processing
times—would improve robustness. Finally, integrat-
ing real-time decision support elements such as digital
twins, reinforcement learning for policy selection, and
cost-aware storage models would further enhance the
framework’s practical applicability in dynamic manu-
facturing environments.

Nomenclature
α, β Multi-objective weights (α+ β = 1)

I
∗
k Tasks in Sk

Sk Unstarted assignments (reschedulable)

I∗k Tasks in Sk

Sk Started assignments (fixed) before tk+1

Cp Completion time of product p’s last task

dp Due date for product p

Ep = max(0, dp − Cp) Earliness of product p

I Set of tasks

I−i ⊆ I Immediate prerequisites for task i

Ip ⊆ I Tasks for product p

isi Intermediate storage time for task i

J Set of equipment units

Ji ⊆ J Equipment capable of performing task i

O Set of orders {o1, o2, . . . , on}

P Set of products

pti,j Processing time of task i on unit j

Sk Schedule at order k’s arrival

tsi , t
f
i Start/finish time of task i

tk Arrival time of order ok

Tp = max(0, Cp − dp) Tardiness of product p

wE
p , w

T
p Earliness/tardiness weights for product p

References
Bahroun, Z., Shamayleh, A., As’ad, R., & Zakaria,

R. (2024). Integrated proactive-reactive tool for
dynamic scheduling of parallel machine opera-
tions. International Journal of Engineering Busi-
ness Management, 16, 18479790241301164. https:
//doi.org/10.1177/18479790241301164

Bakon, K. A., & Holczinger, T. (2024). S-graph-based
reactive scheduling with unexpected arrivals of
new orders. Machines, 12(7). https: / /doi .org/10.
3390/machines12070446

Bakon, K. A., & Holczinger, T. (2025). Addressing due
date and storage restrictions in the s-graph schedul-
ing framework. Machines, 13(2). https:/ /doi.org/
10.3390/machines13020131

Cheng, T., & Gupta, M. (1989). Survey of schedul-
ing research involving due date determination deci-
sions. European Journal of Operational Research,
38(2), 156–166. https://doi.org/https://doi.org/10.
1016/0377-2217(89)90100-8

Cheng, T., & Jiang, J. (1998). Job shop scheduling for
missed due-date performance. Computers & Indus-
trial Engineering, 34(2), 297–307. https://doi.org/
https://doi.org/10.1016/S0360-8352(97)00317-3

Ha, J.-K., Chang, H.-K., Lee, E. S., Lee, I.-B., Lee,
B. S., & Yi, G. (2000). Intermediate storage tank
operation strategies in the production scheduling
of multi-product batch processes. Computers &
Chemical Engineering, 24(2), 1633–1640. https :
//doi.org/https://doi.org/10.1016/S0098-1354(00)
00438-5

Herroelen, W., & Leus, R. (2004). Robust and reac-
tive project scheduling: A review and classification
of procedures. International Journal of Production
Research, 42(8), 1599–1620.

Herroelen, W., & Leus, R. (2005). Project schedul-
ing under uncertainty: Survey and research poten-
tials [Project Management and Scheduling]. Eu-
ropean Journal of Operational Research, 165(2),
289–306. https://doi.org/https://doi.org/10.1016/j.
ejor.2004.04.002

Proceedings of the Central European Conference on Information and Intelligent Systems___691

36th CECIIS, September 17-19, 2025___ Varaždin, Croatia

Holguin Jimenez, S., Trabelsi, W., & Sauvey, C.
(2024). Multi-objective production rescheduling:
A systematic literature review. Mathematics,
12(20), 3176.

Kim, M., Jung, J. H., & Lee, I.-B. (1996). Optimal
scheduling of multiproduct batch processes for var-
ious intermediate storage policies. Industrial &
Engineering Chemistry Research, 35, 4058–4066.
https : / / api . semanticscholar . org / CorpusID :
96817294

Kopanos, G. M., & Pistikopoulos, E. N. (2014). Reac-
tive scheduling by a multiparametric programming
rolling horizon framework: A case of a network of
combined heat and power units. Industrial & Engi-
neering Chemistry Research, 53(11), 4366–4386.
https://doi.org/10.1021/ie402393s

Kopanos, G. M., & Puigjaner, L. (2009). A milp
scheduling model for multi-stage batch plants. In
Computer aided chemical engineering (pp. 369–
374, Vol. 26). Elsevier.

Koulamas, C. (2011). A unified solution approach for
the due date assignment problem with tardy jobs.
International Journal of Production Economics,
132(2), 292–295.

Mansini, R., Zanella, M., & Zanotti, R. (2023).
Optimizing a complex multi-objective personnel
scheduling problem jointly complying with re-
quests from customers and staff. Omega, 114,
102722.

Mastrolilli, M., & Svensson, O. (2011). Hardness of
approximating flow and job shop scheduling prob-
lems. Journal of the ACM (JACM), 58(5), 1–32.

Mihály, K., & Kulcsár, G. (2023). A new many-
objective hybrid method to solve scheduling prob-
lems. International Journal of Industrial Engineer-
ing and Management, 14(4), 326–335.

Ojstersek, R., Tang, M., & Buchmeister, B. (2020).
Due date optimization in multi-objective schedul-
ing of flexible job shop production. Advances in
Production Engineering & Management, 15(4),
481–492.

Ouelhadj, D., & Petrovic, S. (2009). A survey of dy-
namic scheduling in manufacturing systems. Jour-
nal of scheduling, 12, 417–431.

Portoleau, T., Artigues, C., & Guillaume, R. (2020).
Robust predictive-reactive scheduling: An
information-based decision tree model. Informa-
tion Processing and Management of Uncertainty
in Knowledge-Based Systems: 18th International
Conference, IPMU 2020, Lisbon, Portugal, June
15–19, 2020, Proceedings, Part III, 1239, 479–
492. https://doi.org/10.1007/978-3-030-50153-
2_36

Romero, J., Puigjaner, L., Holczinger, T., & Friedler, F.
(2004). Scheduling intermediate storage multipur-
pose batch plants using the s-graph. AIChE Jour-
nal, 50(2), 403–417.

Ruiz-Vanoye, J. A., Díaz-Parra, O., & Zavala-Díaz,
J. C. (2011). Complexity indicators applied to the
job shop scheduling problem to discriminate the
best algorithm. International Journal of Combi-
natorial Optimization Problems and Informatics,
2(3), 25–31.

T, V. K., A, J. O., & Setupathi, R. (2017). Multi-
objective comparison of due-date assignment
methods in a dynamic job shop with sequence de-
pendent setup time. International Journal of Engi-
neering Research & Technology (IJERT), 6(04).

Vanhoucke, M. (2002, December). Optimal Due Date
Assignment In Project Scheduling (Working Papers
of Faculty of Economics and Business Adminis-
tration, Ghent University, Belgium No. 02/159).
Ghent University, Faculty of Economics and Busi-
ness Administration.

Vieira, G. E., Herrmann, J. W., & Lin, E. (2003).
Rescheduling manufacturing systems: A frame-
work of strategies, policies, and methods. Journal
of scheduling, 6, 39–62.

Wang, L., Luo, C., & Cai, J. (2017). A variable in-
terval rescheduling strategy for dynamic flexible
job shop scheduling problem by improved genetic
algorithm. Journal of Advanced Transportation,
2017(1), 1527858.

692___Proceedings of the Central European Conference on Information and Intelligent Systems

36th CECIIS, September 17-19, 2025___ Varaždin, Croatia

