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Abstract. The transition to clean energy increases the
importance of Energy Communities (ECs) in achieving
sustainability objectives. Effective operational strate-
gies are crucial for ECs to realize their full potential,
striking a balance between economic viability and
environmental responsibility. This paper presents a
multi-objective optimization framework to determine
an EC’s optimal day-ahead operational strategy,
minimizing both electricity costs and COs emissions.
The framework consists of an optimization model,
developed as mixed-integer linear programming
(MILP) in the General Algebraic Modeling System
(GAMS) environment, and an algorithm in MATLAB,
producing Pareto-optimal solutions. At a weighting
factor of 0.05, the optimal solution reduces electricity
costs by 7.99 € and C'O4 emissions by 1.03 kg.

Keywords. CO- Emissions, Electricity Costs, Energy
Communities, Multi-Objective Optimization

1 Introduction

Energy Communities (ECs) aim to promote local re-
newable energy generation and consumption, reduce
greenhouse gas emissions, enhance energy security,
lower energy costs, foster community engagement and
social inclusion, support local economic development,
and encourage energy efficiency.

ECs may be described as a way of organizing col-
lective energy activities to provide benefits for all com-
munity members. There are two types of ECs: "Citizen
Energy Communities", which are covered by the Direc-
tive on the Internal Electricity Market (EU) 2019/944,
and "Renewable Energy Communities", which are in-
cluded in the Directive on Renewable Energy (EU)
2018/2001. Although ECs participate in economic ac-
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tivities, their primary objective is to ensure ecological
and social benefits for the community (Caramizaru and
Uihlein, 2020).

Given the complexity of planning and operating
ECs, where technical, economic, and environmental
objectives often conflict, multi-objective optimization
(MOO) methods have become essential tools for sup-
porting decision-making and ensuring balanced devel-
opment. In contrast to single-objective optimization,
which targets the improvement of a single performance
criterion, MOO simultaneously addresses multiple ob-
jectives. Rather than producing a single optimal out-
come, MOO algorithms generate a set of trade-off so-
lutions known as the Pareto-optimal set or Pareto front.
Each solution within this set is non-dominated, imply-
ing that no other solution is superior across all consid-
ered objectives.

Although the Pareto front enables a comprehensive
evaluation of alternative system configurations, the se-
lection of a final solution necessitates the application
of additional decision-making criteria or constraints,
aligned with the specific priorities of the system or
stakeholders. MOO methods are generally classified
into decomposition-based approaches and direct solu-
tion approaches. In decomposition-based methods, the
original multi-objective problem is transformed into
a single-objective problem. Common techniques in
this category include the Weighted Sum, Weighted
Metric Sum, and the e-constraint method. The main
disadvantage of decomposition approaches is that the
Pareto front set will be established after multiple it-
erations. In contrast, direct approaches aim to iden-
tify the Pareto-optimal set in a single optimization
run by simultaneously evaluating all objective func-
tions. Some of the MOO methods based on direct
approaches are: Non-Dominated Sorting Genetic Al-
gorithm IT (NSGA-II), Multi-Objective Particle Swarm
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Optimization (MOPSO), Strength Pareto Evolutionary
Algorithm II (SPEA II), Multi-Objective Evolutionary
Algorithm Based on Decomposition (MOEA/D), and
Pareto Envelope-based Selection Algorithm II (PESA-
II) (Salehi et al., 2022).

2 Related work

Authors in the literature have adopted different ap-
proaches to solving multi-objective optimization prob-
lems. In (Shaker et al., 2021), the authors proposed
a new multi-objective algorithm, Multi-Objective
Hunger Game Search Optimizer (MOHGS), to de-
termine the optimal charging or discharging deci-
sions for the energy storage units within the micro-
grid system. Four objective functions are proposed:
minimizing the operating cost, minimizing the emis-
sions, minimizing the loss of power supply prob-
ability, and maximizing the renewable factor (RF).
Additionally, the authors modified the first objec-
tive function by adding the battery degradation cost.
The objective is achieved through the Pareto func-
tion. Compared to the multi-objective versions of the
latest techniques, including Marine Predators Algo-
rithm (MOMPA), Slime Mould Algorithm (MOSMA),
Multi-Verse Optimizer (MOMVO), Golden-Eagle Op-
timizer (MOGEOQO), Grasshopper Optimization Algo-
rithm (MOGOA), Antlion Optimizer (MOALO), and
Grey Wolf Optimizer (MOGWO), the authors pre-
sented the results demonstrating the superiority of the
proposed MOHGS-based approach in providing the
optimal charging/discharging cycles.

The authors in (Kong et al., 2023) presented a bi-
level optimization model for enhancing the indepen-
dence of distributed generation systems by integrating
a shared energy storage system (ESS) and an inter-
nal energy market within an EC. At the upper level,
a multi-objective optimization approach is adopted.
The first objective function is to minimize the total
cost associated with the ESS, including investment,
replacement, and operating costs, while the second
objective function is to maximize the self-sufficiency
rate, i.e., the proportion of demand that the commu-
nity meets. The objective function of the lower-level
model is to maximize the community’s social welfare,
that is, to minimize the operating cost of the com-
munity. To solve two optimization problems, the au-
thors applied a nested algorithm: the upper-level multi-
objective problem is solved using the NSGA-II to ob-
tain a Pareto front of optimal trade-off solutions, while
the lower-level single-objective problem is solved us-
ing the Gurobi solver. Furthermore, to obtain an opti-
mal solution from the Pareto solution set, the Utopian
point method is applied. Although due to the trade-off
relationship between objective functions, no Utopian
point could be achieved. In (Wang et al., 2023), the
authors proposed a multi-objective optimization prob-
lem applied to a combined power system, including
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photovoltaics, diesel generators, and fuel cells. The
optimization aimed to minimize two objective func-
tions: the loss of power supply probability (LPSP) and
the total net present cost (TNPC). To solve the multi-
objective problem, the authors improved the Sea Lion
Optimization Algorithm (SLOA), which simulates the
social behavior of sea lions during hunting. Further-
more, to improve SLOA to be used for MOO purposes,
the authors utilized the Particle Swarm algorithm, the
optimizer which looks for solutions to multi-objective
problems by applying the Pareto dominance princi-
ple (using an external archive or secondary population
to accumulate non-dominated answers and influence
the direction of the search for the next descendant).
The multi-objective optimization was conducted using
the Multi-Objective Sea Lion Optimization Algorithm
(MOSLO) and applying the Pareto ranking technique.

In (Mariuzzo et al., 2023), the authors presented an
optimal sizing and management MILP-based method-
ology for ECs, which incorporates the flexibility
of appliances in the form of demand side manage-
ment (DSM) and demand response (DR). The A-
AUGMENCON? algorithm, as an improved version of
the augmented e-constraint method, is applied. The
proposed objective functions are: minimizing total an-
nualized costs, minimizing C'O- emissions, maximiz-
ing social comfort, and minimizing energy exchange
with the grid. The solution is obtained by applying
the Pareto front. The authors in (Liu et al., 2023) pro-
posed a distributed mixed-integer conic programming
(MICP)-based energy management framework for ac-
tively interfaced participants, such as distributed en-
ergy resources (DERs), flexible loads, and microgrids,
embedded within a modern distribution system. The
energy management framework is formulated as an
MOO problem, including the network operational ob-
jectives such as bus voltage deviations, feeder losses,
and power factor of the distribution substation, while
minimizing the utility grid’s total operational cost.
These objectives are aggregated into a single objective
function using corresponding weighting coefficients,
which were determined by the Analytic Hierarchy Pro-
cess (AHP). To solve the optimization problem, the au-
thors applied the Alternating Direction Method of Mul-
tipliers (ADMM).

The authors in (Anuradha et al., 2024) proposed a
multi-objective stochastic optimization framework to
size and place a community energy storage system
(CESS) under three different energy pricing schemes
(EPSs) for the CESS provider. The objective func-
tions are to minimize the CESS provider’s investment
and operating costs, as well as the prosumers’ oper-
ating costs. The uncertainties in PV generation and
real/reactive energy consumption are considered. To
solve this multi-objective problem, the authors used the
e-constraint method, which generates a Pareto front of
non-dominated solutions. Furthermore, the authors in
(De Leon et al., 2024) presented a multi-objective lin-
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ear programming (MOLP) model to optimize the tech-
nical and business design of the novel local energy
community DC microgrid scheme. The two objective
functions are proposed: minimizing the total lifetime
costs of the participating households and of the spon-
soring local government unit (LGU). The Pareto opti-
mal front is obtained through the e-constrained algo-
rithm to identify optimal solutions.

In (Di Somma et al., 2022), the authors proposed
stochastic MOO model, based on mixed integer lin-
ear programming (MILP), of a real case study, which
is treated as an integrated local energy community
(ILEC) with two electrically interconnected multi-
energy hubs involving technologies such as PV, solar
thermal, combined heat and power systems, electric
and geothermal heat pumps, absorption chillers, elec-
tric and thermal storage. The optimization model has
two objective functions: the minimization of the net
daily energy costs and carbon emissions. The opti-
mization problem is solved by applying the Weighted
Sum Method, while the optimal solution is established
through a Pareto-optimal set of solutions. To account
for the uncertainties associated with renewable energy
sources (RES), the roulette wheel method (RWM) is
applied to generate an initial set of solar irradiance sce-
narios. the fast forward selection algorithm is applied
to retain the most representative scenarios, thereby re-
ducing the computational burden in the subsequent op-
timization stage.

The literature review reveals that greater emphasis is
placed on economic objectives than on environmental
ones. To fill this research gap, this paper proposes an
MOO framework to determine an EC’s optimal day-
ahead operational strategy, which simultaneously min-
imizes electricity costs and C'Os emissions by apply-
ing the Weighted Sum Method. The optimal solution is
identified through sets of Pareto-optimal solutions.

This paper is organized as follows. In Chapter 2, the
proposed optimization model is presented. In Chapter
3, the input data and the applied optimization technique
are described. In Chapter 4, the results are presented,
and in Chapter 5, the conclusion is given.

3 The proposed multi-objective op-
timization framework

3.1 The proposed optimization model

This paper proposed a multi-objective optimization
model, which consists of two objective functions: the
minimization of electricity costs and the minimization
of C'O4 emissions. The optimization problem is solved
by applying the Weighted Sum Method, which aggre-
gates two objective functions into one single objective
function. The objective is achieved through the Pareto
front, which balances electricity costs and C'Os emis-
sions.
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The objective function is defined according to eq. 1.
Opt =w- Ecost + (1 - UJ) : COQ,tatul (1)

where: opt represents the function to be minimized;
w represents a weighting factor indicating the impor-
tance of each of the two objective functions; F.,s; rep-
resents total electricity costs; C Oz totq; Tepresents the
total amount of CO5 emissions.

The upper limit of w is 1, meaning that setting w =1
produces a solution that minimizes total expected elec-
tricity costs. The lower limit of w is 0, meaning that
setting w = 0 produces a solution that minimizes the
expected C'O3 to1q; €missions. Adjusting w within the
range of 0 to 1, the Pareto front can be identified, in-
cluding possible trade-off solutions between economic
and environmental objectives. This method is simple to
implement and has been shown to identify all Pareto-
optimal solutions in convex problems with only two
objective functions (Di Somma et al., 2022).

The total electricity costs of all prosumers in EC are
defined according to eq. 2.

where: c represents a scaling factor; Py, 1) and Py 1)
represent amounts of power imported and exported
to the grid by prosumer p at a time step ¢, respec-
tively; Pi(p,t) and Py, +) represent amounts of power
imported and exported to the local electricity market
(LEM) by prosumer p at time step t, respectively;
Chi(p,ry and Cpy(p ¢y Tepresent the price of electric-
ity imported and exported from/to the grid, respec-
tively; Ce(p,1) represents the price of electricity im-
ported/exported to the LEM.

The total amount of CO5 emissions caused by the
import of electricity from the grid is defined according
to eq. 3.

CO2 total = Z COy - Eimp,uk(p) 3)
P

where: C'O, represents the carbon intensity of im-
ported electricity from the grid; E;p,p o5 (p) represents
total electricity imported from the grid by prosumer p.

The state of charge (SOC) of the electric vehicle
(EV) battery is defined according to equations 4 and
5. Eq. 4 applies to the first time step (¢ = 1), while eq.
5 is used for each subsequent time step.

Pcha LEV,
SOCa(p,ev,t) :SOCa(p,ev,start) /e %

1 ) Pdcha(p,ev,t)

Nd 6
“4)
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Pcha ,ev,
SOOa(p,e'u,t) :SOCa(p,e'u,tfl) +Ne - %

. 1 . Pdcha(p,ev,t)
Nd 6
&)
where: SOC,(p.cv,1) Tepresents the SOC of the EV
battery at time step t; SOCy(p,eu,start) TEpresents the
SOC of the EV battery at the beginning of the observed
scheduling horizon; 7. and 7y represent the charging
and discharging efficiencies of EV battery; Pepq(p,ev,t)
and Pycpa(p,ev,t) T€present amounts of power required
to charge and discharge the EV battery at time step ¢,
respectively.
Constraints related to the import/export of electric-
ity from/to the grid and LEM are defined according to
equations from 6 to 9:

0< Pk(p.t) < Pkmaz(p.t) : Pkbin(p.t) (6)

0< Pp(p.t) < Ppmax(p.t) : Ppbin(p.t) 7
0< jjlk:(p.t) < P)lkmax(p.t) : ]le:bin(p.t) 3
0< I:)lp(p‘t) < Plpmam(p.t) . Plpbin(p.t) )

where:  Priaz(p,t) and Ppqq(p,+) Tepresent the
maximum amounts of power that prosumer p can im-
port and export to the grid at time ¢, respectively;
Prmaz(p,t) ad Pipmag(p,t) represent the maximum
amounts of power that prosumer p can import and ex-
port to the LEM at time step ¢, respectively; Prpin(p,¢)»
Ppbin(p,t)v —Plkbin(p,t) and prin(p,t) represent binary
decision variables determining the import or export of
electricity from the prosumer p at time step .

Equations 10 and 11 define constraints related to
charging and discharging an EV battery, respectively.

0< Pcha(p.eu,t) < Pcha,mam (10)

0< Pdcha(p,ev,t) < Pchmma:r (11)

where: Pepq maq Tepresents the maximum amount
of charging, i.e., discharging power of the EV battery.

The constraint related to the SOC of the EV battery
is defined as:

SOCmin < SOCa(p,eu,t) < SOChax (12)

where: SOC,;,, and SOC,,, 4, represent the minimum
and maximum SOC of the EV.

The following constraint ensures the balance be-
tween electricity import and export to the LEM:

P P
z Piipt) = Z Pryip,ty (13)
p=1 p=1

The constraint on the simultaneous import and ex-
port of electricity to/from the grid and LEM is defined
by equations 14 and 15.

Pkbin(p,t) + Ppbin(p,t) <1 (14)
Plkbin(p,t) + Plpbin(p,t) <1 (15)
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3.1.1 The proposed algorithm

To ensure that both objective functions are treated
equally in the optimization model, a weighting factor
(w) and a constant (c), which presents a scaling fac-
tor, are applied. The scaling factor c is introduced
into the model to enable the comparison of different
units of measurement - electricity costs, expressed in
[€], and CO- emissions, expressed in [kg]. By vary-
ing w from O to 1 in steps of 0.05, the objective is to
achieve a balance between minimizing electricity costs
and minimizing C'O4 emissions. At w = 1, the primary
focus is on reducing total electricity costs, while at w
= 0, the optimization focuses on reducing COy emis-
sions. To automate the process of multi-objective op-
timization, an algorithm was developed in MATLAB.
The algorithm begins by defining the upper and lower
limits of w. Furthermore, MATLAB passes the neces-
sary input data to the optimization model developed in
GAMS, where the optimization problem is solved for
each value of w in the range from 0 to 1. After each iter-
ation, the results are returned to MATLAB and stored,
and it is checked whether the upper limit of w has been
reached. If the upper limit has not been reached, the
process is repeated. The objective of this algorithm is
to find the optimal value of w. After the upper limit
of w is reached, the optimization results are processed
and graphically displayed. Based on the results, the op-
timal solution is selected, meaning the value of w that
provides the best balance between minimizing electric-
ity costs and minimizing C'O5 emissions. The process
of the above algorithm is shown in Fig. 1.

4 Case study

The EC analyzed in the simulation consists of six pro-
sumers. Prosumer P2 represents a business, while pro-
sumers P1, P3, P4, P5 and P6 represent households.
The electricity consumption and generation profiles
were measured at the real prosumer households, while
the business measurements were conducted at a faculty
building in Osijek, Croatia.

Fig. 2 shows the electricity consumption profile
of each prosumer in the community over the ob-
served day-ahead. As a business, P2 has significantly
higher electricity consumption compared to house-
holds, which is expected given the greater electricity
demands of a business. Household consumption (P1,
P3, P4, P5, P6) exhibits a lower and more evenly dis-
tributed load.

Fig. 3 shows electricity generation from photo-
voltaic (PV) power plants within the EC. All prosumers
contribute to electricity generation, with P2, as a busi-
ness, achieving the highest generation output. House-
hold generation is also significant, but aligns with their
lower electricity demands. Furthermore, all partici-
pants reach peak generation during similar time inter-
vals.
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Figure 1. Graphical representation of the algorithm for

automating the multi-objective optimization process in
MATLAB

Household electricity consumption [kW

Time [10min intervals]

P3 P4

Figure 2. Electricity consumption of prosumers

In this and the following cases, time step ¢ repre-
sents an interval of 10 minutes. The power for every
time step ¢ is divided by 6, since an hour contains 60
minutes. This approach allows the model to accurately
monitor electricity consumption and generation in 10-
minute intervals, while simultaneously displaying ag-
gregated values on an hourly basis, which contributes
to better analysis and management of electricity flows
within the system.

Electricity prices are determined according to the
"White Tariff Model", which includes two rates: a
lower and a higher tariff. The pricing data was ob-
tained from the official HEP website (“HEP - Tarifne
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Figure 3. Electricity generation of prosumers

stavke (cijene)”, 2024). For households, the prices are
0.083 €/kWh for the lower tariff and 0.159 €/kWh
for the higher tariff. For businesses, prices are 0.12
€/kWh and 0.201 €/kWh, respectively. The price of
electricity exported to the grid by households and busi-
nesses is determined according to the market model
"Customer with Own Production." According to this
model, households receive 0.05 €/kWh, while busi-
nesses receive 0.0374 €/kWh for the exported electric-
ity. The electricity price on the LEM is 0.025 €/kWh,
representing the average distribution grid usage fee for
households. Other input parameters are given in Table
1, based on real data.

Table 1. Input parameters of the optimization model

Input parameter Amount
Primazs Pikmaz 13.8/120 kW
Ppmaz> Plpmaz 5/120 kW
Nes Nd 0.985
Pchamaz 7.4 kW
COy 0.246 kg/kWh
Electricity consumption of EV | 0.175 kWh/km

The driving time of the EV and the distance it cov-
ers within that time are also considered. On average,
EV owners travel between 40 and 90 km per day. In
the simulation, each prosumer with an EV is assumed
to travel within these limits. The travel time varies for
each prosumer, ranging from 30 to 90 minutes (Misl-
jenovic et al., 2024).

5 Results

The impact of w on electricity costs and C'O2 emis-
sions is shown in Figs. 4 and 5. The costs presented in
the figures and tables represent actual electricity costs
multiplied by the scaling factor ¢ of 2.1, which was
determined before the optimization process, ensuring
equal order of magnitude of the two objective func-
tions. According to Fig. 4, electricity costs are highest
at w =0, amounting to 130.67 €. When the scaling fac-
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tor c is considered, the actual electricity cost is 62.22
€. This occurs because, at w = 0, the objective is to
minimize CO5 emissions. Fig. 5 shows an opposite
trend compared to Fig. 4. Atw =0, C'O, emissions are
at their lowest value of 104.55 kg. However, as w in-
creases, CO4 emissions also increase. The emissions
stabilize at w > 0.4, reaching a value of 105.96 kg,
with a maximum recorded value of 106.04 kg.

Electricity

[ 5 01 015 02 025 03 03 4 045 0, 55 06 065 07 5 08 085 09 035 1
The w factor @

Figure 4. Total electricity costs considering w

€O, emissions [k

Figure 5. CO, emissions considering w

Fig. 6 shows a comparative representation of scaled
electricity costs and COy emissions concerning dif-
ferent values of w. As w increases, total electricity
costs decrease and stabilize at higher values of w, while
C'O4 emissions increase. This trade-off between eco-
nomic and environmental objectives is crucial for sys-
tem decision-making.

\ A

Figure 6. Combined representation of electricity costs
and total C'O4 emissions

Fig. 7 shows the Pareto front, which shows that elec-
tricity costs and C'O2 emissions cannot be minimized
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simultaneously. The Pareto front helps identify the
most efficient, i.e., optimal solution, where neither to-
tal electricity costs nor total CO emissions are signif-
icantly aggravated. In this simulation, the Pareto front
provides insight into how much the EC must compro-
mise on electricity costs to reduce C'O emissions, and
vice versa.

Figure 7. Pareto front

The results presented in the figures correspond to
the optimized solution obtained for w = 0.05.

Fig. 8 shows the amounts of imported and exported
electricity throughout the day. These values represent
electricity exchange with the grid, as well as LEM.
Prosumer P2 imports significantly more electricity than
other prosumers, which is expected, as businesses gen-
erally have higher electricity consumption than house-
holds, making P2 the key electricity importer within
the EC. On the other hand, prosumers P1, P3, P4, PS5,
and P6 (households) require considerably less imported
electricity than P2. Additionally, these households con-
tribute to electricity exports within the LEM, reducing
the EC’s reliance on the grid.

Electricity [kWh]

. N | | = =

Prosumer

Figure 8. Exchange of electricity of prosumer with the
grid and LEM

Fig. 9 shows the SOC of EV batteries throughout
the day. The battery state varies depending on the time
of day, indicating whether the batteries are charging or
discharging. Three intervals can be identified in which
the SOC changes. In the first interval, there is an in-
crease in the SOC of the EV batteries when they are
connected to home chargers in households. This sug-
gests that households charge their EVs during the night
and morning hours when electricity prices are lower.
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In the second time interval of the day, the EV batteries
are charged at the company during working hours. The
EV batteries are charged with the surplus electricity,
which is justified by the price of exporting electricity
to the grid. EVs require a significant amount of elec-
tricity to charge, especially if the company has multiple
EVs being charged simultaneously. In the final third
of the day, there is a decrease in the SOC, suggesting
that EVs in households are being used or the batteries
are discharging to cover consumption. The change in
SOC during the first and third intervals indicates that
households are using electricity from their batteries to
meet their daily electricity needs. Instead of charging
EV batteries in the evening when electricity prices are
higher, prosumers discharge batteries. In contrast, at
night and in the morning, when electricity prices are
lower, prosumers charge EV batteries. This shows how
electricity is used and stored within the EC and pro-
vides insight into the efficiency of EV battery manage-
ment throughout the day. Optimal management allows
a balance between consumption, storage, and electric-
ity generation, reducing the need for electricity import
from the grid and thereby increasing the electricity in-
dependence of the EC.

Electricity [kWh,

Figure 9. SOC of EV batteries

Correlations between w and total electricity costs, as
well as total C O emissions, are shown in Table 2. The
optimal solution is achieved with a weight factor w of
0.05. At this value of w, the total scaled electricity costs
amount to 113.89 €, or actual electricity costs of 54.23
€, with the scaling factor ¢ of 2.1, while the total CO2
emissions are 105.01 kg. Through multi-objective op-
timization of the EC’s operations, total electricity costs
were reduced by 7.99 €, compared to the initial elec-
tricity cost of 62.22 €, and C'O, emissions were re-
duced by 1.03 kg, compared to the highest amount of
106.04 kg.

The main objective is to reduce C'Oy emissions
while keeping electricity costs within acceptable lim-
its. Although electricity costs are significantly lower at
higher values of w, it is important to consider the objec-
tives of EC. Since ECs in Croatia are non-profit orga-
nizations, their primary focus is to reduce CO, emis-
sions, i.e., reduce any negative environmental impacts.
Therefore, more importance is given to reducing CO-
emissions than to minimizing electricity costs.
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Table 2. Electricity costs and total C'O5 emissions in
correlation with w

Electricity Scaled Total CO4
w costs [€] | electricity | emissions [kg]
costs [€]
0.00 62.22 130.67 104.55
0.05 54.23 113.89 105.01
0.10 50.82 106.72 105.72
0.15 49.89 104.76 105.93
0.20 52.61 110.49 105.36
0.25 49.93 104.86 105.94
0.30 49.89 104.78 105.95
0.35 50.66 106.39 105.76
0.40 4991 104.82 105.94
0.45 49.88 104.76 105.95
0.50 49.86 104.70 105.95
0.55 49.83 104.64 105.97
0.60 49.92 104.83 105.95
0.65 49.86 104.70 105.96
0.70 49.85 104.69 105.96
0.75 49.87 104.73 106.04
0.80 49.88 104.76 105.96
0.85 49.89 104.77 106.00
0.90 49.88 104.76 105.96
0.95 50.08 105.16 105.90
1.00 50.10 105.21 105.89

6 Conclusion

This paper proposes a multi-objective optimization
framework to determine an EC’s optimal day-ahead
operational strategy, simultaneously minimizing elec-
tricity costs and C'O4 emissions. The proposed frame-
work consists of an optimization model, developed as
an MILP in GAMS, and an algorithm, developed in
MATLAB. The optimal solution is determined through
sets of Pareto-optimal solutions.

The results show how effective optimization of EC’s
operations can impact greenhouse gas emissions and
the overall costs of electricity generation, consump-
tion, and distribution. Through multi-objective opti-
mization, a balance between ecological and economic
objectives is achieved with a weight factor w of 0.05,
where the EC’s electricity costs were reduced from
62.22 € to 54.23 €, representing a decrease of 7.99
€, while C O, emissions were reduced from 106.04 kg
to 105.01 kg, representing a decrease of 1.03 kg. This
solution emphasizes that a higher priority was placed
on reducing C'O emissions, while electricity costs are
within acceptable limits for the community members.
Although there is potential for further cost reduction,
this would result in higher COs emissions, which is
not in line with the objectives of ECs, which, as non-
profit organizations, aim to reduce their negative envi-
ronmental impact.
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Future research may explore the application of
multi-objective optimization to ECs providing flexi-
bility services, simultaneously minimizing electricity
costs and C'O- emissions, while considering stochastic
behavior.
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